删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

黄菖蒲对阿特拉津胁迫的生理响应

本站小编 Free考研考试/2021-12-30

夏凡1,2,
李翠1,
陈传胜2,
王庆海1,,
1. 北京市农林科学院北京草业与环境研究发展中心, 北京 100097;
2. 中南林业科技大学环境科学与工程学院, 长沙 410004
作者简介: 夏凡(1993-),女,硕士研究生,研究方向为污染控制工程,E-mail:x729520318@163.com.
通讯作者: 王庆海,wqh@grass-env.com
基金项目: 北京市自然科学基金资助项目(5192004);国家自然科学基金资助项目(31370540)


中图分类号: X171.5


Physiological Response of Iris pseudacorus to Atrazine Stress

Xia Fan1,2,
Li Cui1,
Chen Chuansheng2,
Wang Qinghai1,,
1. Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
2. College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
Corresponding author: Wang Qinghai,wqh@grass-env.com

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要:化学除草剂阿特拉津通过阻碍电子传递抑制植物光合作用,其水体污染的生态毒性倍受关注。为揭示挺水植物对阿特拉津胁迫的生理响应规律,采用水培试验模拟不同浓度阿特拉津胁迫,测定黄菖蒲叶绿素荧光参数及叶片防御酶活性在抑菌和无抑菌条件下的变化,分析二者间的相关性。结果表明,不抑菌条件下,胁迫浓度≤ 4 mg·L-1时,POD和PPO活性增强,随着胁迫强度加大活性下降,而SOD活性显著升高。PPO活性与多个叶绿素荧光参数、MDA含量显著相关。胁迫浓度≤ 1 mg·L-1时,植物各叶绿素荧光参数均与对照组无显著差异;4 mg·L-1时仍可维持正常水平的叶绿素含量和光合效率。这表明,阿特拉津胁迫下3种酶的协调作用提高了植物的适应能力,PPO活性可反映植物光合作用受抑制程度及受氧化损伤程度。黄菖蒲对阿特拉津的耐受水平可达到4 mg·L-1,微生物可以减轻阿特拉津的植物毒性,这可能归因于其能够促进阿特拉津降解。
关键词: 阿特拉津/
黄菖蒲/
光合特性/
防御酶

Abstract:Atrazine inhibits plant photosynthesis by blocking the electron transfer in the photosystem Ⅱ. Atrazine pollution in surface waters has become the subject of continuous concern due to its potential ecotoxicity. In order to detect the physiological response of the emergent plants to the atrazine stress, Iris pseudacorus was exposed to atrazine (0.5, 1, 2, 4 and 8 mg·L-1) for 3 weeks in a hydroponic system. The chlorophyll fluorescence parameters and defense enzyme activities of the leaves were determined under nature and sterile conditions. The correlations of the chlorophyll fluorescence parameters with defense enzyme activities were analyzed. The results showed that POD and PPO activities were enhanced at atrazine concentrations not exceeding 4 mg·L-1, decreasing with increasing stress concentrations, while SOD activity increased significantly under such conditions. PPO activity was significantly correlated with several chlorophyll fluorescence parameters and MDA content. All of the tested chlorophyll fluorescence parameters were not significantly different from the control at low atrazine concentrations (≤ 1 mg·L-1), and the plant can maintain normal levels of chlorophyll content and photosynthetic efficiency at 4 mg·L-1 atrazine stress. These results suggested that the coordination of three enzymes increased the plant adaptability under atrazine stress, and PPO activity reflected the degree of photosynthesis inhibition and the degree of oxidative damage. The tolerance level of Iris pseudacorus to atrazine reached 4 mg·L-1, and microorganisms can alleviate the phytotoxicity of atrazine maybe due to its role in degrading atrazine.
Key words:atrazine/
Iris pseudacorus/
photosynthetic characteristics/
defense enzymes.

加载中
李清波, 黄国宏, 王颜红, 等. BTEX的环境质量标准研究进展[J]. 应用生态学报, 2002, 13(5):625-628Li Q B, Huang G H, Wang Y H, et al. Environmental quality standard of BTEX[J]. Chinese Journal of Applied Ecology, 2002, 13(5):625-628(in Chinese)
徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2):347-354Xu X, Li C M, Sun J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticides in surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 2016, 11(2):347-354(in Chinese)
柳丽丽, 李剑, 李沫蕊, 等. 官厅水库水体有机氯农药残留特征及健康风险评价[J]. 北京师范大学学报:自然科学版, 2014, 50(6):657-661Liu L L, Li J, Li M R, et al. Residue characteristics and health risk assessment of organochlorine pesticides in Beijing Guanting Reservoir[J]. Journal of Beijing Normal University:Natural Science, 2014, 50(6):657-661(in Chinese)
Hillebrand O, Nödler K, Geyer T, et al. Investigating the dynamics of two herbicides at a karst spring in Germany:Consequences for sustainable raw water management[J]. Science of the Total Environment, 2014, 482-483:193-200
Rutherford A W, Krieger-Liszkay A. Herbicide-induced oxidative stress in photosystem Ⅱ[J]. Trends in Biochemical Sciences, 2001, 26(11):648-653
Knauert S, Singer H, Hollender J, et al. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms[J]. Environmental Pollution, 2010, 158(1):167-174
瞿梦洁, 朱锋, 李慧冬, 等. 沉水植物对阿特拉津胁迫的毒理响应[J]. 生态毒理学报, 2018, 13(4):209-216Qu M J, Zhu F, Li H D, et al. Toxicological responses of submerged macrophytes to atrazine exposure[J]. Asian Journal of Ecotoxicology, 2018, 13(4):209-216(in Chinese)
Erinle K O, Jiang Z, Ma B, et al. Physiological and molecular responses of pearl millet seedling to atrazine stress[J]. International Journal of Phytoremediation, 2018, 20(4):343-351
王庆海, 张威, 却晓娥, 等. 水体阿特拉津残留对水葱生物量及生理特性的影响[J]. 植物生态学报, 2011, 35(2):223-231Wang Q H, Zhang W, Que X E, et al. Effects of atrazine residue in water on biomass and physiological characteristics of Scirpus tabernaemontani[J]. Chinese Journal of Plant Ecology, 2011, 35(2):223-231(in Chinese)
Wang Q, Que X, Li C, et al. Phytotoxicity of atrazine to emergent hydrophyte, Iris pseudacorus L.[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(3):300-305
Gao Y, Fang J, Li W, et al. Effects of atrazine on the physiology, sexual reproduction, and metabolism of eelgrass (Zostera marina L.)[J]. Aquatic Botany, 2019, 153:8-14
郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应[J]. 植物生理学报, 2018, 54(12):1839-1846Guo Y Y, Liu J, Zhu Y L, et al. Responses of photosynthetic and antioxidant enzyme activities in maize leaves to drought stress[J]. Plant Physiology Journal, 2018, 54(12):1839-1846(in Chinese)
李翠, 温海峰, 郑瑞伦, 等. 阿特拉津胁迫对菖蒲的生理毒性效应[J]. 农业环境科学学报, 2016, 35(10):1895-1902Li C, Wen H F, Zheng R L, et al. Phytotoxicity of atrazine to Acorus calamus L.[J]. Journal of Agro-Environment Science, 2016, 35(10):1895-1902(in Chinese)
吴奇, 宋福强. 土壤中阿特拉津生物降解的研究进展[J]. 土壤与作物, 2017, 6(2):153-160Wu Q, Song F Q. Research advances on biodegradation of atrazine in soil[J]. Soils and Crops, 2017, 6(2):153-160(in Chinese)
刘虹, 张兰英, 刘娜, 等. 低温下固定化微生物降解水体中阿特拉津的效果[J]. 吉林大学学报:地球科学版, 2008, 38(6):1027-1031Liu H, Zhang L Y, Liu N, et al. Effect of biodegradation of atrazine in the waterbody by immobilized microorganism in low temperature[J]. Journal of Jilin University:Earth Science Edition, 2008, 38(6):1027-1031(in Chinese)
Glick B R. Phytoremediation:Synergistic use of plants and bacteria to clean up the environment[J]. Biotechnology Advances, 2003, 21(5):383-393
Chapin F S, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge[J]. Nature, 1993, 361:150-153
沈伟其. 测定水稻叶片叶绿素含量的混合液提取法[J]. 植物生理学通讯, 1988, 3(3):62-64Shen W Q. Extraction of mixed solution for determination of chlorophyll content in rice leaf blade[J]. Plant Physiology Communications, 1988, 3(3):62-64(in Chinese)
陈建军, 张坤, 李明锐, 等. 皇竹草对土壤阿特拉津的降解特性[J]. 生态与农村环境学报, 2014, 30(6):768-773Chen J J, Zhang K, Li M R, et al. Effect of Pennisetum hydridum degrading atrazine in soil[J]. Journal of Ecology and Rural Environment, 2014, 30(6):768-773(in Chinese)
张坤, 李元, 祖艳群, 等. 皇竹草活性氧代谢对阿特拉津胁迫的响应特征[J]. 西北植物学报, 2013, 33(12):2479-2485Zhang K, Li Y, Zu Y Q, et al. Response characteristics of reactive oxygen metabolism in Pennisetum hydridum to atrazine stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(12):2479-2485(in Chinese)
邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社, 2000:72-75
王庆海, 李翠, 陈超, 等. 芦苇对阿特拉津胁迫的生理响应及其与耐受性的关系[J]. 农业环境科学学报, 2017, 36(10):1968-1977Wang Q H, Li C, Chen C, et al. Physiological responses of Phragmites australis to atrazine exposure and their relevance for tolerance[J]. Journal of Agro-Environment Science, 2017, 36(10):1968-1977(in Chinese)
武永军, 何国强, 史艳茹, 等. 不同pH值缓冲液处理下蚕豆叶片相对含水量、脯氨酸及丙二醛含量的变化[J]. 干旱地区农业研究, 2009, 27(6):169-172Wu Y J, He G Q, Shi Y R, et al. Change of relative water content, proline content and malondialdehyde content of Vicia faba leaves under different pH buffer treatments[J]. Agricultural Research in the Arid Areas, 2009, 27(6):169-172(in Chinese)
周宇飞, 王德权, 陆樟镳, 等. 干旱胁迫对持绿性高粱光合特性和内源激素ABA、CTK含量的影响[J].中国农业科学, 2014(4):655-663 Zhou Y F, Wang D Q, Lu Z B, et al. Effects of drought stress on photosynthetic characteristics and endogenous hormone ABA and CTK contents in green stayed sorghum[J]. Scientia Agricultura Sinica, 2014(4):655-663(in Chinese)
卢从明, 张其德, 匡廷云. 水分胁迫对小麦光系统Ⅱ的影响[J]. 植物学报, 1994, 36(2):93-98Lu C M, Zhang Q D, Kuang T Y. The effects of water stress on photosystemⅡ in wheat[J]. Acta Botanica Sinica, 1994, 36(2):93-98(in Chinese)
陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J]. 浙江农业学报, 2006, 18(1):51-55Chen J M, Yu X P, Cheng J A. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses[J].Acta Agriculturae Zhejiangensis, 2006, 18(1):51-55(in Chinese)
葛江丽, 石雷, 谷卫彬, 等. 盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节[J]. 作物学报, 2007, 33(8):1272-1278Ge J L, Shi L, Gu W B, et al. Photosynthetic characteristics and the regulation of photosystemⅡ function in salt-stressed sweet sorghum seedlings[J]. Acta Agronomica Sinica, 2007, 33(8):1272-1278(in Chinese)
张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4):444-448Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 16(4):444-448(in Chinese)
王可玢, 许春辉, 赵福洪, 等. 水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J]. 生物物理学报, 1997, 13(2):123-128Wang K F, Xu C H, Zhao F H, et al. The effects of water stress on some in vivo chlorophyll a fluorescence parameters of wheat flag leaves[J]. Acta Biophysica Sinica, 1997, 13(2):123-128(in Chinese)
张腾国, 李巧丽, 刁志宏, 等. 盐及干旱胁迫对油菜抗氧化系统和RbohC、RbohF基因表达的影响[J]. 应用生态学报, 2019, 30(3):969-978Zhang T G, Li Q L, Diao Z H, et al. Effects of salt and drought stresses on antioxidant system and RbohC and RbohF genes expression in Brassica campestris[J]. Chinese Journal of Applied Ecology, 2019, 30(3):969-978(in Chinese)

相关话题/植物 生态 生理 农业 环境科学