删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

湿地植物水蓼(Polygonum hydropiper L.)对镉的富集特征及生理响应

本站小编 Free考研考试/2021-12-30

葛依立1,2,
陈心胜2,3,
黄道友2,
葛大兵1,
邓正苗2,3,
李峰2,3,
谢永宏2,3
1. 湖南农业大学生物科学技术学院, 长沙 410128;
2. 中国科学院亚热带农业生态研究所, 亚热带农业生态过程重点实验室, 长沙 410128;
3. 中国科学院洞庭湖湿地生态系统观测研究站, 岳阳 414000
作者简介: 葛依立(1994-),女,硕士研究生,研究方向为湿地生态学,E-mail:geyili0615@163.com.
基金项目: 美丽中国生态文明建设科技工程专项(XDA23040503);国家自然科学基金项目(31770471)


中图分类号: X171.5


Accumulation Characteristics and Physiological Responses of the Wetland Plant, Polygonum hydropiper L. to Cadmium

Ge Yili1,2,
Chen Xinsheng2,3,
Huang Daoyou2,
Ge Dabing1,
Deng Zhengmiao2,3,
Li Feng2,3,
Xie Yonghong2,3
1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
2. CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410128, China;
3. Dongting Lake Station for Wetland Ecosystem Research, Chinese Academy of Sciences, Yueyang 414000, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以人工湿地修复镉污染水体时,植物在镉离子的沉淀、吸收和积累等过程中起着关键作用,但当前报道的镉富集植物种类较少,湿地植物对镉胁迫的生长及生理响应缺乏系统研究,限制了湿地植物在镉污染水体修复中的应用。笔者以常见湿地植物水蓼(Polygonum hydropiper L.)为对象,设置了4个镉处理浓度(0、0.5、1和2 mg L?1),研究了水蓼对镉的富集特征以及生长和生理响应。水蓼根、茎和叶的镉含量(以干重计)随镉处理浓度的增加而升高,处理30 d时,在2 mg L?1处理下分别达到134、47和48 mg kg?1。处理30 d时,在1 mg L?1的镉处理下,水蓼的地上部及地下部富集系数和转运系数最高,地上部和地下部富集系数分别为45.6和111.7,转运系数为0.41。在处理15 d时,水蓼生物量、叶绿素含量和超氧化物歧化酶(SOD)活性在2 mg L?1处理下显著降低。在处理30 d时,水蓼的总生物量在不同镉浓度下无显著差异,但丙二醛(MDA)含量、SOD和过氧化氢酶(CAT)活性在0.5~2 mg L?1镉处理下均显著升高,叶绿素含量下降。这些结果表明,水蓼可以通过提高抗氧化酶活性等机理抵抗镉胁迫产生的氧化伤害,并且水蓼对镉的富集和转运系数较高,具有在镉污染水体修复中应用的潜力。
关键词: /
重金属/
水蓼/
植物修复/
抗氧化酶/
人工湿地/
生物富集系数/
转运系数

Abstract:In the remediation of constructed wetland for cadmium-contaminated water, the plant plays a key role in the precipitation, absorption and accumulation of cadmium ions. However, due to the lack of the species of cadmium-enriched plants, the growth and physiological responses of wetland plants to cadmium stress were not studied systematically, leading to the limited application of wetland plants in the restoration of water-body polluted by cadmium. We choose Polygonum hydropiper L., a common wetland plant, as the target plant, and study the characteristics of cadmium accumulation, and the growth and physiological responses, with four cadmium concentrations (0, 0.5, 1 and 2 mg L?1). As the cadmium concentration increased, the cadmium contents (based on dry weight) in the roots, stems and leaves increased, being 134, 47 and 48 mg kg?1 at 2 mg L?1 concentration after 30 d treatment. The bioconcentration factor (BCF) and translocation factor (TF) were the highest under 1 mg L?1 concentration after 30 d treatment, where BCF of the shoot and root were 45.6 and 111.7 respectively, and TF was 0.41. At 2 mg L?1 cadmium concentration, the biomass, chlorophyll content and superoxide dismutase (SOD) activity decreased dramatically after 15 d treatment. After 30 d treatment, there was no significant difference in total biomass of Polygonum hydropiper L., but remarkable increase was observed in the malondialdehyde (MDA) content, and the activities of SOD and catalase (CAT), whereas the chlorophyll content declined at 0.5~2 mg L?1 cadmium concentration. It is indicate that Polygonum hydropiper L. can resist the oxidative damage caused by cadmium stress with the improvement of the activities of antioxidant enzymes. Both BCF and TF of cadmium in Polygonum hydropiper L. are high, so it is fair to conclude that Polygonum hydropiper L. possesses high application potentiality in the remediation of cadmium-contaminated water.
Key words:cadmium/
heavy metal/
Polygonum hydropiper L./
phytoremediation/
antioxidant enzymes/
constructed wetland/
bioconcentration factor/
translocation factor.

加载中
Dixit S, Dhote S. Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata[J]. Environmental Monitoring & Assessment, 2010, 169(1-4):367-374
Dogan M, Karatas M, Aasim M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.:A laboratory study[J]. Ecotoxicology & Environmental Safety, 2017, 148:431-440
Bonanno G, Vymazal J, Cirelli G L. Translocation, accumulation and bioindication of trace elements in wetland plants[J]. Science of the Total Environment, 2018, 631-632:252-261
Huang X, Ho S H, Zhu S, et al. Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress[J]. Journal of Environmental Management, 2017, 197:448-455
Carmen P S, Carmen H P, María José M S, et al. Metal uptake by wetland plants:Implications for phytoremediation and restoration[J]. Journal of Soils & Sediments, 2017, 17:1384-1393
Chen M, Zhang L L, Tuo Y C, et al. Treatability thresholds for cadmium-contaminated water in the wetland macrophyte Hydrilla verticillata (L.f.) Royle[J]. Ecological Engineering, 2016, 96:178-186
Nagajyoti P C, Lee K D, Sreekanth T V M. Heavy metals, occurrence and toxicity for plants:A review[J]. Environmental Chemistry Letters, 2010, 8(3):199-216
Colzi I, Lastrucci L, Rangoni M, et al. Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water:Better dead or alive?[J]. Journal of Environmental Management, 2018, 213:320-328
Wu Z, Shuai L, Jie Z, et al. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environmental & Experimental Botany, 2017, 133:1-11
Ozfidan K C, Yildiztugay E, Bahtiyar M, et al. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress[J]. Ecotoxicology and Environmental Safety, 2018, 155:66-75
Zhang S R, Lin H C, Deng L J, et al. Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L.[J]. Ecological Engineering, 2013, 51:133-139
Zhang Z, Rengel Z, Meney K. Cadmium accumulation and translocation in four emergent wetland species[J]. Water Air & Soil Pollution, 2010, 212(1-4):239-249
Ding B Z, Shi G X, Xu Y, et al. Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress[J]. Environmental Pollution, 2007, 147(3):800-803
Arora A, Sairam R K, Srivastava G C. Oxidative stress and antioxidative system in plants[J]. Current Science, 2002, 82:1227-1238
Marchand L, Mench M, Jacob D L, et al. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements:A review[J]. Environmental Pollution, 2010, 158(12):3447-3461
钟珍梅,王义祥,杨冬雪,等. 4种植物对铅、镉和砷污染土壤的修复作用研究[J].农业环境科学学报, 2010, 29(增刊):123-126 Zhong Z M, Wang Y X, Yang D X, et al. Phytoremediation effects of four plants on contaminated soils by heavy metal lead cadmium and arsenic[J]. Journal of AgroEnvironment Science, 2010, 29(Suppl.):123-126(in Chinese)
刘鸣达,王丽丽,李艳利.镉胁迫下硅对水稻生物量及生理特性的影响[J].中国农学通报, 2010, 26(13):187-190Liu M D, Wang L L, Li Y L. Effect of Si on biomass and physiological characteristics of rice under Cd stress[J]. Chinese Agricultural Science Bulletin, 2010, 26(13):187-190(in Chinese)
Tang Y T, Qiu R L, Zeng X W, et al. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch[J]. Environmental & Experimental Botany, 2009, 66(1):126-134
Ying R R, Qiu R L, Tang Y T, et al. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata[J]. Journal of Plant Physiology, 2010, 167(2):81-87
Sun Y B, Zhou Q X, Wang L, et al. Cadmium tolerance and accumulation characteristics of Bidenspilosa L. as a potential Cd-hyperaccumulator[J]. Journal of Hazardous Materials, 2009, 161(2-3):808-814
Arduini I, Masoni A, Mariotti M, et al. Low cadmium application increase miscanthus growth and cadmium translocation[J]. Environmental and Experimental Botany, 2004, 52(2):89-100
李君,葛跃,王明新,等.镉对蓖麻耐性生理及营养元素吸收转运的影响[J].环境科学学报, 2016, 36(8):3081-3087Li J, Ge Y, Wang M X, et al. Effect of Cd on tolerance physiology, nutrients uptake and translocation in Ricinuscommunis L.[J]. Acta Scientiae Circumstantiae, 2016, 36(8):3081-3087(in Chinese)
刘彩凤,史刚荣,余如刚,等.硅缓解植物镉毒害的生理生态机制[J].生态学报, 2017, 37(23):7799-7810Liu C F, Shi G R, Yu R G,et al. Eco-physiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants:A review[J]. Acta Ecologica Sinica, 2017, 37(23):7799-7810(in Chinese)
刘俊,廖柏寒,周航,等.镉胁迫下大豆生长发育的生理生态特征[J].生态学报, 2009, 30(2):333-340Liu J, Liao B H, Zhou H, et al. Main characteristics of physiological-ecological dynamics of soybean during the growth cycle under Cd stress[J]. Acta Ecologica Sinica, 2009, 30(2):333-340(in Chinese)
梅娟,李华,郭翠花. Cd超富集植物修复污染土壤的研究进展[J].能源与节能, 2013(2):80-82 Mie J, Li H, Guo C H. The research progress of Cd-hyperaccumulator in contaminated soil remediation[J]. Energy and Energy Conservation, 2013(2):80-82(in Chinese)
Wang H, Zhao S C, Xia W J, et al. Effect of cadmium stress on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize (Zea mays L.) seedlings[J]. Plant Nutrition and Fertilizer Science, 2008, 14(1):36-42
Deng Y, Li D, Huang Y, et al. Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings[J]. Industrial Crops and Products, 2017, 107:453-457
季玉洁,万亚男,王琪,等.不同铁营养状况下根系特征及蒸腾对黄瓜幼苗吸收镉的影响[J].环境科学学报, 2017, 37(5):1939-1946Ji Y J, Wan Y N, Wang Q, et al. Effects of root characteristics and transpiration on cadmium uptake by cucumber seedlings under varied iron levels[J]. Acta Scientiae Circumstantiae, 2017, 37(5):1939-1946(in Chinese)
陈亚慧,刘晓宇,王明新,等.蓖麻对镉的耐性、积累及与镉亚细胞分布的关系[J].环境科学学报, 2014, 34(9):2440-2446Chen Y H, Liu X Y, Wang M X, et al. Cadmium tolerance, accumulation and relationship with Cd subcellular distribution in Ricinus communis L.[J]. Acta Scientiae Circumstantiae, 2014, 34(9):2440-2446(in Chinese)
张腾,卢倩云,陈友明,等. 3种镉超富集植物毛状根体系对镉胁迫响应的比较[J].生态毒理学报, 2017, 12(4):367-376Zhang T, Lu Q Y, Chen Y M, et al. Comparison of responses of three Cd-hyperaccumulator hairy roots system under Cd stress[J]. Asian Journal of Ecotoxicology, 2017, 12(4):367-376(in Chinese)
Romero-Puertas M C, Terrón-Camero L C, Peláez-Vico M Á, et al. Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress[J]. Environmental and Experimental Botany, 2018. DOI:https://doi.org/10.1016/j.envexpbot.2018.10.012
Chen Q, Lu X, Guo X, et al. Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus[J]. Ecotoxicology & Environmental Safety, 2018, 157:266-275
Susana R G, Mateos N E, Andrades M L. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum[J]. Journal of Hazardous Materials, 2010, 184(1-3):299-307
Gomes M A, Hauserdavis R A, Suzuki M S, et al. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations[J]. Ecotoxicology and Environmental Safety, 2017, 140:55-64
顾翠花,王懿祥,白尚斌,等.四种园林植物对土壤镉污染的耐受性[J].生态学报, 2015, 35(8):2536-2544Gu C H, Wang Y X, Bai S B, et al. Tolerance and accumulation of four ornamental species seedlings to soil cadmium contamination[J]. Acta Ecologica Sinica, 2015, 35(8):2536-2544(in Chinese)
马贵.湿地植物芦苇对重金属Cd富集能力的研究[J].化学工程与装备, 2016(9):42-43
Zhang X C, Zhang S R, Xu X X, et al. Tolerance and accumulation characteristics of cadmium in Amaranthus hybridus L.[J]. Journal of Hazardous Materials, 2010, 180(1-3):303-308
Chayapan P, Kruatrachue M, Meetam M, et al. Effects of amendments on growth and uptake of Cd and Zn by wetland plants, Typha angustifolia and Colocasia esculenta from contaminated sediments[J]. International Journal of Phytoremediation, 2015, 17(9):7

相关话题/植物 生态 生理 污染 环境科学