删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

乙草胺胁迫对水华微囊藻光合生理特性的影响

本站小编 Free考研考试/2021-12-30

李俊杰,
李玲,,
黄沛玲
华侨大学化工学院, 厦门 361021
作者简介: 李俊杰(1995-),男,硕士,研究方向为农药毒理学,E-mail:474409289@qq.com.
通讯作者: 李玲,liling19830826@hqu.edu.cn ;
基金项目: 福建省中青年教师科研项目(JAT160027);石狮市科技计划项目(2016FS21);华侨大学研究生科研创新能力培育计划资助项目(12BS108)


中图分类号: X171.5


Effects of Acetochlor Stress on Photosynthetic Physiology of Microcystis flos-aquae

Li Junjie,
Li Ling,,
Huang Peiling
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
Corresponding author: Li Ling,liling19830826@hqu.edu.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要:除草剂乙草胺(ACT)施用后会通过灌溉侵蚀或地表径流等方式进入水环境造成污染。为探究ACT对浮游植物的影响,选择水华微囊藻作为受试生物,测定叶绿素a(Chl a)含量、叶绿素荧光参数、藻蛋白和藻胆蛋白相对含量的变化,观察藻细胞超微结构的变化,综合评估ACT对浮游植物光合作用的影响。结果表明,当ACT浓度≥ 0.1 mg·L-1时,Chl a含量开始显著降低(P<0.05);在低浓度(0.01~1 mg·L-1)ACT胁迫下,水华微囊藻能够通过自身调节,使得最大光合效率(Fv/Fm)、PSⅡ的实际光合效率(Y(Ⅱ))和快速光响应曲线不受ACT影响;而在高浓度(10~50 mg·L-1)处理组中,Fv/Fm、Y(Ⅱ)、快速光响应曲线、光响应曲线的初始斜率(α)和最大潜在相对电子传递速率(ETRmax)均显著降低(P<0.05);别藻蓝蛋白(APC)、藻蓝蛋白(PC)和藻红蛋白(PE)的相对含量分别在ACT浓度为1、10和10 mg·L-1时开始显著降低(P<0.05)。这些结果说明,在高浓度ACT胁迫下,水华微囊藻的叶绿素合成受阻,光合色素减少,捕光能力、光能转化效率及相对电子传递速率均下降,光合活性降低,且ACT对藻胆蛋白的抑制作用顺序为别藻蓝蛋白 > 藻蓝蛋白 > 藻红蛋白,而半饱和光强(Ik)显著增加(P<0.05),耐受能力增强,从而使光合作用受到抑制。透射电子显微镜结果表明,藻细胞结构会被ACT破坏,细胞变形且出现质壁分离,类囊体损伤且垂直于细胞壁,气泡、藻青素小粒和糖原减少,脂质颗粒增多,细胞内部紊乱,捕光色素减少,导致光合作用受阻。上述研究结果为全面评价ACT环境风险及农药的合理利用提供科学依据。
关键词: 乙草胺/
水华微囊藻/
光合作用/
叶绿素荧光参数

Abstract:Because of extensive use, the herbicide acetochlor (ACT) has become a serious environmental pollutants by irrigation erosion or surface runoff, and the aquatic environment in our country has been severely polluted. In order to study the influences of ACT on phytoplankton, Microcystis flos-aquae was used as the model organism, and the changes of chlorophyll a content, chlorophyll fluorescence parameters, relative content of algal protein and phycobiliprotein, and the ultrastructure of algal cells before and after exposure to ACT were investigated, respectively. The results showed that the contents of Chl a significantly decreased when the concentrations of ACT were higher than 0.1 mg·L-1. The maximum photosynthetic efficiency (Fv/Fm), the actual photosynthetic efficiency of PSⅡ (Y(Ⅱ)), and Rapid Light Curve of Microcystis flos-aquae were not affected through self-regulation under the stress of lower concentrations (0.01~1 mg·L-1) of ACT, but these parameters as well as the initial slope of the light response curve (α), and maximum potential relative electron transfer rate (ETRmax) were all significantly reduced (P<0.05) under the higher concentrations (10~50 mg·L-1) of ACT. The relative content of allophycocyanin (APC), phycocyanin (PC), phycoerythrin (PE), and phycoprotein significantly decreased in groups with ACT concentrations of 1, 10 and 10 mg·L-1, respectively. The results indicated that chlorophyll synthesis of Microcystis flos-aquae was blocked under higher concentrations of ACT stress. The photosynthetic pigments, light-capturing capacity, light energy conversion efficiency, relative electron transfer rate, and photosynthetic activity were all reduced. The inhibition order of ACT on phycobiliproteins was allophycocyanin > phycocyanin > phycoerythrin. In addition, the semi-saturated light intensity (Ik) increased significantly (P<0.05), and the tolerance was enhanced, which demonstrated that photosynthesis was supressed. Transmission electron microscopy results showed that the cells were deformed, evident plasmolysis was observed, the thylakoids were disarranged and perpendicular to the cell wall, and gas vesicle, cyanophycin granules and glycogen were largely absent, the increase of lipid, the internal disorder of cells and the decrease of light-harvesting pigment were also observed, which proved that the structures of algae cells were destroyed by ACT and led to an inhibition of photosynthesis. These results will not only provide scientific basis for comprehensive environmental risk evaluation of ACT but also help to guide the application of pesticides in agricultural setting.
Key words:Acetochlor/
Microcystis flos-aquae/
photosynthesis/
chlorophyll fluorescence parameters.

加载中
Nemeth K L, Fuleky G, Morovjan G, et al. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil[J]. Chemosphere, 2002, 48(5):545-552
Fu L, Lu X, Tan J, et al. Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC-MS/MS[J]. Journal of Environmental Sciences, 2018, 63(1):116-125
Hladik M L, Bouwer E J, Roberts A L. Neutral chloroacetamide herbicide degradates and related compounds in Midwestern United States drinking water sources[J]. Science of the Total Environment, 2008, 390(1):155-165
Xie J Q, Zhao L, Liu K, et al. Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor[J]. Environmental Pollution, 2019, 246:728-733
李薪芳, 索亚萍, 楼鸳鸯, 等. 酰胺类除草剂对铜绿微囊藻的生长影响及氧化损伤效应[J]. 生态毒理学报, 2016, 11(1):239-247Li X F, Suo Y P, Lou Y Y, et al. Effects of acetanilide herbicides on growth and oxidative damage of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2016, 11(1):239-247(in Chinese)
吴晓霞, 吴进才, 金银根, 等. 除草剂对水生植物的生理生态效应[J]. 生态学报, 2004, 24(9):2037-2042Wu X X, Wu J C, Jin Y G, et al. Impact of herbicides on physiology and ecology of hydrophytes[J]. Acta Ecologica Sinica, 2004, 24(9):2037-2042(in Chinese)
王秀红, 沈健英, 陆贻通. 稻田除草剂对固氮蓝藻的毒性研究[J]. 上海交通大学学报:农业科学版, 2004, 22(4):400-405Wang X H, Shen J Y, Lu Y T. Study on herbicides in rice field to toxicity of fixing blue-green algaes[J]. Journal of Shanghai Jiaotong University:Agricultural Science, 2004, 22(4):400-405(in Chinese)
Li W, Zha J, Li Z, et al. Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus)[J]. Aquatic Toxicology, 2009, 94(2):87-93
Xu C, Sun X H, Niu L L, et al. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor[J]. Science of the Total Environment, 2019, 653:1140-1148
Li L, Wang M, Chen S, et al. A urinary metabonomics analysis of longterm effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry[J]. Pesticide Biochemistry and Physiology, 2016, 128:82-88
徐雄, 李春梅, 孙静, 等. 我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016, 11(2):347-354Xu X, Li C M, Sun J, et al. Residue characteristics and ecological risk assessment of twenty-nine pesticides in surface water of major river-basin in China[J]. Asian Journal of Ecotoxicology, 2016, 11(2):347-354(in Chinese)
Bradford M M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1-2):248-254
Martínez R E B, Martínez J F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters:A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa)[J]. The Science of the Total Environment, 2018, 619:1566-1578
邱伟建, 陈敏东, 葛顺, 等. 斜生栅藻对草甘膦异丙胺盐的毒性响应[J]. 环境科学与技术, 2013, 36(12):24-28Qiu W J, Chen M D, Ge S, et al. Acute and chronic response of Scenedesmus obliquus to glyphosate-isopropylammonium[J]. Environmental Science & Technology, 2013, 36(12):24-28(in Chinese)
Wang X F, Miao J J, Pan L Q, et al. Toxicity effects of p-choroaniline on the growth, photosynthesis, respiration capacity and antioxidant enzyme activities of a diatom, Phaeodactylum tricornutu[J]. Ecotoxicology and Environmental Safety, 2019, 169:654-661
Smythers A L,Garmany A, Perry N L, et al. Characterizing the effect of poast on Chlorella vulgaris, a non-target organism[J]. Chemosphere, 2019, 219:704-712
Ramón M B, Consuelo A, Bryon R, et al. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence[J]. Scientia Horticulturae, 2011, 130(3):524-530
Zhou R, Yu X Q, Katrine H, et al. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance[J]. Environmental and Experimental Botany, 2015, 118:1-11
Annick M M, Elisabeth P, Gérard T. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress[J]. Journal of Plant Physiology, 2004, 161(1):25-33
Élise S, Marc L, Michel L, et al. Phytoplankton growth and PSⅡ efficiency sensitivity to a glyphosate-based herbicide (Factor 540®)[J]. Aquatic Toxicology, 2017, 192:265-273
Khanama M R M, Shimasaki Y, Hosain M Z, et al. Diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoi-dohrnii complex[J]. Chemosphere, 2017, 175:200-209
刘伟杰, 吴孝情, 鄢佳英, 等. 壬基酚对羊角月牙藻的毒性效应研究[J]. 中国环境科学, 2018, 38(6):2329-2336Liu W J, Wu X Q, Yan J Y, et al. Toxic effects of nonylphenol on Selenastrum capricornutum[J]. China Environmental Science, 2018, 38(6):2329-2336(in Chinese)
Liu D D, Liu H J, Wang S T, et al. The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus:Growth inhibition, phototoxicity, and oxidative stress[J]. Science of the Total Environment, 2018, 622:1572-1580
Zhao D H, Cui J S, Duan L L, et al. Study on biological toxicity response characteristic of algae chlorophyll fluorescence to herbicides[J]. Spectroscopy and Spectral Analysis, 2018, 38(9):2820-2827
王寿兵, 徐紫然, 马小雪, 等. Cu2+对铜绿微囊藻生长及叶绿素荧光主要参数的影响研究[J]. 中国环境科学, 2016, 36(12):3759-3765Wang S B, Xu Z R, Ma X X, et al. Effects of Cu2+ on the growth and main parameters of chlorophyll fluorescence of Microcystis aeruginosa[J]. China Environmental Science, 2016, 36(12):3759-3765(in Chinese)
Ihnken S, Eggert A, Beardall J. Exposure times in rapid light curves affect photosynthetic parameters in algae[J]. Aquatic Botany, 2010, 93(3):185-194
Wu Y M, Guo P Y, Zhang X Y, et al. Effect of microplastics exposure on the photosynthesis system of freshwater algae[J]. Journal of Hazardous Materials, 2019, 374:219-227
王俊英. 手性农药水胺硫磷对水生生物的对映体选择性毒理研究[D]. 厦门:华侨大学, 2017:34-42 Wang J Y. Study on enantioselective toxicology of chiral pesticides isocarbophos to aqutic organisms[D]. Xiamen:Huaqiao University, 2017:34-42(in Chinese)
Sandra K T, Martin L, Agnès F M, et al. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry[J]. Aquatic Toxicology, 2015, 165:160-171
杨宋琪, 王丽娟, 谢婷, 等. 氮源对杜氏盐藻生长及光合系统Ⅱ的影响[J]. 西北植物学报, 2017, 37(7):1397-1403Yang S Q, Wang L J, Xie T, et al. Effect of nitrogen on growth and photosystemⅡ of Dunaliella salina[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(7):1397-1403(in Chinese)
Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta (BBA)-General Subject, 1989, 990(1):87-92
Olischläger M, Wiencke C. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta)[J]. Journal of Experimental Botany, 2013, 64(18):5587-5597
Dewez D, Didur O, Vincent H J, et al. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus[J]. Environmental Pollution, 2007, 151(1):93-100
Bi Y F, Miao S S, Lu Y C, et al. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae[J]. Journal of Hazardous Materials, 2012, 243:242-249
Deblois C P, Dufresne K, Juneau P, et al. Response to variable light intensity in photoacclimated algae and cyanobacteria exposed to atrazine[J]. Aquatic Toxicology, 2013, 126:77-84
Ni Y, Lai J H, Wan J B, et al. Photosynthetic responses and accumulation of mesotrione in two freshwater algae[J]. Environmental Science-Processes & Impacts, 2014, 16(10):2288-2294
Carfagna S, Lanza N, Salbitani G, et al. Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae)[J]. Springer Plus, 2013, 2(1):147-153
Chia M A, Cordeiro-Araújo M K, Bittencourt-Oliveira M D C. Growth and antioxidant response of Microcystis aeruginosa (Cyanobacteria) exposed to anatoxin-a[J]. Harmful Algae, 2015, 49:135-142
Hong Y, Huang J J, Hu H Y. Effects of a novel allelochemical ethyl 2-methyl acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4):502-508
Mathias A C, Promise K C, Wisdom S J. Lead induced antioxidant response and phenotypic plasticity of Scenedesmus quadricauda (Turp.) de Brébisson under different nitrogen concentrations[J]. Journal of Applied Phycology, 2015, 27(1):293-302
楼春. 17β-雌二醇与酰胺类除草剂和铜绿微囊藻的相互作用研究[D]. 杭州:浙江工业大学, 2011:40-43 Lou C. Study on interaction of 17β-estradiol and amide herbicides with Microcystis aeruginosa[D]. Hangzhou:Zhejiang University of Technology, 2011:40-43(in Chinese)
林必桂, 杨柳燕, 肖琳, 等. 赖氨酸抑制铜绿微囊藻生长的机理研究[J]. 农业环境科学学报, 2008(4):1561-1565 Lin B G, Yang L Y, Xiao L, et al. Mechanism of the inhibition effect of lysine on Microcystis aeruginosa[J]. Journal of Agro-Environment Science, 2008(4):1561-1565(in Chinese)
Canini A, Leonardi D, Grilli C M. Superoxide dismutase activity in the cyanobacterium Microcystis aeruginosa after in vitro induction and decay of a surface bloom[J]. New Phytologist, 2001, 152(1):107-116
Walsby A E. Isolation and purification of intact gas vesicles from a blue-green alga[J]. Nature, 1969, 224(5220):716-717
Viviana A, Carolina F, Yolanda Z, et al. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis[J]. Ecotoxicology and Environmental Safety, 2015, 120:334-341
Canini A, Pellegrini S, Grilli C M. Ultrastructural variations in Microcystis aeruginosa (Chroococcales, Cyanophyta) during a surface bloom induced by high incident light irradiance[J]. Plant Biosystems, 2003, 137(3):235-248
Ye J, Wang L, Zhang Z, et al. Enantioselective physiological effects of the herbicide diclofop on cyanobacterium Microcystis aeruginosa[J]. Environmental Science & Technology, 2013, 47(8):3893-3901

相关话题/生态 环境科学 细胞 华侨大学 植物