删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

皮肤中原代黑色素细胞和角质形成细胞同时分离法及其在超细颗粒物毒性效应评价中的应用

本站小编 Free考研考试/2021-12-30

程战文1,2,
殷诺雅1,2,
郑卫3,
Francesco Faiola1,2,,
1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085;
2. 中国科学院大学资源与环境学院, 北京 100049;
3. 重庆医科大学附属第三医院泌尿外科, 重庆 401120
作者简介: 程战文(1993-),男,硕士研究生,研究方向为纳米毒理学,E-mail:769133244@qq.com.
通讯作者: Francesco Faiola,faiola@rcees.ac.cn
基金项目: 国家自然科学基金创新研究群体项目(22021003);中国科学院战略性先导科技专项(B类)(XDB14040300);国家自然科学基金面上项目(21577166);国家自然科学基金青年科学基金资助项目(21707160)


中图分类号: X171.5


Isolation of Primary Human Foreskin Melanocytes/Keratinocytes for Ultrafine Particles' Toxicity Evaluations

Cheng Zhanwen1,2,
Yin Nuoya1,2,
Zheng Wei3,
Francesco Faiola1,2,,
1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Department of Urology&Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
Corresponding author: Francesco Faiola,faiola@rcees.ac.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要:大气污染及大气中的超细颗粒物,会对人体健康造成一定的危害。皮肤作为人体最大的器官,是保护人体不受外源性物质损害的第一道防线。为探究超细颗粒物对人体皮肤特别是表皮的潜在风险,从人体皮肤中分离得到了原代黑色素细胞和角质形成细胞,使用1~10 000 μg·L-1商业化超细碳颗粒物模拟大气中的超细颗粒物,探究了其潜在的皮肤毒性。研究结果表明,从皮肤中分离的原代黑色素细胞和角质形成细胞能在体外扩增,具有相应的功能。超细碳颗粒物粒径<100 nm,处于纳米尺度,且72 h急性暴露不会影响黑色素细胞的细胞活性。qRT-PCR结果显示,超细碳颗粒物暴露会上调黑色素细胞功能基因MITFMITF-Mc-KITSILVPAX3SLUGTYRTYRP1的表达,干扰其基因表达。以上研究结果为大气颗粒物的毒性评价,提供了重要的数据和模型。
关键词: 超细碳颗粒物/
超细颗粒物/
黑色素细胞/
角质形成细胞/
急性毒性/
功能基因/
表皮

Abstract:Air pollution and ambient ultrafine particulate matter have been proved to affect human health. As the largest organ of the human body, the skin is the first line of defense to protect the body from exogenous substances. To evaluate the potential toxic effects of ultrafine particulate matter on human skin, especially on the epidermis, we simultaneously isolated primary keratinocytes and melanocytes from foreskin at first. Those cells could proliferate in vitro, and maintain their functions. Then, we treated the primary melanocytes with 1~10 000 μg·L-1 commercial ultrafine carbon particles, less than 100 nm in diameter, which mimic ambient ultrafine particulate matter. The ultrafine carbon particles had no effects on cell viability after 72 h exposure. However, qRT-PCR assays revealed that ultrafine carbon could promote the expression of the melanocyte functional genes MITF, MITF-M, c-KIT, SILV, PAX3, SLUG, TYR and TYRP1. These results provide important models and data to assess the toxicity of atmospheric ultrafine particulate matter.
Key words:ultrafine carbon particles/
atmospheric ultrafine particulate matter/
melanocytes/
keratinocytes/
acute toxicity/
functional gene/
epidermis.

加载中
Gualtieri M, de Mantecca P, Corvaja V, et al. Winter fine particulate matter from Milan induces morphological and functional alterations in human pulmonary epithelial cells (A549)[J]. Toxicology Letters, 2009, 188(1):52-62
Peters A, von Klot S, Heier M, et al. Exposure to traffic and the onset of myocardial infarction[J]. The New England Journal of Medicine, 2004, 351(17):1721-1730
Thurston G D, Newman J D. Walking to a pathway for cardiovascular effects of air pollution[J]. Lancet, 2018, 391(10118):291-292
Samet J M, Dominici F, Curriero F C, et al. Fine particulate air pollution and mortality in 20 US cities, 1987-1994[J]. The New England Journal of Medicine, 2000, 343(24):1742-1749
Lelieveld J, Evans J S, Fnais M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015, 525(7569):367-371
Ding A, Yang Y J, Zhao Z H, et al. Indoor PM2.5 exposure affects skin aging manifestation in a Chinese population[J]. Scientific Reports, 2017, 7:15329
Vierkötter A, Schikowski T, Ranft U, et al. Airborne particle exposure and extrinsic skin aging[J]. The Journal of Investigative Dermatology, 2010, 130(12):2719-2726
Kim E H, Kim S, Lee J H, et al. Indoor air pollution aggravates symptoms of atopic dermatitis in children[J]. PLoS One, 2015, 10(3):e0119501
Kim Y M, Kim J, Han Y, et al. Short-term effects of weather and air pollution on atopic dermatitis symptoms in children:A panel study in Korea[J]. PLoS One, 2017, 12(4):e0175229
Lee Y L, Su H J, Sheu H M, et al. Traffic-related air pollution, climate, and prevalence of eczema in Taiwanese school children[J]. The Journal of Investigative Dermatology, 2008, 128(10):2412-2420
Peng F, Xue C H, Hwang S K, et al. Exposure to fine particulate matter associated with senile Lentigo in Chinese women:A cross-sectional study[J]. Journal of the European Academy of Dermatology and Venereology, 2017, 31(2):355-360
Brunekreef B, Holgate S T. Air pollution and health[J]. The Lancet, 2002, 360(9341):1233-1242
Brown D M, Wilson M R, MacNee W, et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles:A role for surface area and oxidative stress in the enhanced activity of ultrafines[J]. Toxicology and Applied Pharmacology, 2001, 175(3):191-199
Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage[J]. Environmental Health Perspectives, 2003, 111(4):455-460
Pieters N, Koppen G, van Poppel M, et al. Blood pressure and same-day exposure to air pollution at school:Associations with nano-sized to coarse PM in children[J]. Environmental Health Perspectives, 2015, 123(7):737-742
Weichenthal S, Dufresne A, Infante-Rivard C. Indoor ultrafine particles and childhood asthma:Exploring a potential public health concern[J]. Indoor Air, 2007, 17(2):81-91
Shvedova A A, Kisin E, Keshava N, et al. Cytotoxic and genotoxic effects of single wall carbon nanotube exposure on human keratinocytes and bronchial epithelial cells[J]. Abstracts of Papers of the American Chemical Society, 2004, 227:U1233-U1233
Samberg M E, Oldenburg S J, Monteiro-Riviere N A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro[J]. Environmental Health Perspectives, 2010, 118(3):407-413
Li Y, Monteiro-Riviere N A. Mechanisms of cell uptake, inflammatory potential and protein Corona effects with gold nanoparticles[J]. Nanomedicine, 2016, 11(24):3185-3203
Palmer B C, Phelan-Dickenson S J, DeLouise L A. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation[J]. Particle and Fibre Toxicology, 2019, 16(1):3
Emri E, Miko E, Bai P, et al. Effects of non-toxic zinc exposure on human epidermal keratinocytes[J]. Metallomics:Integrated Biometal Science, 2015, 7(3):499-507
Hiroike M, Sakabe J I, Kobayashi M, et al. Acicular, but not globular, titanium dioxide nanoparticles stimulate keratinocytes to produce pro-inflammatory cytokines[J]. The Journal of Dermatology, 2013, 40(5):357-362
Behera S N, Sharma M. Reconstructing primary and secondary components of PM2.5 composition for an urban atmosphere[J]. Aerosol Science and Technology, 2010, 44(11):983-992
Luecke S, Backlund M, Jux B, et al. The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis[J]. Pigment Cell & Melanoma Research, 2010, 23(6):828-833
Zhang R, Zhang X, Gao S C, et al. Assessing the in vitro and in vivo toxicity of ultrafine carbon black to mouse liver[J]. Science of the Total Environment, 2019, 655:1334-1341
Chen T T, Chuang K J, Chiang L L, et al. Characterization of the interactions between protein and carbon black[J]. Journal of Hazardous Materials, 2014, 264:127-135
Leon D A, Thomas P, Hutchings S. Lung cancer among newspaper printers exposed to ink mist:A study of trade union members in Manchester, England[J]. Occupational and Environmental Medicine, 1994, 51(2):87-94
Sinks T, Lushniak B, Haussler B J, et al. Renal cell cancer among paperboard printing workers[J]. Epidemiology, 1992, 3(6):483-489
Roth V S. Rubber industry epidemiology[J]. Occupational Medicine, 1999, 14(4):849-856
Wang J X, Fukunaga-Kalabis M, Herlyn M. Crosstalk in skin:Melanocytes, keratinocytes, stem cells, and melanoma[J]. Journal of Cell Communication and Signaling, 2016, 10(3):191-196
Levy C, Khaled M, Fisher D E. MITF:Master regulator of melanocyte development and melanoma oncogene[J]. Trends in Molecular Medicine, 2006, 12(9):406-414
Price E R, Horstmann M A, Wells A G, et al. Alpha-Melanocyte-stimulating hormone signaling regulates expression of microphthalmia, a gene deficient in Waardenburg syndrome[J]. The Journal of Biological Chemistry, 1998, 273(49):33042-33047
Ganss R, Schütz G, Beermann F. The mouse tyrosinase gene. Promoter modulation by positive and negative regulatory elements[J]. The Journal of Biological Chemistry, 1994, 269(47):29808-29816
Bentley N J, Eisen T, Goding C R. Melanocyte-specific expression of the human tyrosinase promoter:Activation by the microphthalmia gene product and role of the initiator[J]. Molecular and Cellular Biology, 1994, 14(12):7996-8006
Du J Y, Miller A J, Widlund H R, et al. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma[J]. The American Journal of Pathology, 2003, 163(1):333-343
Watanabe A, Takeda K, Ploplis B, et al. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3[J]. Nature Genetics, 1998, 18(3):283-286
Kumasaka M, Sato S, Yajima I, et al. Regulation of melanoblast and retinal pigment epithelium development by Xenopus laevis Mitf[J]. Developmental Dynamics, 2005, 234(3):523-534
Puntoni R, Ceppi M, Gennaro V, et al. Occupational exposure to carbon black and risk of cancer[J]. Cancer Causes & Control, 2004, 15(5):511-516

相关话题/细胞 基因 纳米 中国科学院 重庆