孙甜甜1,
皮宇松2,
孙康3,
郝双玲1
1. 苏州科技大学环境科学与工程学院, 苏州 215009;
2. 苏州同科工程咨询有限公司, 苏州 215009;
3. 济南市市政工程设计研究院(集团)有限责任公司徐州分公司, 徐州 221000
作者简介: 田永静(1969-),女,博士,副教授,研究方向为固体废物处理与处置,E-mail:2434509572@qq.com.
通讯作者: 田永静,2434509572@qq.com ;
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07205-001-03)中图分类号: X171.5
Joint Toxicity of Zinc and Bisphenol A on Chlorella vulgaris
Tian Yongjing1,,,Sun Tiantian1,
Pi Yusong2,
Sun Kang3,
Hao Shuangling1
1. School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
2. Suzhou Tongke Engineering Consulting Co. Ltd., Suzhou 215009, China;
3. Xuzhou Branch of Jinan Municipal Engineering Design and Research Institute(Group) Co. Ltd., Xuzhou 221000, China
Corresponding author: Tian Yongjing,2434509572@qq.com ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为探究重金属与环境激素的联合毒性效应,以普通小球藻为受试生物,开展了锌与双酚A的单一及复合暴露对普通小球藻的急性毒性、叶绿素含量、可溶性蛋白含量及抗氧化应激的影响。结果显示,在单一暴露条件下,锌和双酚A对普通小球藻的EC50分别为5.10 mg·L-1和17.37 mg·L-1,仅在锌离子质量浓度低于0.25 mg·L-1时可促进普通小球藻叶绿素合成,而其他各暴露组中锌和双酚A对普通小球藻的光合作用具有抑制效应,采用等毒性配比法进行联合毒性试验,由相加指数法判断锌与双酚A对普通小球藻的联合作用类型为协同作用;藻细胞可溶性蛋白含量、抗氧化酶活性及丙二醛含量随锌与双酚A暴露浓度的增加被显著诱导,且高浓度的复合暴露对普通小球藻造成明显的氧化损伤。研究表明,锌与双酚A复合暴露会加强其在水环境中的毒性效应。
关键词: 锌/
双酚A/
普通小球藻/
联合毒性/
氧化应激
Abstract:In order to evaluate the joint toxicity of heavy metals and environmental hormones, Chlorella vulgaris was selected as the sample organism to test and analyze the acute toxicity, the effect on chlorophyll content, soluble protein content and anti-oxidative stress, which was exposed on zinc (Zn, sample heavy metal) and bisphenol A (BPA, endocrine disturbing chemical) separately and combinedly. Results demonstrated that the 7 d-EC50 of Zn and BPA to Chlorella vulgaris was 5.10 mg·L-1 and 17.37 mg·L-1, respectively. The chlorophyll synthesis of Chlorella vulgaris was promoted only when the concentration of zinc ion was lower than 0.25 mg·L-1, while the photosynthesis of Chlorella vulgaris was inhibited by Zn and BPA in other concentration situations. The joint toxicity tests of Zn and BPA were carried out by equal toxicity ratio method, and the impact of both on Chlorella vulgaris was identified as synergistic effect by the additive index method. However, soluble protein content, antioxidant enzyme activity and malondialdehyde content in algal cells were significantly induced, and oxidative damage obviously occurred, due to the increasing exposed concentration of Zn and BPA. This study states that the combined exposure of Zn and BPA enhances the joint toxic effects in the aquatic environment.
Key words:zinc/
bisphenol A/
Chlorella vulgaris/
joint toxicity/
oxidative stress.
Siddiqui E, Verma K, Pandey U, et al. Metal contamination in seven tributaries of the Ganga River and assessment of human health risk from fish consumption[J]. Archives of Environmental Contamination and Toxicology, 2019, 77(2):263-278 |
Komjarova I, Bury N R. Evidence of common cadmium and copper uptake routes in zebrafish Danio rerio[J]. Environmental Science & Technology, 2014, 48(21):12946-12951 |
谢文平, 朱新平, 郑光明, 等. 广东罗非鱼养殖区水体和鱼体中重金属、HCHs、DDTs含量及风险评价[J]. 环境科学, 2014, 35(12):4663-4670Xie W P, Zhu X P, Zheng G M, et al. Residues and health risk assessment of HCHs, DDTs and heavy metals in water and tilapias from fish ponds of Guangdong[J]. Environmental Science, 2014, 35(12):4663-4670(in Chinese) |
符志友, 冯承莲, 赵晓丽, 等. 我国流域水环境中铜、锌的生态风险及管理对策[J]. 环境工程, 2019, 37(11):70-74Fu Z Y, Feng C L, Zhao X L, et al. Ecological risks and management countermeasures of copper and zinc in water environment of China[J]. Environmental Engineering, 2019, 37(11):70-74(in Chinese) |
蔡卓平, 刘伟杰, 段舜山. 重金属Zn2+胁迫下米氏凯伦藻(Karenia mikimotoi)的生长生理响应研究[J]. 生态科学, 2019, 38(2):176-181Cai Z P, Liu W J, Duan S S. Growth and physiological response of Karenia mikimotoi to heavy metal Zn2+ stress[J]. Ecological Science, 2019, 38(2):176-181(in Chinese) |
Feng X Q, Luo M Q, Huang W, et al. The degradation of BPA on enhanced heterogeneous photo-Fenton system using EDDS and different nanosized hematite[J]. Environmental Science and Pollution Research, 2020, 27(18):23062-23072 |
Cruz-López A, Dávila-Pórcel R A, de León-Gómez H, et al. Exploratory study on the presence of bisphenol A and bis(2-ethylhexyl) phthalate in the Santa Catarina River in Monterrey, N.L., Mexico[J]. Environmental Monitoring and Assessment, 2020, 192(8):1-13 |
牛玥, 朱敏, 刘芃岩, 等. 双酚A替代品与双酚A对非洲爪蛙急性毒性及其应激响应的比较[J]. 生态毒理学报, 2020, 15(2):141-148Niu Y, Zhu M, Liu P Y, et al. Comparison on acute toxicity and stress induction of bisphenol A with its substitutes to Xenopus laevis[J]. Asian Journal of Ecotoxicology, 2020, 15(2):141-148(in Chinese) |
Xiang R, Shi J Q, Yu Y, et al. The effect of bisphenol A on growth, morphology, lipid peroxidation, antioxidant enzyme activity, and PS Ⅱ in Cylindrospermopsis raciborskii and Scenedesmus quadricauda[J]. Archives of Environmental Contamination and Toxicology, 2018, 74(4):515-526 |
Richter C A, Birnbaum L S, Farabollini F, et al. In vivo effects of bisphenol A in laboratory rodent studies[J]. Reproductive Toxicology, 2007, 24(2):199-224 |
李圆圆, 付旭锋, 赵亚娴, 等. 双酚A与其替代品对黑斑蛙急性毒性的比较[J]. 生态毒理学报, 2015, 10(2):251-257Li Y Y, Fu X F, Zhao Y X, et al. Comparison on acute toxicity of bisphenol A with its substitutes to Pelophylax nigromaculatus[J]. Asian Journal of Ecotoxicology, 2015, 10(2):251-257(in Chinese) |
FitzGerald R E, Wilks M F. Bisphenol A-Why an adverse outcome pathway framework needs to be applied[J]. Toxicology Letters, 2014, 230(2):368-374 |
Kokai D, Stanic B, Samardzija Nenadov D, et al. Biological effects of chronic and acute exposure of human endothelial cell line EA.hy926 to bisphenol A:New tricks from an old dog[J]. Chemosphere, 2020, 256:127159 |
曾莎莎, 梁延鹏, 覃礼堂, 等. 有机磷农药对蛋白核小球藻的毒性相互作用研究[J]. 生态毒理学报, 2019, 14(4):121-129Zeng S S, Liang Y P, Qin L T, et al. Toxicological interactions of organophosphorus pesticides mixtures to Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2019, 14(4):121-129(in Chinese) |
徐冬梅, 柯薇, 王彦华. 铜与毒死蜱复合污染对淡水绿藻的毒性效应[J]. 中国环境科学, 2018, 38(11):4348-4353Xu D M, Ke W, Wang Y H. Toxiceffects of the co-exposure to Cu and chlorpyrifos toward the freshwater green algae[J]. China Environmental Science, 2018, 38(11):4348-4353(in Chinese) |
Hc-Wydro K, Połec' K, Broniatowski M. The comparative analysis of the effect of environmental toxicants:Bisphenol A, S and F on model plant, fungi and bacteria membranes. The studies on multicomponent systems[J]. Journal of Molecular Liquids, 2019, 289:111136 |
杨蓉, 李娜, 饶凯锋, 等. 环境混合物的联合毒性研究方法[J]. 生态毒理学报, 2016, 11(1):1-13Yang R, Li N, Rao K F, et al. Review on methodology for environmental mixture toxicity study[J]. Asian Journal of Ecotoxicology, 2016, 11(1):1-13(in Chinese) |
王桂祥, 张琼, 匡少平, 等. 环境浓度下的混合抗生素对普通小球藻的联合毒性[J]. 生态毒理学报, 2019, 14(2):122-128Wang G X, Zhang Q, Kuang S P, et al. The joint toxicity of mixed antibiotics on Chlorella vulgaris at normal environmental concentration[J]. Asian Journal of Ecotoxicology, 2019, 14(2):122-128(in Chinese) |
章小强, 胡晓娜, 陈彩东, 等. 镉与S-异丙甲草胺对斜生栅藻的联合毒性作用[J]. 环境科学, 2015, 36(3):1069-1074Zhang X Q, Hu X N, Chen C D, et al. Combined toxicity of cadmium and S-metolachlor to Scenedesmus obliquus[J]. Environmental Science, 2015, 36(3):1069-1074(in Chinese) |
莫凌云, 梁丽营, 覃礼堂, 等. 定性与定量评估4种重金属及2种农药混合物对费氏弧菌的毒性相互作用[J]. 生态毒理学报, 2018, 13(1):251-260Mo L Y, Liang L Y, Qin L T, et al. Qualitative and quantitative assessment for the toxicity interaction of mixtures of four heavy metals and two pesticides on Vibrio fischeri[J]. Asian Journal of Ecotoxicology, 2018, 13(1):251-260(in Chinese) |
张亚辉, 曹莹, 王一喆, 等. 3种氯酚化合物对大型溞的联合毒性[J]. 生态毒理学报, 2011, 6(4):403-409Zhang Y H, Cao Y, Wang Y Z, et al. Joint toxicity of three chlorophenols to Daphnia magna[J]. Asian Journal of Ecotoxicology, 2011, 6(4):403-409(in Chinese) |
金显文, 陈静静. 双酚A和苯酚对日本沼虾幼虾的急性联合毒性效应[J]. 生物学杂志, 2017, 34(4):38-41Jin X W, Chen J J. Joint toxicity of bisphenol A and phenol to the juvenile prawn of Macrobrachium nipponense[J]. Journal of Biology, 2017, 34(4):38-41(in Chinese) |
端正花, 陈晓欧, 刘灵丽, 等. 苯并三唑和镉对斑马鱼肝脏的联合毒性效应[J]. 中国环境科学, 2015, 35(6):1872-1876Duan Z H, Chen X O, Liu L L, et al. Joint toxicity of benzotriazole and cadmium to zebrafish liver[J]. China Environmental Science, 2015, 35(6):1872-1876(in Chinese) |
周亚, 朱琳, 冯剑丰, 等. 应用生物配体模型研究铅和镉及其混合物联合毒性[J]. 生态毒理学报, 2015, 10(4):47-54Zhou Y, Zhu L, Feng J F, et al. Validation of the biotic ligand model (BLM) predicting Pb, Cd and their mixtures toxicity[J]. Asian Journal of Ecotoxicology, 2015, 10(4):47-54(in Chinese) |
张笑一, 潘渝生. 重金属致毒的化学机理[J]. 环境科学研究, 1997, 10(2):48-52Zhang X Y, Pan Y S. Chemical mechanism on the toxicity of heavy metals[J]. Research of Environmental Sciences, 1997, 10(2):48-52(in Chinese) |
封觅. 血红密孔菌在四溴双酚A和六价铬复合污染胁迫下的生理响应和分子机制研究[D]. 广州:华南理工大学, 2018:5-6 Feng M. Physiological responses and molecular mechanism of Pycnoporus sanguineus to the stress of co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium[D]. Guangzhou:South China University of Technology, 2018:5-6(in Chinese) |
陈彩东, 胡晓娜, 章小强, 等. S-异丙甲草胺与镉对斜生栅藻光合作用的影响[J]. 环境科学, 2014, 35(9):3498-3503Chen C D, Hu X N, Zhang X Q, et al. Influence of S-metolachlor and Cd2+ on photosynthesis of Scenedesmus obliquus[J]. Environmental Science, 2014, 35(9):3498-3503(in Chinese) |
Ellwood M J. Zinc and cadmium speciation in subantarctic waters east of New Zealand[J]. Marine Chemistry, 2004, 87(1-2):37-58 |
Boyd P W, Law C S, Wong C S, et al. The decline and fate of an iron-induced subarctic phytoplankton bloom[J]. Nature, 2004, 428(6982):549-553 |
Ao D, Lei Z, Dzakpasu M, et al. Role of divalent metals Cu2+ and Zn2+ in Microcystis aeruginosa proliferation and production of toxic microcystins[J]. Toxicon, 2019, 170:51-59 |
Chaloub R M, Magalhães C C P, dos Santos C P. Early toxic effects of zinc on PSⅡ of Synechocystis aquatilis f. aquatilis (Cyanophyceae)[J]. Journal of Phycology, 2005, 41(6):1162-1168 |
Sayyed J A. The study of zinc metal concentration by spectrophotometric method from Godavari River at Nanded, Maharashatra[J]. Der Chemica Sinica, 2010, 1(2):104-109 |
赛闹汪青, 冉瑞兰, 张牡丹, 等. 铜胁迫对黄芪幼苗的生理学毒性与凹凸棒黏土的缓解作用[J]. 中国环境科学, 2019, 39(12):5273-5284Sai N, Ran R L, Zhang M D, et al. Physiological toxicity of copper stress on Astragalus membranaceus seedlings and mitigation of attapulgite clay[J]. China Environmental Science, 2019, 39(12):5273-5284(in Chinese) |
刘文竹, 蓝于倩, 骆梦, 等. 6种沉水植物对盐胁迫的生理响应及耐盐性评价[J]. 中国农学通报, 2019, 35(12):54-62Liu W Z, Lan Y Q, Luo M, et al. 6 submerged plants:The physiological response to salt stress and salt tolerance evaluation[J]. Chinese Agricultural Science Bulletin, 2019, 35(12):54-62(in Chinese) |
刘仕翔, 黄益宗, 罗泽娇, 等. 褪黑素对水稻幼芽镍胁迫的缓解作用[J]. 环境科学, 2017, 38(4):1675-1682Liu S X, Huang Y Z, Luo Z J, et al. Alleviation effects of exogenous melatonin on Ni toxicity in rice seedlings[J]. Environmental Science, 2017, 38(4):1675-1682(in Chinese) |
Chen Z W, Wang J, Chen H, et al. Enantioselective phytotoxicity of dichlorprop to Arabidopsis thaliana:The effect of cytochrome P450 enzymes and the role of Fe[J]. Environmental Science & Technology, 2017, 51(20):12007-12015 |
Yu L Q, Lam J C, Guo Y Y, et al. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish[J]. Environmental Science & Technology, 2011, 45(24):10652-10659 |
Yang W W, Tang Z P, Zhou F Q, et al. Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum[J]. Environmental Toxicology and Pharmacology, 2013, 35(2):320-324 |