删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

低剂量微囊藻毒素MC-LR诱导罗氏沼虾肝胰腺损伤及凋亡

本站小编 Free考研考试/2021-12-30

曹清晟,
王丽萍,
杨辉,
魏文志,
张莹莹
扬州大学动物科学与技术学院, 扬州 225000
作者简介: 曹清晟(1999-),男,本科生,研究方向为水生态毒理学,E-mail:caoqingshengzz@163.com.
基金项目: 江苏省自然科学基金青年项目(BK20180901)


中图分类号: X171.5


Low-dose Microcystins MC-LR Induced Hepatopancreas Injury and Apoptosis in Macrobrachium rosenbergii

Cao Qingsheng,
Wang Liping,
Yang Hui,
Wei Wenzhi,
Zhang Yingying
College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要:微囊藻毒素(microcystins, MCs)是由水华蓝藻释放出来的一种有生物活性的环庚肽化合物,具有较强的肝毒性,MC-LR是其分布最广的和毒性最强的一个亚型。罗氏沼虾(Macrobrachium rosenbergii)是我国比较重要的一个水产养殖品种,但由于养殖水体富营养化程度比较严重,常常爆发蓝藻水华,给其健康养殖带来较大的威胁,但是关于MCs对罗氏沼虾的毒性机制研究的报道较少。因此,使用环境相关浓度的MC-LR(0.5和5 μg L?1)处理罗氏沼虾1、2和3周,通过组织学观察、免疫组化定位、氧化应激指标测定以及荧光定量PCR技术探究养殖水体中常见浓度MCs对罗氏沼虾的毒害效应及潜在机制。研究结果表明,较高环境相关浓度(5 μg L?1)的MCs会在罗氏沼虾肝胰腺中显著富集,诱导氧化应激,破坏肝胰腺的形态和结构,并且破坏作用随暴露时间延长而加剧,并发生细胞凋亡。而较低浓度的MCs(0.5 μg L?1)对肝胰腺的影响相对较小,但是依然会诱导罗氏沼虾肝胰腺氧化应激,并且在长时间作用下也会给肝胰腺组织带来损伤。上述研究结果证明,环境相关浓度的MCs对罗氏沼虾也有一定的毒害作用,并且毒害作用呈剂量与时间依赖效应。
关键词: 微囊藻毒素/
罗氏沼虾/
肝胰腺/
氧化应激/
凋亡

Abstract:Microcystins (MCs) are biologically active cyclic heptapeptide compounds, which released from cyanobacteria and widely distributed hepatotoxin. Macrobrachium rosenbergii is an important aquaculture species in China. However, due to the serious eutrophication of aquaculture waters, cyanobacteria blooms often occur, which brings greater threaten to their healthy farming. But there were few studies focused on the toxicity mechanism of MCs on M. rosenbergii. In the present study, M. rosenbergii were exposed to environmentally relevant concentrations of MC-LR (0.5 and 5 μg L?1) for 1, 2 and 3 weeks. Histological observation, immunohistochemical localization, oxidative stress index determination and real-time PCR were applied to explore the toxic effects and potential mechanisms of MCs on M. rosenbergii. The results showed that environmentally relevant high concentrations (5 μg L?1) MCs were significantly enriched in the hepatopancreas of M. rosenbergii, and could induce oxidative stress, disrupt the morphology and structure of the hepatopancreas. After long time exposure, the destruction was aggravated and apoptosis was occurred. However, the low concentration of MCs (0.5 μg L?1) showed a less influence on hepatopancreas, but it still induced oxidative stress and caused damage to hepatopancreas tissue with prolonged exposure duration. These results demonstrate that environmentally relevant concentrations of MCs also have a certain toxic effect on M. rosenbergii, and the toxic effect is dose- and time-dependent.
Key words:microcystins/
Macrobrachium rosenbergii/
hepatopancreas/
oxidative stress/
apoptosis.

加载中
Merel S, Walker D, Chicana R, et al. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins[J]. Environment International, 2013, 59(3):303-327
Chen L, Chen J, Zhang X, et al. A review of reproductive toxicity of microcystins[J]. Journal of Hazardous Materials, 2015, 301(15):381-399
Gupta N, Pant S, Vijayaraghavan R, et al. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice[J]. Toxicology, 2003, 188(2-3):285-296
Puddick J, Prinsep M R, Wood S A, et al. High levels of structural diversity observed in microcystins from microcystis CAWBG11 and characterization of six new microcystin congeners[J]. Marine Drugs, 2014, 12(11):5372-5395
Li X, Cheng R, Shi H, et al. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples[J]. Journal of Hazardous Materials, 2015, 304(1):474-480
Ye R, Shan K, Gao H L, et al. Spatio-temporal distribution patterns in environmental factors, chlorophyll-a and microcystins in a large shallow lake, Lake Taihu, China[J]. International Journal of Environmental Research and Public Health, 2014, 11(5):5155-5169
Svircev Z, Drobac D, Tokodi N, et al. Epidemiology of primary liver cancer in Serbia and possible connection with cyanobacterial blooms[J]. Journal of Environmental Science and Health, Part C, 2013, 31(3):181-200
Wang Q, Xie P, Liang G. Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection[J]. Toxicon, 2008, 52(6):721-727
Xie L, Xie P, Guo L, et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China[J]. Environmental Toxicology, 2005, 20(3):293-300
Malbrouck C, Kestemont P. Effects of microcystins on fish[J]. Acta Ecologica Sinica, 2010, 25(1):72-86
Chakib D, David M, Mélodie M, et al. Oral toxicity of extracts of the microcystin-containing cyanobacterium Planktothrix agardhii to the medaka fish (Oryzias latipes)[J]. Toxicon, 2011, 58(1):112-122
Rymuszka A, Adaszek L. Cytotoxic effects and changes in cytokine gene expression induced by microcystin-containing extract in fish immune cells-An in vitro and in vivo study[J]. Fish & Shellfish Immunology, 2013, 34(6):1524-1532
Paulino M G, Rossi P A, Venturini F P, et al. Hepatotoxicity and metabolic effects of cellular extract of cyanobacterium, Radiocystis fernandoi, containing microcystins RR and YR on neotropical fish (Hoplias malabaricus)[J]. Chemosphere, 2017, 175:431-439
Hagenbuch B, Meier P J. Organic anion transporting polypeptides of the OATP/SLC21 family:Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties[J]. Pflugers Archiv European Journal of Physiology, 2004, 447(5):653-665
Chen T, Zhao X, Liu Y, et al. Analysis of immunomodulating nitric oxide, iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR[J]. Toxicology, 2004, 197(1):67-77
Zhang J, Zhang H, Chen Y. Sensitive apoptosis induced by microcystins in the crucian carp (Carassius auratus) lymphocytes in vitro[J]. Toxicology in Vitro, 2006, 20(5):560-566
Weng D, Lu Y, Wei Y, et al. The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice[J]. Toxicology, 2007, 232(1):15-23
Gaudin J, Huet S, Jarry G, et al. In vivo, DNA damage induced by the cyanotoxin microcystin-LR:Comparison of intra-peritoneal and oral administrations by use of the comet assay[J]. Mutation Research/Genetic Toxicology & Environmental Mutagenesis, 2008, 652(1):65-71
Zegura B, Gajski G, Straser A, et al. Microcystin-LR induced DNA damage in human peripheral blood lymphocytes[J]. Mutation Research, 2011, 726(2):116-122
Chen Y, Huang X, Wang J, et al. Effect of pure microcystin-LR on activity and transcript level of immune-related enzymes in the white shrimp (Litopenaeus vannamei)[J]. Ecotoxicology, 2017, 26(5):1-9
An Z, Yang X, Li Q. Effects of microcystin-leucine-arginine (MC-LR) on growth and energy budget of crayfish (Procambarus clarkii Girard)[J]. Journal of Aquaculture, 2015, 36(10):31-35
Rohrlack T, Dittmann E, Börner T, et al. Effects of cellbound microcystins on survival and feeding of Daphnia spp.[J]. Applied and Environmental Microbiology, 2001, 67(8):3523-3529
Yuan J, Gu Z, Zheng Y, et al. Accumulation and detoxification dynamics of microcystin-LR and antioxidant responses in male red swamp crayfish Procambarus clarkii[J]. Aquatic Toxicology, 2016, 177:8-18
Shi Y, Jiang J, Shan Z, et al. Oxidative stress and histopathological alterations in liver of Cyprinus carpio L. induced by intraperitoneal injection of microcystin-LR[J]. Ecotoxicology, 2015, 24(3):511-519
Zhao S, Xie P, Chen J, et al. A proteomic study on liver impairment in rat pups induced by maternal microcystinLR exposure[J]. Environmental Pollution, 2016, 212:197-207
Chen J, Zhong Y M, Zhang H Q, et al. Nitrate reductasedependent nitric oxide production is involved in microcystin-LR-induced oxidative stress in Brassica rapa[J]. Water Air and Soil Pollution, 2012, 223(7):4141-4152
Ding W X, Shen H M, Ong C N. Critical role of reactive oxygen species formation in microcystin-induced cytoskeleton disruption in primary cultured hepatocytes[J]. Journal of Toxicology and Environmental Health, Part A, 2001, 64(6):507-519
Wang L L, Yu Q L, Han L, et al. Study on the effect of reactive oxygen species-mediated oxidative stress on the activation of mitochondrial apoptosis and the tenderness of yak meat[J]. Food Chemistry, 2018, 244:394-402
Clemens M G. Nitric oxide in liver injury[J]. Hepatology, 1999, 30(1):1-5
Brzuzan P, Wozny M, Ciesielski S, et al. Microcystin-LR induced apoptosis and mRNA expression of p53 and cdkn1a in liver of whitefish (Coregonus lavaretus L.)[J]. Toxicon, 2009, 54(2):170-183
Lezcano N, Sedán D, Lucotti I, et al. Subchronic microcystin-LR exposure increased hepatic apoptosis and induced compensatory mechanisms in mice[J]. Journal of Biochemical and Molecular Toxicology, 2012, 26(4):131-138
Martinou J C, Youle R J. Mitochondria in apoptosis:Bcl-2 family members and mitochondrial dynamics[J]. Developmental Cell, 2011, 21(1):92-101

相关话题/环境 养殖 扬州大学 指标 动物科学