删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

目标预知对路径整合的影响

本站小编 Free考研考试/2022-01-01

过继成思, 黄建平, 宛小昂()
清华大学心理学系, 北京 100084
收稿日期:2016-10-18出版日期:2019-02-25发布日期:2018-12-24
通讯作者:宛小昂E-mail:wanxa@tsinghua.edu.cn

基金资助:国家自然科学基金项目(31200758)

The influence of target knowledge on path integration

GUO Jichengsi, HUANG Jianping, WAN Xiaoang()
Department of Psychology, Tsinghua University, Beijing 100084, China
Received:2016-10-18Online:2019-02-25Published:2018-12-24
Contact:WAN Xiaoang E-mail:wanxa@tsinghua.edu.cn






摘要/Abstract


摘要: 本研究采用头盔式虚拟现实与返回起点或路标的路径完成任务, 通过指导语来调控被试对于返回位置的预知, 检验目标预知对人类路径整合的影响。实验结果表明, 对于返回起点这一目标的预知可以使被试有效地忽略由于路标出现或路标数量增加而导致的干扰, 而对于返回路标这一目标的预知程度越高, 可以促使被试做出更准确的反应。这样的结果体现了目标预知作为一种非感知觉因素对于人类路径整合的影响, 也体现了人类路径整合的策略性和灵活性。



图1本研究的虚拟场景和任务流程示意图。A图中, 被试面向一条走廊。B图中, 被试到达外出路径中的某个路标位置, 面前出现红色箭头提示被试应向左转。C图中, 被试到达外出路径的终点, 目标出现并提示被试应该返回这个目标位置。D图中, 被试做出方向反应, 指出目标位置的方向, 一条长走廊出现在被试选择的方向。
图1本研究的虚拟场景和任务流程示意图。A图中, 被试面向一条走廊。B图中, 被试到达外出路径中的某个路标位置, 面前出现红色箭头提示被试应向左转。C图中, 被试到达外出路径的终点, 目标出现并提示被试应该返回这个目标位置。D图中, 被试做出方向反应, 指出目标位置的方向, 一条长走廊出现在被试选择的方向。



图2本研究中路径完成任务中返回起点或路标的平面俯瞰图示例
图2本研究中路径完成任务中返回起点或路标的平面俯瞰图示例



图3三组被试在返回起点时的平均位置误差和反应时。误差线表示标准误。
图3三组被试在返回起点时的平均位置误差和反应时。误差线表示标准误。



图4三组被试在返回路标时的平均位置误差和反应时。误差线表示标准误。
图4三组被试在返回路标时的平均位置误差和反应时。误差线表示标准误。







1 Arnold A. E. G. F., Burles F., Bray S., Levy R. M., & Iaria G . ( 2014). Differential neural network configuration during human path integration. Frontiers in Human Neuroscience, 8, 263: doi: 10.3389/fnhum.2014.00263.
2 Cheng K., Shettleworth S. J., Huttenlocher J., & Rieser J . ( 2007). Bayesian integration of spatial information. Psychological Bulletin, 133( 4), 625-637.
doi: 10.1037/0033-2909.133.4.625URL
3 Chrastil E. R., Sherrill K. R., Hasselmo M. E., & Stern C. E . ( 2016). Which way and how far? Tracking of translation and rotation information for human path integration. Human Brain Mapping, 37( 10),3636-3655.
doi: 10.1002/hbm.23265URL
4 Collett, T.S., & Graham P. ( 2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14( 12), R475-R477.
doi: 10.1016/j.cub.2004.06.013URL
5 Foo P., Duchon A., Warren W. H., & Tarr M. J . ( 2007). Humans do not switch between path knowledge and landmarks when learning a new environment. Psychological Research, 71( 3), 240-251.
doi: 10.1007/s00426-006-0080-4URL
6 Foo P., Warren W. H., Duchon A., & Tarr M. J . ( 2005). Do humans integrate routes into a cognitive map? Map-versus landmark-based navigation of novel shortcuts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31( 2), 195-215.
doi: 10.1037/0278-7393.31.2.195URL
7 Guo, J. C.S., & Wan X.A, . ( 2015). The effect of learning in virtual path integration. Acta Psychologica Sinica, 47( 6), 711-720.
[ 过继成思, 宛小昂 . ( 2015). 虚拟路径整合的学习效应. 心理学报, 47( 6), 711-720.]
8 He, Q., & McNamara T.P, . ( 2018). Spatial updating strategy affects the reference frame in path integration. Psychonomic Bulletin & Review, 25( 3), 1073-1079.
9 Kearns M. J., Warren W. H., Duchon A. P., & Tarr M. J . ( 2002). Path integration from optic flow and body senses in a homing task. Perception, 31, 349-374.
doi: 10.1068/p3311URL
10 Li, D., & Yang, Z . ( 2015). Spatial navigation: The relationship between landmark learning and path integration. Advances in Psychological Science, 23( 10), 1755-1762.
[ 李丹, 杨昭宁 . ( 2015). 空间导航: 路标学习和路径整合的关系. 心理科学进展, 23(10#), 1755-1762.]
11 Loomis J. M., Klatzky R. L., Golledge R. G., Cicinelli J. G., Pellegrino J. W., & Fry P. A . ( 1993). Nonvisual navigation by blind and sighted: assessment of path integration ability. Journal of Experimental Psychology: General, 122( 1), 73-91.
12 Philbeck J. W., Klatzky R. L., Behrmann M., Loomis J. M., & Goodridge J . ( 2001). Active control of locomotion facilitates nonvisual navigation. Journal of Experimental Psychology: Human Perception and Performance, 27( 1), 141-153.
13 Philbeck, J.W., & O’Leary S. ( 2005). Remembered landmarks enhance the precision of path integration. Psicologica, 26( 1), 7-24.
14 Poucet B., Sargolini F., Song E. Y., Hangya B., Fox S., & Muller R. U . ( 2014). Independence of landmark and self-motion-guided navigation: A different role for grid cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 369( 1635), 20130370.
15 Rossano, M.J., & Reardon W.P, . ( 1999). Goal specificity and the acquisition of survey knowledge. Environment and Behavior, 31(3), 395-412.
doi: 10.1177/00139169921972164URL
16 Sjolund L. A., Kelly J. W., & McNamara T. P . ( 2018). Optimal combination of environmental cues and path integration during navigation. Memory & Cognition, 46( 1), 89-99.
17 Sweller, J. ( 1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4( 4), 295-312.
18 Sweller, J., & Chandler P. ( 1994). Why some material is difficult to learn. Cognition and Instruction, 12( 3), 185-233.
19 Theeuwes, J. ( 2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135( 2), 77-99.
20 Wan, X. ( 2016). The phenomenon and mechanisms of path integration in humans. Hangzhou: Zhejiang University Press.
[ 宛小昂 . ( 2016). 人类路径整合的现象与机制. 杭州: 浙江大学出版社.]
21 Wan X., Wang R. F., & Crowell J. A . ( 2012). The effect of landmarks in human path integration. Acta Psychologica, 140( 1), 7-12.
22 Wan X., Wang R. F., & Crowell J. A . ( 2012). The effect of landmarks in human path integration. Acta Psychologica, 140( 1), 7-12.
23 Wan X., Wang R. F., & Crowell J. A . ( 2013). Effects of basic path properties on human path integration. Spatial Cognition & Computation, 13(1), 79-101.
24 Wang, R.F . ( 2016). Building a cognitive map by assembling multiple path integration. Psychonomic Bulletin & Review, 23, 692-702.
25 Wang R. F., Crowell J. A., Simons D. J., Irwin D. E., Kramer A. F., Ambinder M. S., … Hsieh B. B . ( 2006). Spatial updating relies on an egocentric representation of space: Effects of the number of objects. Psychonomic Bulletin & Review, 13( 2), 281-286.
26 Wiener J. M., Berthoz A., & Wolbers T . ( 2011). Dissociable cognitive mechanisms underlying human path integration. Experimental Brain Research, 208( 1),61-71.
doi: 10.1007/s00221-010-2460-7URL
27 Zhang, L., & Mou W. ( 2017). Piloting systems reset path integration systems during position estimation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43( 3), 472-491.
28 Zhao, M., & Warren W.H, . ( 2015 b). How you get there from here: Interaction of visual landmarks and path integration in human navigation. Psychological Science, 26( 6),915-924.
29 Zhou, J.S., & Zhang K . ( 2005). Kinestheic, Irrelevant Motion and Path Integration. Psychological Science, 28( 6), 1306-1308.
[ 周佳树, 张侃 . ( 2005). 运动觉、布局无关运动与路径整合. 心理科学, 28( 6), 1306-1308.]




[1]张为威, 黄建平, 宛小昂. 预期对路径整合的影响[J]. 心理学报, 2019, 51(11): 1219-1228.
[2]袁小钧, 崔晓霞, 曹正操, 阚红, 王晓, 汪亚珉. 虚拟仿真场景中威胁性视觉刺激搜索的注意偏向效应 *[J]. 心理学报, 2018, 50(6): 622-636.
[3]周希;宛小昂;杜頔康;熊异雷;黄蔚欣. 不连续虚拟现实空间中的再定向[J]. 心理学报, 2016, 48(8): 924-932.
[4]过继成思;宛小昂. 虚拟路径整合的学习效应[J]. 心理学报, 2015, 47(6): 711-720.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4382
相关话题/心理 人类 流程 空间 运动