中国科学院心理研究所心理健康重点实验室, 北京 100101
中国科学院大学心理学系, 北京 100049
收稿日期:
2020-11-17出版日期:
2022-01-15发布日期:
2021-11-25通讯作者:
张昆林, E-mail: zhangkl@psych.ac.cnThe mechanisms of histone modification in post-traumatic stress disorder
ZHANG Yingqian, ZHAO Guangyi, HAN Yuwei, ZHANG Jingyi, CAO Chengqi, WANG Li, ZHANG KunlinCAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2020-11-17Online:
2022-01-15Published:
2021-11-25摘要/Abstract
摘要: 创伤后应激障碍是一种具有复杂病因学的精神疾病, 多发生于个体受到重大创伤事件后。创伤后应激障碍的发生发展过程受到环境和遗传易感性的共同作用, 存在着较大的个体差异; 而表观遗传学作为一门研究多变环境因素调控基因表达的可遗传变化的学科, 近年来在创伤后应激障碍的研究中受到越来越多的重视。表观遗传机制之一——组蛋白修饰机制在创伤后应激障碍的发生中起着重要作用, 并且由于组蛋白修饰可以受到多种酶的调控, 其灵活的可逆化和精细调控为相应的药物研发提供了可能性和便利。因此, 深入探讨创伤后应激障碍的组蛋白修饰机制, 对于相关疾病的临床治疗及药物研发具有十分重要的意义。当前创伤后应激障碍的组蛋白修饰研究主要使用动物模型, 临床研究较少; 组蛋白的类型则主要关注组蛋白H3和H4乙酰化; 此外, 同以往的研究结果一致, 组蛋白修饰水平的变化主要发生在前额叶、海马体和杏仁核区域, 参与免疫系统、血清素系统和神经肽Y能系统等相关通路的调节。当前PTSD组蛋白修饰的研究结果间还存在较大的异质性, 未来的研究应采用更加一致和实用的分析和报道方法, 以最大限度地发挥研究的影响。
参考文献
[1] 王维, 孟智启, 石放雄. (2012). 组蛋白修饰及其生物学效应. [2] 甄艳, 施季森. (2012). 组蛋白翻译后修饰技术研究进展. [3] Afifi T. O., Asmundson G. J. G., Taylor S., & Jang K. L. (2010). The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: A review of twin studies.Clinical Psychology Review, 30(1), 101-112. [4] Ahmed M., Alzoubi K. H., & Khabour O. F. (2020). Vitamin E prevents the cognitive impairments in post- traumatic stress disorder rat model: Behavioral and molecular study.Psychopharmacology, 237(2), 599-607. doi:10.1007/ s00213-019-05395-w [5] Alzoubi K. H., Al Subeh Z. Y., & Khabour O. F. (2019). Molecular targets for the interactive effect of etazolate during post-traumatic stress disorder: Role of oxidative stress, BDNF and histones. [6] Alzoubi K. H., Khabour O. F., & Ahmed M. (2018). Pentoxifylline prevents post-traumatic stress disorder induced memory impairment.Brain Research Bulletin, 139, 263-268. doi:10.1016/j.brainresbull.2018.03.009 [7] American Psychiatric Association. (2013). [8] Bam M., Yang X., Zhou J., Ginsberg J. P., Leyden Q., Nagarkatti P. S., & Nagarkatti M. (2016a). Evidence for epigenetic regulation of pro-inflammatory cytokines, Interleukin-12 and Interferon gamma, in peripheral blood mononuclear cells from PTSD patients.Journal of Neuroimmune Pharmacology, 11(1), 168-181. doi:10.1007/ s11481-015-9643-8 [9] Bam M., Yang X., Zumbrun E. E., Zhong Y., Zhou J., Ginsberg J. P., … Nagarkatti M. (2016b). Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. [10] Beery, A. K. (2018). Inclusion of females does not increase variability in rodent research studies.Current Opinion in Behavioral Sciences, 23, 143-149. doi:10.1016/j.cobeha. 2018.06.016 [11] Benjet C., Bromet E., Karam E. G., Kessler R. C., McLaughlin K. A., Ruscio A. M., … Koenen K. C. (2016). The epidemiology of traumatic event exposure worldwide: Results from the World Mental Health Survey Consortium.Psychological Medicine, 46(2), 327-343. doi: 10.1017/s0033291715001981 [12] Biel M., Wascholowski V., & Giannis A. (2005). Epigenetics-- an epicenter of gene regulation: Histones and histone-modifying enzymes.Angewandte Chemie-international Edition, 44(21), 3186-3216. doi:10.1002/anie.200461346 [13] Blouin A. M., Sillivan S. E., Joseph N. F., & Miller C. A. (2016). The potential of epigenetics in stress-enhanced fear learning models of PTSD.Learning & Memory, 23(10), 576-586. doi:10.1101/lm.040485.115 [14] Bredy T. W., Wu H., Crego C., Zellhoefer J., Sun Y. E., & Barad M. (2007). Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear.Learning & Memory, 14(4), 268-276. doi:10.1101/lm.500907 [15] Breslau N., Kessler R. C., Chilcoat H. D., Schultz L. R., Davis G. C., & Andreski P. (1998). Trauma and posttraumatic stress disorder in the community: The 1996 Detroit Area Survey of Trauma.Archives of General Psychiatry, 55(7), 626-632. doi:10.1001/archpsyc.55.7.626 [16] Britton L. M., Gonzales-Cope M., Zee B. M., & Garcia B. A. (2011). Breaking the histone code with quantitative mass spectrometry.Expert Review of Proteomics, 8(5), 631-643. doi:10.1586/epr.11.47 [17] Brownell J. E., Zhou J., Ranalli T., Kobayashi R., Edmondson D. G., Roth S. Y., & Allis C. D. (1996). Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation.Cell, 84(6), 843-851. doi:10.1016/s0092-8674(00)81063-6 [18] Chaouloff, F. (2013). Social stress models in depression research: What do they tell us?Cell and Tissue Research, 354(1), 179-190. doi:10.1007/s00441-013-1606-x [19] Conrad D., Wilker S., Schneider A., Karabatsiakis A., Pfeiffer A., Kolassa S., … Kolassa I. T. (2018). Integrated genetic, epigenetic, and gene set enrichment analyses identify NOTCH as a potential mediator for PTSD risk after trauma: Results from two independent African cohorts. Psychophysiology, 57(1), Article e13288. doi:10.1111/psyp.13288 [20] Dudek K. A., Dion-Albert L., Lebel M., LeClair K., Labrecque S., Tuck E., … Menard C. (2020). Molecular adaptations of the blood-brain barrier promote stress resilience vs. depression.Proceedings of the National Academy of Sciences of the United States of America, 117(6), 3326-3336. doi:10.1073/pnas.1914655117 [21] Fairlie, D. P., & Sweet, M. J. (2012). HDACs and their inhibitors in immunology: Teaching anticancer drugs new tricks.Immunology and Cell Biology, 90(1), 3-5. doi:10.1038/icb.2011.105 [22] Fani N., Michopoulos V., van Rooij, S. J. H., Clendinen C., Hardy R. A., Jovanovic T., … Stevens J. S. (2019). Structural connectivity and risk for anhedonia after trauma: A prospective study and replication.Journal of Psychiatric Research, 116, 34-41. doi:10.1016/j.jpsychires.2019.05.009 [23] Frewen P. A., Dozois D. J. A., & Lanius R. A. (2012). Assessment of anhedonia in psychological trauma: Psychometric and neuroimaging perspectives. European Journal of Psychotraumatology, 3(1), Article 8587. doi: 10.3402/ejpt.v3i0.8587 [24] Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis.Nature Reviews Molecular Cell Biology, 15(8), 509-524. [25] Hammamieh R., Chakraborty N., Gautam A., Muhie S., Yang R., Donohue D., … Jett M. (2017). Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans. Translational Psychiatry, 7(7), Article e1169. doi:10.1038/tp.2017.129 [26] Hawasli A. H., Benavides D. R., Nguyen C., Kansy J. W., Hayashi K., Chambon P., … Bibb J. A. (2007). Cyclin- dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation.Nature Neuroscience, 10(7), 880-886. doi:10.1038/nn1914 [27] Heinzelmann, M., & Gill, J. (2013). Epigenetic mechanisms shape the biological response to trauma and risk for PTSD: A critical review. [28] Janssen K. A., Sidoli S., & Garcia B. A. (2017). Recent achievements in characterizing the histone code and approaches to integrating epigenomics and systems biology. In A. K. Shukla (Ed.), [29] Karch K. R., Denizio J. E., Black B. E., & Garcia B. A. (2013). Identification and interrogation of combinatorial histone modifications. [30] Kashdan T. B., Elhai J. D., & Frueh B. C. (2006). Anhedonia and emotional numbing in combat veterans with PTSD.Behaviour Research and Therapy, 44(3), 457-467. doi:10.1016/j.brat.2005.03.001 [31] Kimura, H. (2013). Histone modifications for human epigenome analysis.Journal of Human Genetics, 58(7), 439-445. doi:10.1038/jhg.2013.66 [32] Koenen K. C., Ratanatharathorn A., Ng L., McLaughlin K. A., Bromet E. J., Stein D. J., … Kessler R. C. (2017). Posttraumatic stress disorder in the World Mental Health Surveys.Psychological Medicine, 47(13), 2260-2274. doi:10.1017/S0033291717000708 [33] Kokras, N., & Dalla, C. (2014). Sex differences in animal models of psychiatric disorders.British Journal of Pharmacology, 171(20), 4595-4619. doi:10.1111/bph.12710 [34] Koshibu K., Gräff J., & Mansuy I. M. (2011). Nuclear protein phosphatase-1: An epigenetic regulator of fear memory and amygdala long-term potentiation.Neuroscience, 173, 30-36. doi:10.1016/j.neuroscience.2010.11.023 [35] Lepack A. E., Bagot R. C., Peña C. J., Loh Y. E., Farrelly L. A., Lu Y., … Maze I. (2016). Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior.Proceedings of the National Academy of Sciences of the United States of America, 113(44), 12562-12567. doi: 10.1073/pnas.1608270113 [36] Li G., Wang L., Zhang K. L., Cao C. Q., Cao X., Fang R. J., … Zhang X. Y. (2019). FKBP5 genotype linked to combined PTSD-depression symptom in chinese earthquake survivors.Canadian Journal of Psychiatry-Revue Canadienne De Psychiatrie, 64(12), 863-871. doi:10.1177/0706743719870505 [37] Liberzon I., Krstov M., & Young E. A. (1997). Stress- restress: Effects on ACTH and fast feedback.Psychoneuroendocrinology, 22(6), 443-453. doi:10.1016/s0306- 4530(97)00044-9 [38] Liberzon I., López J. F., Flagel S. B., Vazquez D. M., & Young E. A. (1999). Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: Relevance to post-traumatic stress disorder.Journal of Neuroendocrinology, 11(1), 11-17. [39] Logue M. W., Miller M. W., Wolf E. J., Huber B. R., Morrison F. G., Zhou Z., … Verfaellie M. (2020). An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clinical Epigenetics, 12(1), Article 46. doi:10.1186/s13148-020-0820-0 [40] Lubin F. D., Roth T. L., & Sweatt J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory.Journal of Neuroscience, 28(42), 10576-10586. doi:10.1523/jneurosci.1786-08.2008 [41] Maddox S. A., Kilaru V., Shin J., Jovanovic T., Almli L. M., Dias B. G., … Smith A. K. (2018). Estrogen- dependent association of HDAC4 with fear in female mice and women with PTSD.Molecular Psychiatry, 23(3), 658-665. doi:10.1038/mp.2016.250 [42] Maddox S. A., Watts C. S., Doyere V., & Schafe G. E. (2013). A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. PLoS One, 8(1), Article e54463. doi:10.1371/journal.pone.0054463 [43] Maddox S. A., Watts C. S., & Schafe G. E. (2013). p300/ CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala.Learning & Memory, 20(2), 109-119. doi:10.1101/lm.029157.112 [44] Mahan A. L., Mou L., Shah N., Hu J. H., Worley P. F., & Ressler K. J. (2012). Epigenetic modulation of Homer1a transcription regulation in amygdala and hippocampus with pavlovian fear conditioning.Journal of Neuroscience, 32(13), 4651-4659. doi:10.1523/jneurosci.3308-11.2012 [45] Marinova Z., Maercker A., Grünblatt E., Wojdacz T. K., & Walitza S. (2017). A pilot investigation on DNA methylation modifications associated with complex posttraumatic symptoms in elderly traumatized in childhood. BMC Research Notes, 10(1), Article 752. doi:10.1186/s13104- 017-3082-y [46] Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation.Nature Reviews Molecular Cell Biology, 6(11), 838-849. doi:10.1038/nrm1761 [47] Matsumoto Y., Morinobu S., Yamamoto S., Matsumoto T., Takei S., Fujita Y., & Yamawaki S. (2013). Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder.Psychopharmacology, 229(1), 51-62. doi:10.1007/s00213-013-3078-9 [48] Mehta D., Klengel T., Conneely K. N., Smith A. K., Altmann A., Pace T. W., … Binder E. B. (2013). Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder.Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8302-8307. doi:10.1073/ pnas.1217750110 [49] Mehta D., Pelzer E. S., Bruenig D., Lawford B., McLeay S., Morris C. P., … Voisey J. (2019). DNA methylation from germline cells in veterans with PTSD.Journal of Psychiatric Research, 116, 42-50. doi:10.1016/j.jpsychires. 2019.06.001 [50] Mehta N. D., Stevens J. S., Li Z., Gillespie C. F., Fani N., Michopoulos V., & Felger J. C. (2020). Inflammation, reward circuitry and symptoms of anhedonia and PTSD in trauma-exposed women.Social Cognitive and Affective Neuroscience, 15(10), 1046-1055. doi:10.1093/scan/nsz100 [51] Monsey M. S., Ota K. T., Akingbade I. F., Hong E. S., & Schafe G. E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One, 6(5), Article e19958. doi:10. 1371/journal.pone.0019958 [52] Moser D. A., Paoloni-Giacobino A., Stenz L., Adouan W., Manini A., Suardi F., … Schechter D. S. (2015). BDNF methylation and maternal brain activity in a violence- related sample. PLoS One, 10(12), Article e0143427. doi: 10.1371/journal.pone.0143427 [53] Nemeroff C. B., Bremner J. D., Foa E. B., Mayberg H. S., North C. S., & Stein M. B. (2006). Posttraumatic stress disorder: A state-of-the-science review.Journal of Psychiatric Research, 40(1), 1-21. doi:10.1016/j.jpsychires.2005.07.005 [54] Nievergelt C. M., Maihofer A. X., Klengel T., Atkinson E. G., Chen C.-Y., Choi K. W., … Koenen K. C. (2018, November). Largest genome-wide association study for PTSD identifies genetic risk loci in European and African ancestries and implicates novel biological pathways. bioRvix. [Preprint.] doi:10.1101/458562 [55] Oki M., Aihara H., & Ito T. (2007). Role of histone phosphorylation in chromatin dynamics and its implications in diseases.Sub-cellular Biochemistry, 41, 319-336. [56] Olson E. A., Kaiser R. H., Pizzagalli D. A., Rauch S. L., & Rosso I. M. (2018). Anhedonia in trauma-exposed individuals: Functional connectivity and decision-making correlates.Biological Psychiatry-Cognitive Neuroscience and Neuroimaging, 3(11), 959-967. doi:10.1016/j.bpsc.2017. 10.008 [57] Parade S. H., Novick A. M., Parent J., Seifer R., Klaver S. J., Marsit C. J., … Tyrka A. R. (2017). Stress exposure and psychopathology alter methylation of the serotonin receptor 2A (HTR2A) gene in preschoolers.Development and Psychopathology, 29(5), 1619-1626. doi:10.1017/ s0954579417001274 [58] Pathak S. S., Maitra S., Chakravarty S., & Kumar A. (2017). Histone lysine demethylases of JMJD2 or KDM4 family are important epigenetic regulators in reward circuitry in the etiopathology of depression.Neuropsychopharmacology, 42(4), 854-863. doi:10.1038/ npp.2016.231 [59] Pickart, C. M. (2001). Mechanisms underlying ubiquitination.Annual Review of Biochemistry, 70, 503-533. doi:10.1146/ annurev.biochem.70.1.503 [60] Prendergast B. J., Onishi K. G., & Zucker I. (2014). Female mice liberated for inclusion in neuroscience and biomedical research.Neuroscience and Biobehavioral Reviews, 40, 1-5. doi:10.1016/j.neubiorev.2014.01.001 [61] Ragu Varman, D., & Rajan, K. E. (2015). Environmental enrichment reduces anxiety by differentially activating serotonergic and Neuropeptide Y (NPY)-ergic system in Indian field mouse (Mus booduga): An animal model of post-Traumatic stress disorder. PLoS One, 10(5), Article e0127945. doi:10.1371/journal.pone.0127945 [62] Ramzan F., Creighton S. D., Hall M., Baumbach J., Wahdan M., Poulson S. J., … Zovkic I. B. (2020). Sex- specific effects of the histone variant H2A.Z on fear memory, stress-enhanced fear learning and hypersensitivity to pain. [63] Rei D., Mason X., Seo J., Gräff J., Rudenko A., Wang J., … Tsai L. H. (2015). Basolateral amygdala bidirectionally modulates stress-induced hippocampal learning and memory deficits through a p25/Cdk5-dependent pathway.Proceedings of the National Academy of Sciences of the United States of America, 112(23), 7291-7296. doi:10.1073/pnas.1415845112 [64] Risbrough V. B., Glynn L. M., Davis E. P., Sandman C. A., Obenaus A., Stern H. S., … Baker D. G. (2018). Does anhedonia presage increased risk of posttraumatic stress disorder? : Adolescent anhedonia and posttraumatic disorders.Current Topics in Behavioral Neurosciences, 38, 249-265. doi:10.1007/7854_2018_51 [65] Rodgers, A. B., & Bale, T. L. (2015). Germ cell origins of posttraumatic stress disorder risk: The transgenerational impact of parental stress experience.Biological Psychiatry, 78(5), 307-314. doi:10.1016/j.biopsych.2015.03.018 [66] Sase A. S., Lombroso S. I., Santhumayor B. A., Wood R. R., Lim C. J., Neve R. L., & Heller E. A. (2019). Sex- specific regulation of fear memory by targeted epigenetic editing of Cdk5.Biological Psychiatry, 85(8), 623-634. doi:10.1016/j.biopsych.2018.11.022 [67] Schechter D. S., Moser D. A., Pointet V. C., Aue T., Stenz L., Paoloni-Giacobino A., … Dayer A. G. (2017). The association of serotonin receptor 3A methylation with maternal violence exposure, neural activity, and child aggression.Behavioural brain research, 325(Pt B), 268-277. doi:10.1016/j.bbr.2016.10.009 [68] Schnurr P. P., Lunney C. A., Bovin M. J., & Marx B. P. (2009). Posttraumatic stress disorder and quality of life: Extension of findings to veterans of the wars in Iraq and Afghanistan.Clinical Psychology Review, 29(8), 727-735. [69] Serpeloni F., Radtke K. M., Hecker T., Sill J., Vukojevic V., de Assis S. G., … Nätt D. (2019). Does prenatal stress shape postnatal resilience? - An epigenome-wide study on violence and mental health in humans. [70] Siddiqui S. A., Singh S., Ranjan V., Ugale R., Saha S., & Prakash A. (2017). Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction.Cellular and Molecular Neurobiology, 37(7), 1287-1301. doi:10.1007/s10571-017-0464-6 [71] Siddiqui S. A., Singh S., Ugale R., Ranjan V., Kanojia R., Saha S., … Prakash A. (2019). Regulation of HDAC1 and HDAC2 during consolidation and extinction of fear memory.Brain Research Bulletin, 150, 86-101. doi:10.1016/j.brainresbull.2019.05.011 [72] Singh S., Siddiqui S. A., Tripathy S., Kumar S., Saha S., Ugale R., … Prakash A. (2018). Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory.Brain Research Bulletin, 140, 355-364. doi:10.1016/j.brainresbull.2018.06.004 [73] Solanki N., Alkadhi I., Atrooz F., Patki G., & Salim S. (2015). Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder.Nutrition Research, 35(1), 65-75. doi: 10.1016/j.nutres.2014.11.008 [74] Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications.Nature, 403(6765), 41-45. doi:10.1038/47412 [75] Su S. C., Rudenko A., Cho S., & Tsai L. H. (2013). Forebrain-specific deletion of Cdk5 in pyramidal neurons results in mania-like behavior and cognitive impairment.Neurobiology of Learning and Memory, 105, 54-62. doi: 10.1016/j.nlm.2013.06.016 [76] Takei S., Morinobu S., Yamamoto S., Fuchikami M., Matsumoto T., & Yamawaki S. (2011). Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder.Journal of Psychiatric Research, 45(4), 460-468. doi:10.1016/j.jpsychires.2010.08.009 [77] Taunton J., Hassig C. A., & Schreiber S. L. (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p.Science, 272(5260), 408-411. doi:10.1126/science.272.5260.408 [78] Uddin M., Chang S.-C., Zhang C., Ressler K., Mercer K. B., Galea S., … Koenen K. C. (2013). Adcyap1r1 genotype, posttraumatic stress disorder, and depression among women exposed to childhood maltreatment.Depression and Anxiety, 30(3), 251-258. [79] Vieira P. A., Lovelace J. W., Corches A., Rashid A. J., Josselyn S. A., & Korzus E. (2014). Prefrontal consolidation supports the attainment of fear memory accuracy.Learning & Memory, 21(8), 394-405. doi:10.1101/lm.036087.114 [80] Wang L., Cao C., Wang R., Zhang J., & Li Z. (2012). The dimensionality of PTSD symptoms and their relationship to health-related quality of life in Chinese earthquake survivors.Journal of Anxiety Disorders, 26(7), 711-718. [81] Widom, C. S. (1999). Posttraumatic stress disorder in abused and neglected children grown up.The American Journal of Psychiatry, 156(8), 1223-1229. doi:10.1176/ajp.156.8.1223 [82] Wilkinson M. B., Xiao G., Kumar A., LaPlant Q., Renthal W., Sikder D., … Nestler E. J. (2009). Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models.Journal of Neuroscience, 29(24), 7820-7832. doi:10.1523/ jneurosci.0932-09.2009 [83] Wilson C. B., McLaughlin L. D., Ebenezer P. J., Nair A. R., & Francis J. (2014). Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder.Behavioural Brain Research, 268, 72-80. doi:10.1016/j.bbr.2014.03.029 [84] Yehuda R., Hoge C. W.,McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., … Hyman, S. E.(2015). Post-traumatic stress disorder. [85] Yun M., Wu J., Workman J. L., & Li B. (2011). Readers of histone modifications.Cell Research, 21(4), 564-578. doi:10.1038/cr.2011.42 [86] Zhang K., Qu S., Chang S., Li G., Cao C., Fang K., … Wang J. (2017). An overview of posttraumatic stress disorder genetic studies by analyzing and integrating genetic data into genetic database PTSDgene.Neuroscience and Biobehavioral Reviews, 83, 647-656. doi:10.1016/j.neubiorev. 2017.08.021 [87] Zhao M., Wang W., Jiang Z., Zhu Z., Liu D., & Pan F. (2020). Long-term effect of post-traumatic stress in adolescence on dendrite development and H3K9me2/ BDNF expression in male rat hippocampus and prefrontal cortex. [88] Zhong P., Liu X., Zhang Z., Hu Y., Liu S. J., Lezama-Ruiz M., … Liu Q. S. (2014). Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression- related behaviors.Journal of Neuroscience, 34(18), 6352-6366. doi:10.1523/jneurosci.3673-13.2014 [89] Zhou V. W., Goren A., & Bernstein B. E. (2011). Charting histone modifications and the functional organization of mammalian genomes.Nature Reviews Genetics, 12(1), 7-18. doi:10.1038/nrg2905 [90] Zovkic I. B., Meadows J. P., Kaas G. A., & Sweatt J. D. (2013). Interindividual variability in stress susceptibility: A role for epigenetic mechanisms in PTSD. |
相关文章 15
[1] | 白玉, 杨海波. 创伤后应激障碍个体对威胁刺激的注意偏向:眼动研究的证据[J]. 心理科学进展, 2021, 29(4): 737-746. |
[2] | 庞焯月, 席居哲, 左志宏. 儿童青少年创伤后应激障碍(PTSD)治疗的研究热点 ——基于美国文献的知识图谱分析[J]. 心理科学进展, 2017, 25(7): 1182-1196. |
[3] | 朱叶, 曹成琦, 王力. 内源性大麻素与创伤后应激障碍: 可能的作用机制与治疗应用[J]. 心理科学进展, 2017, 25(12): 2043-2056. |
[4] | 王红波; 朱湘茹. 调控去甲肾上腺素能系统对防治创伤后应激障碍的影响[J]. 心理科学进展, 2016, 24(6): 923-933. |
[5] | 王铭;江光荣. 创伤后应激障碍的双重表征理论及其检验[J]. 心理科学进展, 2016, 24(5): 753-764. |
[6] | 张权;陈崝;王玮文;邓慧华. 创伤后应激障碍患者的HPA轴功能变化的时间序列特征[J]. 心理科学进展, 2016, 24(4): 536-546. |
[7] | 张克;赵媚;林文娟. 表观遗传修饰在应激诱发抑郁症中的作用[J]. 心理科学进展, 2016, 24(12): 1882-1888. |
[8] | 郭静;周倩云;张振涛. 地震对灾民创伤后应激障碍的长期影响[J]. 心理科学进展, 2016, 24(10): 1534-1543. |
[9] | 吕遥迪;吴恺君;张雨青. 中国创伤后应激反应量表在大学生群体中的应用[J]. 心理科学进展, 2015, 23(8): 1324-1330. |
[10] | 张兴利;李晓燕;柳铭心;施建农;刘正奎. 灾后孤儿创伤后应激障碍的发生发展及其认知神经机制[J]. 心理科学进展, 2015, 23(2): 168-174. |
[11] | 王超逸;高博;杨庆雄;李勇辉. 创伤后应激障碍中的非适应性泛化现象[J]. 心理科学进展, 2015, 23(2): 252-260. |
[12] | 董昕文;王超逸;王昌利;李勇辉. 惊反射在创伤后应激障碍研究中的应用:高唤醒与恐惧抑制[J]. 心理科学进展, 2013, 21(6): 965-974. |
[13] | 刘伟志;刘涛生;王伟;严进. 转化医学下的创伤后应激障碍[J]. 心理科学进展, 2013, 21(11): 1976-1982. |
[14] | 王小玲;李松蔚;钱铭怡. 创伤后应激障碍患者情绪记忆优势研究述评[J]. 心理科学进展, 2012, 20(2): 248-255. |
[15] | 刘正奎;吴坎坎;王力. 我国灾害心理与行为研究[J]. 心理科学进展, 2011, 19(8): 1091-1098. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5716