删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

非符号数量表征和符号分数表征的关系

本站小编 Free考研考试/2022-01-01

毛伙敏1, 刘琴2, 吕建相2, 牟毅2()
1珠海中山大学附属小学, 珠海 519031
2中山大学心理学系, 广州 510006
收稿日期:2021-02-08发布日期:2021-10-26
通讯作者:牟毅E-mail:mouyi5@mail.sysu.edu.cn

基金资助:广东省基础与应用基础研究基金(2021A1515010738);广东省哲学社会科学规划一般项目(GD19CXL04);认知神经科学与学习国家重点实验室开放课题基金(CNYB1804)

The relation between non-symbolic magnitude representation and symbolic fraction representation

MAO Huomin1, LIU Qin2, LÜ Jianxiang2, MOU Yi2()
1Zhu Hai Primary School attached to Sun Yat-sen University, Zhuhai 519031, China
2Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
Received:2021-02-08Published:2021-10-26
Contact:MOU Yi E-mail:mouyi5@mail.sysu.edu.cn






摘要/Abstract


摘要: 个体学习符号分数的一个关键是能对其数值形成准确表征。现有研究假设符号分数表征的认知基础是人类自婴幼儿期就具有的非符号数量表征(如表征两个集合各自的数量, 或两个数量的比例)。其证据包括表征非符号数量(尤其是非符号数量比例关系)和表征符号分数在行为和大脑神经活动层面上都表现出相关性。然而要说明非符号数量表征是符号分数表征的认知基础, 还需更多研究表明两者在数量概念上的独特相关和因果联系, 并阐明符号分数表征形成的认知机制。


[1] 高瑞彦, 牛美心, 杨涛, 周新林. (2018). 4-8年级学生分数数量表征的准确性及形式. 心理发展与教育, 34(4), 443-452. https://doi.org/10.16187/j.cnki.issn1001-4918.2018.04.08
[2] 高婷, 刘儒德, 刘颖, 庄鸿娟. (2016). 小学生分数比较中的加工模式: 基于反应时和口语报告的研究. 心理发展与教育, 32(4), 463-470. https://doi.org/10.16187/j.cnki.issn1001-4918.2016.04.10
[3] 刘春晖, 辛自强. (2010). 分数认知的“整数偏向”研究: 理论与方法. 心理科学进展, 18(1), 65-74.
[4] 孙玉, 司继伟, 黄碧娟. (2016). 分数的数量表征. 心理科学进展, 24(4), 1207-1216. https://doi.org/10.3724/SP.J.1042.2016.01207
[5] 辛自强, 韩玉蕾. (2014). 小学低年级儿童的等值分数概念发展及干预. 心理学报, 46(6), 791-806. https://doi.org/10.3724/SP.J.1041.2014.00791
[6] 辛自强, 刘国芳. (2011). 非符号分数与整数计算能力的发展及其与数字记忆的关系. 心理科学, 34(3), 520-526. https://doi.org/CNKI:SUN:XLKX.0.2011-03-003
[7] 杨伊生, 刘儒德. (2008). 儿童分数概念发展研究综述. 内蒙古师范大学学报(教育科学版), 21(6), 130-134.
[8] 张丽, 卢彩芳, 杨新荣. (2014). 3-6年级儿童整数数量表征与分数数量表征的关系. 心理发展与教育, 30(1), 1-8. https://doi.org/CNKI:SUN:XLFZ.0.2014-01-001
[9] 张丽, 辛自强, 王琦, 李红. (2012). 整数构成对分数加工的影响. 心理发展与教育, 28(1), 31-38. https://doi.org/CNKI:SUN:XLFZ.0.2012-01-005
[10] Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C.(2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447-455. https://doi.org/10.1016/j.jecp.2012.06.004
doi: 10.1016/j.jecp.2012.06.004URLpmid: 22832199
[11] Bailey, D. H., Siegler, R. S., & Geary, D. C.(2014). Early predictors of middle school fraction knowledge. Developmental Science, 17(5), 775-785. https://doi.org/10.1111/desc.12155
doi: 10.1111/desc.12155URLpmid: 24576209
[12] Barner, D.(2017). Language, procedures, and the non- perceptual origin of number word meanings. Journal of Child Language, 44(3), 553-590. https://doi.org/10.1017/S0305000917000058
doi: 10.1017/S0305000917000058URLpmid: 28376934
[13] Begolli, K. N., Booth, J. L., Holmes, C. A., & Newcombe, N. S.(2020). How many apples make a quarter? The challenge of discrete proportional formats. Journal of Experimental Child Psychology, 192, 104774. https://doi.org/10.1016/j.jecp.2019.104774
doi: 10.1016/j.jecp.2019.104774URL
[14] Bhatia, P., Delem, M., Léone, J., Boisin, E., Cheylus, A., Gardes, M.-L., & Prado, J.(2020). The ratio processing system and its role in fraction understanding: Evidence from a match-to-sample task in children and adults with and without dyscalculia. Quarterly Journal of Experimental Psychology, 73(12), 2158-2176. https://doi.org/10.1177/1747021820940631
doi: 10.1177/1747021820940631URL
[15] Boyer, T. W., & Levine, S. C.(2012). Child proportional scaling: Is 1/3=2/6=3/9=4/12?. Journal of Experimental Child Psychology, 111(3), 516-533. https://doi.org/10.1016/j.jecp.2011.11.001
doi: 10.1016/j.jecp.2011.11.001URLpmid: 22154533
[16] Boyer, T. W., & Levine, S. C.(2015). Prompting children to reason proportionally: Processing discrete units as continuous amounts. Developmental Psychology, 51(5), 615-620. https://doi.org/10.1037/a0039010
doi: 10.1037/a0039010URLpmid: 25751097
[17] Boyer, T. W., Levine, S. C., & Huttenlocher, J.(2008). Development of proportional reasoning: Where young children go wrong. Developmental Psychology, 44(5), 1478-1490. https://doi.org/10.1037/a0013110
doi: 10.1037/a0013110URLpmid: 18793078
[18] Braithwaite, D. W., & Siegler, R. S.(2018). Children learn spurious associations in their math textbooks: Examples from fraction arithmetic. Journal of Experimental Psychology: Learning Memory and Cognition, 44(11), 1765-1777. https://doi.org/10.1037/xlm0000546
doi: 10.1037/xlm0000546URL
[19] Braithwaite, D. W., Tian, J., & Siegler, R. S.(2018). Do children understand fraction addition?. Developmental Science, 21(4), e12601. https://doi.org/10.1111/desc.12601
doi: 10.1111/desc.2018.21.issue-4URL
[20] Chen, Q. X., & Li, J. G.(2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163-172. https://doi.org/10.1016/j.actpsy.2014.01.016
doi: 10.1016/j.actpsy.2014.01.016URL
[21] Chu, F. W., vanMarle, K., & Geary, D. C.(2016). Predicting children's reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 775. https://doi.org/10.3389/fpsyg.2016.00775
[22] Cui, J. X., Li, L. N., Li, M. Y., Siegler, R., & Zhou, X. L.(2020). Middle temporal cortex is involved in processing fractions. Neuroscience Letters, 725, 134901. https://doi.org/10.1016/j.neulet.2020.134901
doi: 10.1016/j.neulet.2020.134901URL
[23] Dehaene, S., Piazza, M., Pinel, P., & Cohen, L.(2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506. https://doi.org/10.1080/02643290244000239
doi: 10.1080/02643290244000239URL
[24] Denison, S., Reed, C., & Xu, F.(2013). The emergence of probabilistic reasoning in very young infants: Evidence from 4.5- and 6-month-olds. Developmental Psychology, 49(2), 243-249. https://doi.org/10.1037/a0028278
doi: 10.1037/a0028278URL
[25] Denison, S., & Xu, F.(2014). The origins of probabilistic inference in human infants. Cognition, 130(3), 335-347. https://doi.org/10.1016/j.cognition.2013.12.001
doi: 10.1016/j.cognition.2013.12.001URL
[26] de Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D.(2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48-55.
doi: 10.1016/j.tine.2013.06.001URL
[27] DeWolf, M., Bassok, M., & Holyoak, K. J.(2015). Conceptual structure and the procedural affordances of rational numbers: Relational reasoning with fractions and decimals. Journal of Experimental Psychology: General, 144(1), 127-150. https://doi.org/10.1037/xge0000034
doi: 10.1037/xge0000034URL
[28] Drucker, C. B., Rossa, M. A., & Brannon, E. M.(2016). Comparison of discrete ratios by rhesus macaques (Macaca mulatta). Animal Cognition, 19(1), 75-89. https://doi.org/10.1007/s10071-015-0914-9
doi: 10.1007/s10071-015-0914-9URL
[29] Elliott, L., Feigenson, L., Halberda, J., & Libertus, M. E.(2018). Bidirectional, longitudinal associations between math ability and approximate number system precision in childhood. Journal of Cognition and Development, 20(1), 56-74. https://doi.org/10.1080/15248372.2018.1551218
doi: 10.1080/15248372.2018.1551218URL
[30] Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S.(2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72. https://doi.org/10.1016/j.jecp.2014.01.013
doi: 10.1016/j.jecp.2014.01.013URLpmid: 24699178
[31] Feigenson, L., Dehaene, S., & Spelke, E.(2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314. https://doi.org/10.1016/j.tics.2004.05.002
URLpmid: 15242690
[32] Fuhs, M. W., & McNeil, N. M.(2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136-148. https://doi.org/10.1111/desc.12013
doi: 10.1111/desc.2012.16.issue-1URL
[33] Gallistel, C. R.(2007). Commentary on Le Corre & Carey. Cognition, 105(2), 439-445. https://doi.org/10.1016/j.cognition.2007.01.010
doi: 10.1016/j.cognition.2007.01.010URL
[34] Gallistel, C. R., & Gelman, I. I.(2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4(2), 59-65. https://doi.org/10.1016/s1364-6613(99)01424-2
URLpmid: 10652523
[35] Geary, D. C., & vanMarle, K.(2016). Young children's core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52(12), 2130-2144. https://doi.org/10.1037/dev0000214
doi: 10.1037/dev0000214URL
[36] Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M.(2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLOS ONE, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374
doi: 10.1371/journal.pone.0067374URL
[37] Gilmore, C., & Cragg, L.(2018). Heterogeneity of function in numerical cognition. . In H. Avishai, & F. Wim (Eds.), The role of executive function skills in the development of children's mathematical competencies (pp. 263-286)Elsevier. https://doi.org/10.1016/B978-0-12-811529-9.00014-5
[38] Goswami, U.(1989). Relational complexity and the development of analogical reasoning. Cognitive Development, 4(3), 251-268. https://doi.org/10.1016/0885-2014(89)90008-7
[39] Gouet, C., Carvajal, S., Halberda, J., & Peña, M.(2020). Training nonsymbolic proportional reasoning in children and its effects on their symbolic math abilities. Cognition, 197, 104154. https://doi.org/10.1016/j.cognition.2019.104154
doi: 10.1016/j.cognition.2019.104154URL
[40] Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D.(2015). General and math-specific predictors of sixth-graders' knowledge of fractions. Cognitive Development, 35, 34-49. https://doi.org/10.1016/j.cogdev.2015.02.001
doi: 10.1016/j.cogdev.2015.02.001URL
[41] Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G.(2019). Surpassing the subitizing threshold: Appetitive-aversive conditioning improves discrimination of numerosities in honeybees. The Journal of Experimental Biology, 222(Pt 19), jeb205658. https://doi.org/10.1242/jeb.205658
doi: 10.1242/jeb.205658URL
[42] Hyde, D. C., Boas, D. A., Blair, C., & Carey, S.(2010). Near-infrared spectroscopy shows right parietal specialization for number in pre-verbal infants. NeuroImage, 53(2), 647- 652. https://doi:10.1016/j.neuroimage.2010.06.030
doi: https://doi:10.1016/j.neuroimage.2010.06.030URL
[43] Hyde, D. C., Khanum, S., & Spelke, E. S.(2014). Brief non- symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92-107. https://doi.org/10.1016/j.cognition.2013.12.007
doi: 10.1016/j.cognition.2013.12.007URL
[44] Hyde, D. C., & Mou, Y.(2015). Neural and behavioral signatures core numerical abilities and early numerical development. In D. B. Berch, D. C. Geary, & K. Mann Koepke (Eds.), Mathematical cognition and learning, (Vol.2, pp. 51-77)Elsevier. https://doi.org/10.1016/B978-0-12-801871-2.00003-4
[45] Hyde, D. C., Simon, C. E., Berteletti, I., & Mou, Y.(2016). The relationship between non-verbal systems of number and counting development: A neural signatures approach. Developmental Science, 20(6), https://doi.org/10.1111/desc.12464
[46] Hyde, D. C., & Spelke, E. S.(2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360-371. https://doi.org/10.1111/j.1467-7687.2010.00987.
doi: 10.1111/desc.2011.14.issue-2URL
[47] Jacob, S. N., & Nieder, A.(2009a). Notation-independent representation of fractions in the human parietal cortex. The Journal of Neuroscience, 29(14), 4652-4657. https://doi.org/10.1523/JNEUROSCI.0651-09.2009
doi: 10.1523/JNEUROSCI.0651-09.2009URL
[48] Jacob, S. N., & Nieder, A.(2009b). Tuning to non-symbolic proportions in the human frontoparietal cortex. European Journal of Neuroscience, 30(7), 1432-1442. https://doi.org/10.1111/j.1460-9568.2009.06932.
doi: 10.1111/ejn.2009.30.issue-7URL
[49] Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D.(2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45-58. https://doi.org/10.1016/j.jecp.2013.02.001
doi: 10.1016/j.jecp.2013.02.001URLpmid: 23506808
[50] Jordan, N. C., Resnick, I., Rodrigues, J., Hansen, N., & Dyson, N.(2017). Delaware longitudinal study of fraction learning: implications for helping children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 621- 630. https://doi.org/10.1177/0022219416662033
doi: 10.1177/0022219416662033URLpmid: 27506551
[51] Jordan, N. C., Rodrigues, J., Hansen, N., & Resnick, I.(2017). Fraction development in children: Importance of building numerical magnitude understanding. In D. C. Geary, D. B. Berch, R. J. Ochsendorf, K. M. Koepke, In Mathematical Cognition and Learning, Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts (pp.125- 140). Elsevier. https://doi.org/10.1016/B978-0-12-801871-2.00003-4.
[52] Kalra, P. B., Binzak, J. V., Matthews, P. G., & Hubbard, E. M.(2020). Symbolic fractions elicit an analog magnitude representation in school-age children. Journal of Experimental Child Psychology, 195, 104844. https://doi.org/10.1016/j.jecp.2020.104844
doi: 10.1016/j.jecp.2020.104844URL
[53] Keller, L., & Libertus, M.(2015). Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology, 6, 685. https://doi.org/10.3389/fpsyg.2015.00685
[54] LeFevre, J.-A., Fast, L., Skwarchuk, S.-L., Smith-Chant, B. L., Bisanz, J., Kamawar, D., & Penner-Wilger, M.(2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753-1767. https://doi.org/10.1111/j.1467-8624.2010.01508.
doi: 10.1111/cdev.2010.81.issue-6URL
[55] Leibovich, T., & Ansari, D.(2016). The symbol-grounding problem in numerical cognition: A review of theory, evidence, and outstanding questions. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 70(1), 12-23. https://doi.org/10.1037/cep0000070
doi: 10.1037/cep0000070URL
[56] Libertus, M. E., Odic, D., Feigenson, L., & Halberda, J.(2016). The precision of mapping between number words and the approximate number system predicts children's formal math abilities. Journal of Experimental Child Psychology, 150, 207-226. https://doi.org/10.1016/j.jecp.2016.06.003
doi: S0022-0965(16)30052-2URLpmid: 27348475
[57] Lyons, I. M., Bugden, S., Zheng, S., de Jesus, S.,& Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 54(3), 440-457. https://doi.org/10.1037/dev0000445
doi: 10.1037/dev0000445URLpmid: 29154653
[58] Matejko, A. A., & Ansari, D.(2016). Trajectories of symbolic and nonsymbolic magnitude processing in the first year of formal schooling. PlOS ONE, 11(3), e0149863. https://doi.org/10.1371/journal.pone.0149863
doi: 10.1371/journal.pone.0149863URL
[59] Matthews, P. G., & Chesney, D. L.(2015). Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cognitive Psychology, 78, 28-56. https://doi.org/10.1016/j.cogpsych.2015.01.006
doi: 10.1016/j.cogpsych.2015.01.006URL
[60] Matthews, P. G., Lewis, M. R., & Hubbard, E. M.(2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191-202. https://doi.org/10.1177/0956797615617799
doi: 10.1177/0956797615617799URL
[61] McCrink, K., & Wynn, K.(2007). Ratio abstraction by 6- month-old infants. Psychological Science, 18(8), 740-745. https://doi.org/10.1111/j.1467-9280.2007.01969.
URLpmid: 17680947
[62] McCrink, K., & Wynn, K.(2009). Operational momentum in large-number addition and subtraction by 9-month-olds. Journal of Experimental Child Psychology, 103(4), 400- 408. https://doi.org/10.1016/j.jecp.2009.01.013
doi: 10.1016/j.jecp.2009.01.013URLpmid: 19285683
[63] Mock, J., Huber, S., Bloechle, J., Bahnmueller, J., Moeller, K., & Klein, E.(2019). Processing symbolic and non- symbolic proportions: Domain-specific numerical and domain-general processes in intraparietal cortex. Brain Research, 1714, 133-146. https://doi.org/10.1016/j.brainres.2019.02.029
doi: 10.1016/j.brainres.2019.02.029URL
[64] Mock, J., Huber, S., Bloechle, J., Dietrich, J. F., Bahnmueller, J., Rennig, J., ... Moeller, K.(2018). Magnitude processing of symbolic and non-symbolic proportions: An fMRI study. Behavioral and Brain Functions, 14(1), 9. https://doi.org/10.1186/s12993-018-0141-z
doi: 10.1186/s12993-018-0141-zURL
[65] Mou, Y., Berteletti, I., & Hyde, D. C.(2018). What counts in preschool number knowledge? A Bayes factor analytic approach toward theoretical model development. Journal of Experimental Child Psychology, 166, 116-133. https://doi.org/10.1016/j.jecp.2017.07.016
doi: S0022-0965(16)30265-XURLpmid: 28888192
[66] Mou, Y., Li, Y. R., Hoard, M. K., Nugent, L. D., Chu, F. W., Rouder, J. N., & Geary, D. C.(2016). Developmental foundations of children's fraction magnitude knowledge. Cognitive Development, 39, 141-153. https://doi.org/10.1016/j.cogdev.2016.05.002
URLpmid: 27773965
[67] Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A.(2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67-84. https://doi: 10.1080/15248372.2014.996289
doi: 10.1080/15248372.2014.996289URL
[68] Mundy, E., & Gilmore, C. K.(2009). Children's mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490-502. https://doi.org/10.1016/j.jecp.2009.02.003
doi: 10.1016/j.jecp.2009.02.003URL
[69] Negen, J., & Sarnecka, B. W.(2015). Is there really a link between exact-number knowledge and approximate number system acuity in young children?. The British Journal of Developmental Psychology, 33(1), 92-105. https://doi.org/10.1111/bjdp.12071
doi: 10.1111/bjdp.2015.33.issue-1URL
[70] Nieder, A.(2016). The neuronal code for number. Nature Reviews Neuroscience, 17(6), 366-382. https://doi.org/10.1038/nrn.2016.40
doi: 10.1038/nrn.2016.40URL
[71] Ni, Y. J., & Zhou, Y.-D.(2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52. https://doi.org/10.1207/s15326985ep4001_3
doi: 10.1207/s15326985ep4001_3URL
[72] Park, Y., Binzak, J., Toomarian, E., Kalra, P., Matthews, P. G., & Hubbard, E.(2018, July) Developmental changes in children's processing of nonsymbolic ratio magnitudes: A cross-sectional fMRI study. Paper presented to 40th Annual Meetings of Cognitive Science Society, Madison, WI, USA.
[73] Park, Y., Viegut, A. A., & Matthews, P. G.(2020). More than the sum of its parts: Exploring the development of ratio magnitude versus simple magnitude perception. Developmental Science, e13043. https://doi.org/10.1111/ DESC.13043
[74] Piazza, M.(2010). Neurocognitive start-up tools for symbolic number representations. Trends in cognitive Sciences, 14(12), 542-551. https://doi.org/10.1016/j.tics.2010.09.008
doi: 10.1016/j.tics.2010.09.008URL
[75] Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B.(2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. Quarterly Journal of Experimental Psychology, 67(2), 271-280. https://doi.org/10.1080/17470218.2013.803581
doi: 10.1080/17470218.2013.803581URL
[76] Sasanguie, D., de Smedt, B., Defever, E., & Reynvoet, B..(2012). Association between basic numerical abilities and mathematics achievement. The British Journal of Developmental Psychology, 30(Pt 2), 344-357. https://doi.org/10.1111/j.2044-835X.2011.02048.
doi: 10.1111/bjdp.2012.30.issue-2URL
[77] Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S. S., Stricker, J., & de Smedt, B.(2017). Associations of non- symbolic and symbolic numerical magnitude processing with mathematical competence: A meta-analysis. Developmental Science, 20(3), https://doi.org/10.1111/desc.12372
[78] Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. L.(2013). Fractions: The new frontier for theories of numerical development. Trends in Cognitive Sciences, 17(1), 13-19. https://doi.org/10.1016/j.tics.2012.11.004
doi: 10.1016/j.tics.2012.11.004URLpmid: 23219805
[79] Siegler, R. S., & Pyke, A. A.(2013). Developmental and individual differences in understanding of fractions. Developmental Psychology, 49(10), 1994-2004. https://doi.org/10.1037/a0031200
doi: 10.1037/a0031200URLpmid: 23244401
[80] Siegler, R. S., Thompson, C. A., & Schneider, M.(2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273-296. https://doi.org/10.1016/j.cogpsych.2011.03.001
doi: 10.1016/j.cogpsych.2011.03.001URLpmid: 21569877
[81] Spelke, E. S.(2011). Natural number and natural geometry. In S. Dehaene, & E. M. Brannon (Eds.), Space, time and number in the brain (pp. 287-317)Elsevier. https://doi.org/10.1016/B978-0-12-385948-8.00018-9
[82] Spelke, E. S.(2017). Core knowledge, language, and number. Language Learning and Development, 13(2), 147-170. https://doi.org/10.1080/15475441.2016.1263572
doi: 10.1080/15475441.2016.1263572URL
[83] Starr, A., & Brannon, E. M.(2015). Evolutionary and developmental continuities in numerical cognition. In D. C. Geary, D. B. Berch, & K. M. Koepke (Eds.), Mathematical Cognition and Learning (Vol.1, pp. 123-144). Elsevier. https://doi.org/10.1016/B978-0-12-420133-0.00005-3
[84] Starr, A., Tomlinson, R. C., & Brannon, E. M.(2018). The acuity and manipulability of the ANS have separable influences on preschoolers' symbolic math achievement. Frontiers in Psychology, 9, 2554. https://doi.org/10.3389/fpsyg.2018.02554
doi: 10.3389/fpsyg.2018.02554URL
[85] Suárez-Pellicioni, M., & Booth, J. R.(2018). Fluency in symbolic arithmetic refines the approximate number system in parietal cortex. Human Brain Mapping, 39(10), 3956-3971. https://doi.org/10.1002/hbm.24223
doi: 10.1002/hbm.24223URLpmid: 30024084
[86] Szkudlarek, E., & Brannon, E. M.(2018). Approximate arithmetic training improves informal math performance in low achieving preschoolers. Frontiers in Psychology, 9, 606. https://doi.org/10.3389/fpsyg.2018.00606
doi: 10.3389/fpsyg.2018.00606URLpmid: 29867624
[87] Vallentin, D., & Nieder, A.(2008). Behavioral and prefrontal representation of spatial proportions in the monkey. Current Biology, 18(18), 1420-1425. https://doi.org/10.1016/j.cub.2008.08.042
doi: 10.1016/j.cub.2008.08.042URLpmid: 18804374
[88] vanMarle, K., Chu, F. W., Li, Y. R., & Geary, D. C.(2014). Acuity of the approximate number system and preschoolers' quantitative development. Developmental Science, 17(4), 492-505. https://doi.org/10.1111/desc.12143
doi: 10.1111/desc.2014.17.issue-4URL
[89] vanMarle, K., Mou, Y., & Seok, J. H.(2016). Analog magnitudes support large number ordinal judgments in infancy. Perception, 45(1-2), 32-43. https://doi.org/10.1177/0301006615602630
doi: 10.1177/0301006616671273URL
[90] Wang, J. J., Halberda, J., & Feigenson, L.(2020). Emergence of the link between the approximate number system and symbolic math ability. Child Development, Advance online publication. https://doi.org/10.1111/cdev.13454
[91] Xu, F., & Garcia, V.(2008). Intuitive statistics by 8-month- old infants. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5012-5015. https://doi.org/10.1073/pnas.0704450105
[92] Zhang, L., Wang, Q., Lin, C., Ding, C., & Zhou, X.(2013). An ERP study of the processing of common and decimal fractions: How different they are. PLOS ONE, 8(7), e69487. https://doi.org/10.1371/journal.pone.0069487
doi: 10.1371/journal.pone.0069487URL




[1]赵丽华, 杨运梅, 李晶. 儿童阅读与心理理论间的关系[J]. 心理科学进展, 2022, 30(1): 65-76.
[2]黄于飞, 史攀, 陈旭. 依恋对情绪调节过程的影响[J]. 心理科学进展, 2022, 30(1): 77-84.
[3]林爽, 刘文, 王薇薇, 张雪. 成熟对青春期型反社会行为的影响[J]. 心理科学进展, 2021, 29(6): 1042-1055.
[4]梁笑, 康静梅, 王丽娟. 个体近似数量系统与其数学能力之间的关系:发展研究的证据[J]. 心理科学进展, 2021, 29(5): 827-837.
[5]柴晓运, 林丹华. 化危为机:青少年学校转折期的过渡[J]. 心理科学进展, 2021, 29(5): 864-874.
[6]王学思, 李静雅, 王美芳. 父母婚姻冲突对儿童发展的影响及其机制[J]. 心理科学进展, 2021, 29(5): 875-884.
[7]陈浩彬, 汪凤炎. 老年人的智慧[J]. 心理科学进展, 2021, 29(5): 885-893.
[8]丁琳洁, 李旭, 尹述飞. 工作记忆中的积极效应:情绪效价与任务相关性的影响[J]. 心理科学进展, 2021, 29(4): 652-664.
[9]叶静, 张戌凡. 老年人心理韧性与幸福感的关系:一项元分析[J]. 心理科学进展, 2021, 29(2): 202-217.
[10]王祯. 儿童的性别刻板印象威胁及其干预[J]. 心理科学进展, 2021, 29(2): 276-285.
[11]屈国梁, 曹晓君. 同胞冲突及其解决:家庭子系统的影响[J]. 心理科学进展, 2021, 29(2): 286-295.
[12]赵鑫, 郑巧萍. 童年贫困与晚年认知老化:加速还是延缓?[J]. 心理科学进展, 2021, 29(1): 160-166.
[13]崔爽, 高亚茹, 王阳阳, 黄碧娟, 司继伟. 非正式学习环境中幼儿的自发数量聚焦[J]. 心理科学进展, 2020, 28(12): 2064-2075.
[14]刘慧晨, 陈坚. 婴儿的痛觉[J]. 心理科学进展, 2020, 28(10): 1723-1732.
[15]卢富荣, 宋煜静, 刘路培, 方选智, 张彩. 隔代教育对孙辈和祖辈的影响:双刃剑效应[J]. 心理科学进展, 2020, 28(10): 1733-1741.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5667
相关话题/心理 科学 分数 教育 基础