
1中山大学心理学系, 广州 510006
2浙江大学心理与行为科学系, 杭州 310028
收稿日期:
2019-12-13出版日期:
2020-10-15发布日期:
2020-08-24通讯作者:
潘俊豪E-mail:panjunh@mail.sysu.edu.cn基金资助:
* 国家自然科学基金项目(31871128);教育部人文社会科学研究规划基金项目(18YJA190013)Lasso regression: From explanation to prediction
ZHANG Lijin1, WEI Xiayan2, LU Jiaqi2, PAN Junhao1(
1Department of Psychology, Sun Yat-sen University, Guangzhou 510006, China
2Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China
Received:
2019-12-13Online:
2020-10-15Published:
2020-08-24Contact:
PAN Junhao E-mail:panjunh@mail.sysu.edu.cn摘要/Abstract
摘要: 传统的最小二乘回归法关注于对当前数据集的准确估计, 容易导致模型的过拟合, 影响模型结论的可重复性。随着方法学领域的发展, 涌现出的新兴统计工具可以弥补传统方法的局限, 从过度关注回归系数值的解释转向提升研究结果的预测能力也愈加成为心理学领域重要的发展趋势。Lasso方法通过在模型估计中引入惩罚项的方式, 可以获得更高的预测准确度和模型概化能力, 同时也可以有效地处理过拟合和多重共线性问题, 有助于心理学理论的构建和完善。
图/表 6

图1偏差-方差权衡


图1变量间相关图 注:红色系代表负相关, 蓝色系代表正相关, 颜色越深代表相关值越大。


图2十重交叉验证结果 注:图中两条竖线分别代表最小化MSE的λ值和λ + 1se值


图3惩罚项对系数的压缩结果

表1Lasso、OLS、Relaxed Lasso回归结果
系数估计值(p值) | |||
---|---|---|---|
预测变量 | OLS | Lasso | Relaxed Lasso |
age | -0.206(0.009)** | -(0.072) | - |
famrel | 0.36(0.001)** | -(0.699) | - |
freetime | 0.058(0.57) | -(0.913) | - |
gout | -0.014(0.891) | -(0.981) | - |
dalc | -0.108(0.448) | -(0.646) | - |
walc | 0.17(0.105) | -(0.294) | - |
health | 0.046(0.509) | -(0.899) | - |
absences | 0.042(0.001)** | -(0.089) | - |
G1 | 0.164(0.003)** | 0.057(0.005)** | 0.153(0.007)** |
G2 | 0.977(<0.001)*** | 0.903(<0.001)*** | 0.987(<0.001)*** |
R2 | 0.835 | - | 0.822 |
adjusted R2 | 0.831 | - | 0.821 |
Mean Square Error | 3.446 | - | 3.723 |
表1Lasso、OLS、Relaxed Lasso回归结果
系数估计值(p值) | |||
---|---|---|---|
预测变量 | OLS | Lasso | Relaxed Lasso |
age | -0.206(0.009)** | -(0.072) | - |
famrel | 0.36(0.001)** | -(0.699) | - |
freetime | 0.058(0.57) | -(0.913) | - |
gout | -0.014(0.891) | -(0.981) | - |
dalc | -0.108(0.448) | -(0.646) | - |
walc | 0.17(0.105) | -(0.294) | - |
health | 0.046(0.509) | -(0.899) | - |
absences | 0.042(0.001)** | -(0.089) | - |
G1 | 0.164(0.003)** | 0.057(0.005)** | 0.153(0.007)** |
G2 | 0.977(<0.001)*** | 0.903(<0.001)*** | 0.987(<0.001)*** |
R2 | 0.835 | - | 0.822 |
adjusted R2 | 0.831 | - | 0.821 |
Mean Square Error | 3.446 | - | 3.723 |
student <- read.table("mat_2.txt",sep="\t",header=FALSE) IV<-(student[,1:10]) IV1=scale(IV,FALSE,FALSE) ## 不对自变量进行标准化处理 ## 十重交叉验证 install.packages(‘glmnet’) library(glmnet) set.seed(1222) ## 设定随机数种子, 保证每次运行十重交叉验证的结果一样 Lambda=cv.glmnet(IV1,student[,11]) ## lasso回归结果 coef(Lambda, s=Lambda\$lambda.1se) ## 绘图 plot(Lambda) ## 横坐标为lambda, 纵坐标为均方误差MSE savePlot(filename = "lambda", type ="png", device = dev.cur(), restoreConsole = TRUE) RegCoef=glmnet(IV1,student[,11],family = "gaussian",alpha = 1) plot(RegCoef, xvar="lambda",ylim=c(-1.5,1.5), lwd=1.8 ) ## 横坐标为lambda, 纵坐标为系数估计值 abline(v=log(Lambda\$lambda.1se)) abline(v=log(Lambda\$lambda.min)) savePlot(filename = "loglambda", type ="png", device = dev.cur(), restoreConsole = TRUE) ## 采用covTest包计算p值 library('devtools') install_github('cran/covTest') ## coveTest 软件包目前无法从CRAN上下载, 因此采用devtools软件包从github上下载 library(covTest) IV<-student[,1:10] df=nrow(IV)-1 IV2=scale(IV,TRUE,TRUE)/sqrt(df) ## 标准化自变量 LarsCoef=lars(IV2,student[,11]) covTest(LarsCoef,IV2,student[,11]) ## 计算p值 |
student <- read.table("mat_2.txt",sep="\t",header=FALSE) IV<-(student[,1:10]) IV1=scale(IV,FALSE,FALSE) ## 不对自变量进行标准化处理 ## 十重交叉验证 install.packages(‘glmnet’) library(glmnet) set.seed(1222) ## 设定随机数种子, 保证每次运行十重交叉验证的结果一样 Lambda=cv.glmnet(IV1,student[,11]) ## lasso回归结果 coef(Lambda, s=Lambda\$lambda.1se) ## 绘图 plot(Lambda) ## 横坐标为lambda, 纵坐标为均方误差MSE savePlot(filename = "lambda", type ="png", device = dev.cur(), restoreConsole = TRUE) RegCoef=glmnet(IV1,student[,11],family = "gaussian",alpha = 1) plot(RegCoef, xvar="lambda",ylim=c(-1.5,1.5), lwd=1.8 ) ## 横坐标为lambda, 纵坐标为系数估计值 abline(v=log(Lambda\$lambda.1se)) abline(v=log(Lambda\$lambda.min)) savePlot(filename = "loglambda", type ="png", device = dev.cur(), restoreConsole = TRUE) ## 采用covTest包计算p值 library('devtools') install_github('cran/covTest') ## coveTest 软件包目前无法从CRAN上下载, 因此采用devtools软件包从github上下载 library(covTest) IV<-student[,1:10] df=nrow(IV)-1 IV2=scale(IV,TRUE,TRUE)/sqrt(df) ## 标准化自变量 LarsCoef=lars(IV2,student[,11]) covTest(LarsCoef,IV2,student[,11]) ## 计算p值 |
参考文献 91
[1] | 胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题: 从危机到契机. 心理科学进展, 24(9), 1504-1518. doi: 10.3724/SP.J.1042.2016.01504URL |
[2] | 刘建伟, 崔立鹏, 刘泽宇, 罗雄麟. (2015). 正则化稀疏模型. 计算机学报, 38(7), 1307-1325. |
[3] | 彭运石, 李璜. (2011, 十月). 论西方心理学发展中的说明与理解之争. 文章展示于第十四届全国心理学学术会议, 北京. |
[4] | 邱怡轩. 统计之都访谈第 9 期:Hadley Wickham. 2019-8-30 取自 https://mp.weixin.qq.com/s/IPejDdwIFIx93UxsRwtQ1Q |
[5] | 吴喜之. (2019). 从模型驱动的集体推断到数据驱动的个体预测. 第12届中国R语言会议, 北京. |
[6] | 谢宇. (2010). 回归分析. 北京: 社会科学文献出版社. |
[7] | 许树红, 王慧, 孙红卫, 王彤. (2017). 基于lasso类方法的Ⅰ类错误的控制. 中国卫生统计, 4, 660-667. |
[8] | 张凤莲. (2010). 多元线性回归中多重共线性问题的解决办法探讨(硕士学位论文). 华南理工大学, 广州. |
[9] | 张厚粲, 徐建平. (2015). 现代心理与教育统计学. 北京: 北京师范大学出版社. |
[10] | 张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. (2019). 贝叶斯结构方程模型及其研究现状. 心理科学进展, 27(11), 1812-1825. |
[11] | Ayers, K. L., & Cordell, H. J. (2010). SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genetic Epidemiology, 34(8), 879-891. doi: 10.1002/gepi.20543URLpmid: 21104890 |
[12] | Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66, 411-421. doi: 10.1097/01.psy.0000127692.23278.a9URLpmid: 15184705 |
[13] | Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B., Wagenmakers, E. J., Berk, R., & Johnson, V. E. (2018). Redefine statistical significance. Nature Human Behaviour, 2, 6-10. doi: 10.1038/s41562-017-0189-zURLpmid: 30980045 |
[14] | Candes, E., & Tao, T. (2007). The dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35(6), 2313-2351. doi: 10.1214/009053606000001523URL |
[15] | Chartterjee, S., & Hadi, A. S. (2006). Regression by Example: 4th Edition. Hoboken: John Wiley and Sons. |
[16] | Chartterjee, S., Hadi, A. S., & Price, B. (2000). Regression by Example: 3rd Edition. Hoboken: John Wiley and Sons. |
[17] | Cho, S., Kim, H., Oh, S., Kim, K., & Park, T. (2009). Elastic-net regularization approaches for genome wide association studies of rheumatoid arthritis. BioMed Central Procedings. 3(Suppl.7), S7-S25. |
[18] | Cho, S., Kim, K., Kim, Y. J., Lee, J. K., Cho, Y. S., Lee, J. Y., … Park, T. (2010). Joint identification of multiple genetic variants via elastic net variable selection in a genome-wide association analysis. American Journal of Human Genetics, 74(5), 416-428. |
[19] | Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum. |
[20] | Cortez, P., & Silva, A. (2008, April). Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds. Proceedings of 5th FUture BUsiness TEChnology Conference(pp. 5-12). Porto, Portugal. |
[21] | Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mottus, R., Waldorp, L. J., & Cramer, A. O. J. (2015a). State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54(1), 13-29. doi: 10.1016/j.jrp.2014.07.003URL |
[22] | Costantini, G., Richetin, J., Borsboom, D., Fried, E., Rhemtulla, M., & Perugini, M. (2015b). Development of indirect measures of conscientiousness: Combining a facets approach and network analysis. European Journal of Personality, 29(5), 548-567. doi: 10.1002/per.v29.5URL |
[23] | Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 68-78. doi: 10.1016/j.paid.2017.06.011URL |
[24] | D’Angelo, G. M., Rao, D., & Gu, C. C. (2009). Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies. BioMed Central Procedings, 3(Suppl.7), S7-S62. |
[25] | Di Pierro, R., Costantini, G., Benzi, I. M. A., Madeddu, F., & Preti, E. (2018). Grandiose and entitled, but still fragile: A network analysis of pathological narcissistic traits. Personality and Individual Differences, 140, 15-20. doi: 10.1016/j.paid.2018.04.003URL |
[26] | Demjaha, A., Lappin, J. M., Stahl, D., Patel, M. X., Maccabe, J. H., & Howes, O. D., … Murray, R. M. (2017). Antipsychotic treatment resistance in first-episode psychosis: Prevalence, subtypes and predictors. Psychological Medicine, 47(11), 1-9. doi: 10.1017/S0033291716002075URL |
[27] | Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265-282. doi: 10.1111/bmsp.1992.45.issue-2URL |
[28] | Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32, 407-499. doi: 10.1214/009053604000000067URL |
[29] | Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195-212. doi: 10.3758/s13428-017-0862-1URLpmid: 28342071 |
[30] | Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualization of relationships in psychometric data. Journal of Statistical Software, 48(4), 1018. |
[31] | Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360. doi: 10.1198/016214501753382273URL |
[32] | Fan, J., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 32(3), 928-961. doi: 10.1214/009053604000000256URL |
[33] | Fomby, T. B., Hill, R. C., & Johnson, S. R. (1984). Advanced Econometric Methods. New York, Berlin, Heidelberg, London, Paris, Tokyo: Springer-Verlag. |
[34] | Fontanarosa, J. B., & Dai, Y. (2011). Using lasso regression to detect predictive aggregate effects in genetic studies. BioMed Central Procedings, 5(Suppl.9), 69-74. |
[35] | Frank, L. E., & Heiser, W. J. (2011). Feature selection in feature network models: Finding predictive subsets of features with the positive lasso. British Journal of Mathematical & Statistical Psychology, 61(1), 1-27. |
[36] | Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22. URLpmid: 20808728 |
[37] | Friedman, J., Hastie, T., & Tibshirani, R. (2019). Bayesian Lasso/NG, Horseshoe, and Ridge Regression. Retrieved August 30, 2019, from https://www.rdocumentation.org/packages/monomvn/versions/1.9-10/topics/blasso |
[38] | Giordano, C., & Waller, N, G. (2019). A neglected aspect of the reproducibility crisis: Factor analytic monte carlo studies. Multivariate Behavioral Research, 55(1), 152. doi: 10.1080/00273171.2019.1697864URL |
[39] | Hans, C. (2009). Bayesian Lasso regression. Biometrika, 96(4), 835-845. doi: 10.1093/biomet/asp047URL |
[40] | Harrell, F. E. Jr. (2015). Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis, 2nd. New York: Springer-Verlag. |
[41] | Hartmann, A., Zeeck, A., & Barrett, M. S. (2010). Interpersonal problems in eating disorders. International Journal of Eating Disorders, 43(7), 619-627. URLpmid: 19718674 |
[42] | Helwig, N. E. (2017). Adding bias to reduce variance in psychological results: A tutorial on penalized regression. The Quantitative Methods for Psychology, 13(1), 1-19. doi: 10.20982/tqmp.13.1.p001URL |
[43] | Hesterberg, T., Choi, N. H., Meier, L., & Fraley, C. (2008). Least angle and $\ell $ 1 penalized regression: A review. Statistics Surveys, 2, 61-93. doi: 10.1214/08-SS035URL |
[44] | Hirose, K. (2019). Retrieved August 19, 2019, from https://www.rdocumentation.org/packages/msgps/versions/1.3.1 |
[45] | Jacobucci, R. (2019). regsem: regularized structural equation models. R package version 1.3.9. Retrieved June 01, 2019, from https://cran.r-project.org/web/packages/regsem/index.html |
[46] | Jacobucci, R., Brandmaier, A., & Kievit, R. (2019). A practical guide to variable selection in structural equation models with regularized MIMIC models. Advances in Methods and Practices in Psychological Science, 2(1), 55-76. doi: 10.1177/2515245919826527URLpmid: 31463424 |
[47] | Johnson, M., & Sinharay, S. (2011). Remarks from the new editors. Journal of Educational and Behavioral Statistics, 36(1), 3-5. doi: 10.3102/1076998610387267URL |
[48] | Kohannim, O., Hibar, D. P., Stein, J. L., Jahanshad, N., Hua, X., & Rajagopalan, P., … Thompson, P. M. (2012). Discovery and replication of gene influences on brain structure using lasso regression. Frontiers in Neuroscience, 6, 1-13. doi: 10.3389/fnins.2012.00001URLpmid: 22294978 |
[49] | Kooperberg, C., LeBlanc, M., & Obenchain, V. (2010). Risk prediction using genome-wide association studies. Genetic Epidemiology, 34(7), 643-652. doi: 10.1002/gepi.20509URLpmid: 20842684 |
[50] | Kraemer, N., & Schaefer, J. (2019). parcor: Regularized estimation of partial correlation matrices. Retrieved September 04, from https://www.rdocumentation.org/packages/parcor/versions/0.2-6 |
[51] | Kyung, M., Gill, J., Ghosh, M., & Casella, G. (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5(2), 369-411. doi: 10.1214/10-BA607URL |
[52] | Lee, T. F., Chao, P. J., Ting, H. M., Chang, L., Huang, Y. J., Wu, J. M., … Leung, S. W. (2014). Using multivariate regression model with Least Absolute Shrinkage and Selection Operator (LASSO) to predict the incidence of xerostomia after intensity-modulated radiotherapy for head and neck cancer. PLoS ONE, 9(2), e89700. doi: 10.1371/journal.pone.0089700URLpmid: 24586971 |
[53] | Li, J., Das, K., Fu, G., Li, R., & Wu, R. (2011). The Bayesian lasso for genome-wide association studies. Bioinformatics, 27(4), 516-523. doi: 10.1093/bioinformatics/btq688URL |
[54] | Lin, Y., Zhang, M., Wang, L., Pungpapong, V., Fleet, J. C., & Zhang, D. (2009). Simultaneous genome-wide association studies of anti-cyclic citrullinated peptide in rheumatoid arthritis using penalized orthogonal-components regression. BioMed Central Procedings, 3(Suppl.20), S17-S20. |
[55] | Lippke, S., & Ziegelmann, J. P. (2010). Theory-based health behavior change: Developing, testing, and applying theories for evidence-based interventions. Applied Psychology, 57(4), 698-716. doi: 10.1111/apps.2008.57.issue-4URL |
[56] | Lockhart, R., Taylor, J., Tibshirani, R. J., & Tibshirani, R. (2014). A significance test for the lasso. The Annals of Statistics, 42, 413-468. doi: 10.1214/13-AOS1175URLpmid: 25574062 |
[57] | Maddala, G. S. (2002). Introduction to Econometrics: 3rd Edition. John Willey and Sons Limited, England. |
[58] | Malo, N., Libiger, O., & Schork, N. J. (2008). Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. American Journal of Human Genetics, 82(2), 375-385. doi: 10.1016/j.ajhg.2007.10.012URLpmid: 18252218 |
[59] | Marcus, D. K., Preszler, J., & Zeigler-Hill, V. (2017). A network of dark personality traits: What lies at the heart of darkness? Journal of Research in Personality, 73, 56-62. doi: 10.1016/j.jrp.2017.11.003URL |
[60] | Mcneish, D. M. (2015). Using Lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences. Multivariate Behavioral Research, 50(5), 471-484. doi: 10.1080/00273171.2015.1036965URLpmid: 26610247 |
[61] | Meinshausen, N. (2007). Relaxed lasso. Computational Statistics and Data Analysis, 52(1), 374-393. doi: 10.1016/j.csda.2006.12.019URL |
[62] | Meinshausen, N. (2019). Relaxed Lasso. Retrieved June 01, 2019, from https://www.rdocumentation.org/packages/relaxo/versions/0.1-2 |
[63] | Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335. doi: 10.1037/a0026802URLpmid: 22962886 |
[64] | Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus User’s Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén. |
[65] | Nguyen, T., Duong, T., Venkatesh, S., & Phung, D. (2015). Autism blogs: Expressed emotion, language styles and concerns in personal and community settings. IEEE Transactions on Affective Computing, 6(3), 312-323. doi: 10.1109/TAFFC.2015.2400912URL |
[66] | Nuzzo, R. (2014). Scientific method: Statistical errors. Nature, 506(7487), 150-152. URLpmid: 24522584 |
[67] | Obuchi, T., & Kabashima, Y. (2016). Cross validation in lasso and its acceleration. Journal of Statistical Mechanics: Theory and Experiment, 2016(5), 1-37. |
[68] | Pan, J. H., Ip, E. H., & Dubé, L. (2017). An alternative to post hoc model modification in confirmatory factor analysis: The Bayesian lasso. Psychological Methods, 22(4), 687-704. doi: 10.1037/met0000112URLpmid: 29265848 |
[69] | Pan, J. H., Zhang, L.J., & Ip, E. H. (2019). blcfa: Bayesian Lasso Confirmatory Factor Analysis. Retrieved August 30, 2019, from https://github.com/zhanglj37/blcfa |
[70] | Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103(482), 681-686. doi: 10.1198/016214508000000337URL |
[71] | Rao, C. R. (1976). Estimation of parameters in a linear model. The Annals of Statistics, 4(6), 1023-1037. doi: 10.1214/aos/1176343639URL |
[72] | Richetin, J., Preti, E., Costantini, G., & De Panfilis, C. (2017). The centrality of affective instability and identity in Borderline Personality Disorder: Evidence from network analysis. PLoS One, 12(10), 1-14. |
[73] | Rosenberg, M. D., Casey, B. J., & Holmes, A. J. (2018). Prediction complements explanation in understanding the developing brain. Nature Communications, 9(1), 1-13. doi: 10.1038/s41467-017-02088-wURLpmid: 29317637 |
[74] | Scheidt, C. E., Hasenburg, A., Kunze, M., Waller, E., Pfeifer, R., Zimmermann, P., … Waller, N. (2012). Are individual differences of attachment predicting bereavement outcome after perinatal loss? A prospective cohort study. Journal of Psychosomatic Research, 73(5), 375-382. doi: 10.1016/j.jpsychores.2012.08.017URLpmid: 23062812 |
[75] | Schmid, N. S., Taylor, K. I., Foldi, N. S., Berres, M., & Monsch, A. U. (2013). Neuropsychological signs of Alzheimer’s disease 8 years prior to diagnosis. Journal of Alzheimer’s Disease, 34(2), 537-546. |
[76] | Serang, S., Jacobucci, R., Brimhall, K. C., & Grimm, K. J. (2017). Exploratory mediation analysis via regularization. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 733-744. doi: 10.1080/10705511.2017.1311775URL |
[77] | Shi, G., Boerwinkle, E., Morrison, A. C., Gu, C. C., Chakravarti, A., & Rao, D. C. (2011). Mining gold dust under the genome wide significance level: A two-stage approach to analysis of GWAS. Genetic Epidemiology, 35(2), 111-118. URLpmid: 21254218 |
[78] | Spellman, B. A. (2015). A short (personal) future history of revolution 2.0. Perspectives on Psychological Science, 10(6), 886-899 URLpmid: 26581743 |
[79] | Thompson, B. (2001). Significance, effect sizes, stepwise methods, and other issues: Strong arguments move the field. The Journal of Experimental Education, 70(1), 80-93. doi: 10.1080/00220970109599499URL |
[80] | Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267-288. |
[81] | Tibshirani, R., Friedman, J., Hastie, T., Narasimhan, B., Simon, N., & Qian, J. (2019). glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. Retrieved May 18, 2019, from https://www.rdocumentation.org/packages/glmnet/versions/2.0-18 |
[82] | Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistic Society. 67(1), 91-108. |
[83] | van de Schoot, R., Winter, S. D., Ryan, O., Zondervan- Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. Psychological Methods, 22(2), 217-239. URLpmid: 28594224 |
[84] | Waldmann, P., Mészáros, G., Gredler, B., Fuerst, C., & S?lkner, J. (2013). Corrigendum: evaluation of the lasso and the elastic net in genome-wide association studies. Frontiers in Genetics, 4(4), 270. |
[85] | Wilkinson, L. (1979). Tests of significance in stepwise regression. Psychological Bulletin, 86(1), 168-174. doi: 10.1037/0033-2909.86.1.168URL |
[86] | Wu, T. T., & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. The Annals of Applied Statistics, 2(1), 224-244. doi: 10.1214/07-AOAS147URL |
[87] | Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science A Journal of the Association for Psychological Science, 12(6), 1100-1122. URLpmid: 28841086 |
[88] | Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49-67. doi: 10.1111/rssb.2006.68.issue-1URL |
[89] | Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of American Statistical Association, 101(476), 1418-1429. doi: 10.1198/016214506000000735URL |
[90] | Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistic Society, 67(1), 301-320. |
[91] | Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom” of the Lasso. The Annals of Statistics, 35(5), 2173-2192. doi: 10.1214/009053607000000127URL |
相关文章 15
[1] | 何姣, 白宝玉, 夏勉. 心理治疗中的脱落[J]. 心理科学进展, 2020, 28(7): 1187-1198. |
[2] | 方俊燕, 张敏强. 元回归中效应量的最小个数需求:基于统计功效和估计精度[J]. 心理科学进展, 2020, 28(4): 673-680. |
[3] | 董健宇, 韦文棋, 吴珂, 妮娜, 王粲霏, 付莹, 彭歆. 机器学习在抑郁症领域的应用[J]. 心理科学进展, 2020, 28(2): 266-274. |
[4] | 孙琳, 段涛, 陈宁. 情绪预测偏差的成因及干预[J]. 心理科学进展, 2020, 28(12): 2018-2026. |
[5] | 吕雪靖, 侯欣. 听觉预测编码:对声音重复和变化的神经反应[J]. 心理科学进展, 2019, 27(12): 1996-2006. |
[6] | 李丹阳, 李鹏, 李红. 反馈负波及其近10年理论解释[J]. 心理科学进展, 2018, 26(9): 1642-1650. |
[7] | 张馨月, 余 林. 阿尔茨海默病的早期阶段:主观认知障碍?[J]. 心理科学进展, 2018, 26(3): 488-495. |
[8] | 刘玲, 罗欢. 错觉形状知觉的双阶段生成加工:MEG研究[J]. 心理科学进展, 2017, 25(suppl.): 1-1. |
[9] | 李琳, 刘雯, 隋雪. 句法加工中的预测现象及实验证据[J]. 心理科学进展, 2017, 25(7): 1122-1131. |
[10] | 尹军; 徐昊骙; 丁晓伟; 梁君英; 水仁德; 沈模卫. 来自社会层面的限制:观察者对协作关系中智能体的位置预测更为精确[J]. 心理科学进展, 2016, 24(Suppl.): 51-. |
[11] | 罗寒冰;徐富明;郭永玉;郑秋强;李彬;张慧. 情感预测中的聚焦错觉[J]. 心理科学进展, 2013, 21(8): 1482-1492. |
[12] | 徐长江; 梁崇理; 刘争光. 结构化面试预测效度的贡献成分分析[J]. 心理科学进展, 2013, 21(5): 940-950. |
[13] | 张珊珊;张建新;周明洁. 二次响应面回归方法及其在个体-环境匹配研究中的使用[J]. 心理科学进展, 2012, 20(6): 825-833. |
[14] | 陈婷婷;蒋长好;丁锦红. 视觉运动追踪的加工过程[J]. 心理科学进展, 2012, 20(3): 354-364. |
[15] | 祁可可;冯敏;孟肖路;李勇辉;朱宁;隋南. 树鼩的社会挫败抑郁模型[J]. 心理科学进展, 2012, 20(11): 1787-1793. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5198