删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

计算模型在道德认知研究中的应用

本站小编 Free考研考试/2022-01-01

张银花, 李红, 吴寅()
深圳大学师范学院心理学院; 深圳市情绪与社会认知科学重点实验室, 深圳 518060
收稿日期:2019-04-22出版日期:2020-07-15发布日期:2020-05-21
通讯作者:吴寅E-mail:yinwu0407@gmail.com

基金资助:* 国家自然科学基金(31872784);国家自然科学基金(31600923);广东省教育厅教育科学规划青年项目(2018GXJK150);深圳大学新教师科研启动项目

The application of computational modelling in the studies of moral cognition

ZHANG Yinhua, LI Hong, WU Yin()
Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen 518060, China
Received:2019-04-22Online:2020-07-15Published:2020-05-21
Contact:WU Yin E-mail:yinwu0407@gmail.com






摘要/Abstract


摘要: 道德认知关注道德心理背后的信息加工。近年来, 研究者开始将计算模型应用于道德认知研究, 以探索道德认知如何在大脑中实现。但目前研究者对道德认知进行计算建模的研究处于起步阶段。计算模型(漂移扩散模型、效用模型、强化学习模型和分层高斯过筛器模型)在道德认知行为和生理研究上的运用量化了道德决策、道德判断和道德推理背后的认知过程和神经机制。此外, 这一新进展对理解反社会行为和精神障碍等有所助益。最后, 计算建模有待完善, 未来研究需要关注其潜在的问题。



图1分层高斯过筛器的更新方程与Rescorla-Wagner模型结构的对比。${{\mu }^{(k-1)}}$是前一后验概率; \[{{\mu }^{(k)}}\]是当前新的后验概率(具体参数参见Mathys et al., 2011)。
图1分层高斯过筛器的更新方程与Rescorla-Wagner模型结构的对比。${{\mu }^{(k-1)}}$是前一后验概率; \[{{\mu }^{(k)}}\]是当前新的后验概率(具体参数参见Mathys et al., 2011)。


表1计算模型在道德认知研究中的应用总结
模型 道德决策 道德判断 道德推理
漂移扩散模型 Chen & Krajbich, 2018
Hutcherson et al., 2015
Krajbich et al., 2015
效用模型 Crockett et al., 2014, 2015, 2017
Gao et al., 2018
Hu et al., 2018
Sáez et al., 2015
Strombach et al., 2015
Yu et al., 2019
Zhu et al., 2014
Yu et al., 2019 Yu et al., 2019
强化学习模型 Yu et al., 2019 Hackel, et al., 2015
Hackel & Zaki, 2018
Shenhav & Greene, 2010, 2014
Yu et al., 2019
Hackel et al., 2015
Joiner et al., 2017
Suzuki et al., 2012
Yu et al., 2019
分层高斯过筛器模型 Siegel et al., 2018, 2019

表1计算模型在道德认知研究中的应用总结
模型 道德决策 道德判断 道德推理
漂移扩散模型 Chen & Krajbich, 2018
Hutcherson et al., 2015
Krajbich et al., 2015
效用模型 Crockett et al., 2014, 2015, 2017
Gao et al., 2018
Hu et al., 2018
Sáez et al., 2015
Strombach et al., 2015
Yu et al., 2019
Zhu et al., 2014
Yu et al., 2019 Yu et al., 2019
强化学习模型 Yu et al., 2019 Hackel, et al., 2015
Hackel & Zaki, 2018
Shenhav & Greene, 2010, 2014
Yu et al., 2019
Hackel et al., 2015
Joiner et al., 2017
Suzuki et al., 2012
Yu et al., 2019
分层高斯过筛器模型 Siegel et al., 2018, 2019







[1] 参考消息. 中国“基因编辑婴儿”震惊世界!等待贺建奎的将是——. 2019-01-23取自https://cn.bing.com/search?q=参考消息.
[2] 刘媛媛, 丁一, 彭凯平, 胡传鹏. (2019). 多项式加工树模型在社会心理学中的应用. 心理科学, 42(2), 422-429.
[3] Ai, S. Z., Yin, Y. L., Chen, Y., Wang, C., Sun, Y., Tang, X. D., ... Shi, J. (2018). Promoting subjective preferences in simple economic choices during nap. eLife, 7, e40583.
doi: 10.7554/eLife.40583URLpmid: 30520732
[4] Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550-562.
URLpmid: 20188659
[5] Behrens, T. E. J., Hunt, L. T., & Rushworth, M. F. S . (2019). The computation of social behavior. Science, 324(5931), 1160-1164.
doi: 10.1126/science.1169694URLpmid: 19478175
[6] Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S . (2007). Learning the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214-1221.
doi: 10.1038/nn1954URLpmid: 17676057
[7] Beyens, U., Yu, H. B., Han, T., Zhang, L., & Zhou, X. L. (2015). The strength of a remorseful heart: Psychological and neural basis of how apology emolliates reactive aggression and promotes forgiveness. Frontiers in Psychology, 6(1611), 1-16.
[8] Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organization, 55(4), 467-484.
[9] Brown, J. W. (2014). The tale of the neuroscientists and the computer: Why mechanistic theory matters. Frontiers in neuroscience, 8(349), 1-3.
[10] Brown, V. M., Zhu, L. S., Wang, J. M., Frueh, B. C., King- Casas, B., & Chiu, P. H. (2018). Associability-modulated loss learning is increased in posttraumatic stress disorder. eLife, 7, e30150.
doi: 10.7554/eLife.30150URLpmid: 29313489
[11] Cameron, C. D., Payne, B. K., Sinnott-Armstrong, W., Scheffer, J. A., & Inzlicht, M. (2017). Implicit moral evaluations: A multinomial modeling approach. Cognition, 158, 224-241.
URLpmid: 27865113
[12] Charpentier, C. J., & O’Doherty, J. P. (2018). The application of computational models to social neuroscience: Promises and pitfalls. Social Neuroscience, 13(6), 637-647.
URLpmid: 30173633
[13] Chen, C., Takahashi, T., Nakagawa, S., Inoue, T., & Kusumi, I. (2015). Reinforcement learning in depression: A review of computational research. Neuroscience & Biobehavioral Reviews, 55, 247-267.
[14] Chen, F., & Krajbich, I. (2018). Biased sequential sampling underlies the effects of time pressure and delay in social decision making. Nature Communications, 9(1), 3557.
URLpmid: 30177719
[15] Cohn, A., Fehr, E., & Maréchal, M. A. (2014). Business culture and dishonesty in the banking industry. Nature, 516(7529), 86-89.
[16] Crockett, M. J., Clark, L., Hauser, M. D., & Robbins, T. W. (2010). Serotonin selectively influences moral judgment and behavior through effects on harm aversion. Proceedings of the National Academy of Sciences, 107(40), 17433-17438.
[17] Crockett, M. J., Kurth-Nelson, Z., Siegel, J. Z., Dayan, P., & Dolan, R. J. (2014). Harm to others outweighs harm to self in moral decision making. Proceedings of the National Academy of Sciences, 111(48), 17320-17325.
[18] Crockett, M. J., Siegel, J. Z., Kurth-Nelson, Z., Dayan, P., & Dolan, R. J. (2017). Moral transgressions corrupt neural representations of value. Nature neuroscience, 20(6), 879-885.
[19] Crockett, M. J., Siegel, J. Z., Kurth-Nelson, Z., Ousdal, O. T., Story, G., Frieband, C., ... Dolan, R. J. (2015). Dissociable effects of serotonin and dopamine on the valuation of harm in moral decision making. Current Biology, 25(14), 1852-1859.
URLpmid: 26144968
[20] Debreu, G. (1954). Representation of a preference ordering by a numerical function. Decision Processes, 3, 159-165.
[21] Eikemo, M., Biele, G., Willoch, F., Thomsen, L., & Leknes, S. (2017). Opioid modulation of value-based decision- making in healthy humans. Neuropsychopharmacology, 42(9), 1833-1840.
URLpmid: 28294136
[22] Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M., & Fehr, E. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463(7279), 356-359.
[23] Elqayam, S., Wilkinson, M. R., Thompson, V. A., Over, D. E., & Evans, J. S. B . (2017). Utilitarian moral judgment exclusively coheres with inference from is to ought. Frontiers in Psychology, 8, 1042.
[24] Engelmann, J. B., & Fehr, E. (2016). The slippery slope of dishonesty. Nature Neuroscience, 19(12), 1543-1544.
doi: 10.1038/nn.4441URLpmid: 27898084
[25] Feldmanhall, O., Dunsmoor, J. E., Tompary, A., Hunter, L. E., Todorov, A., & Phelps, E. A. (2018). Stimulus generalization as a mechanism for learning to trust. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1690-E1697.
[26] Feldmanhall, O., Otto, A. R., & Phelps, E. A. (2018). Learning moral values: Another's desire to punish enhances one's own punitive behavior. Journal of Experimental Psychology: General, 147(8), 1211-1224.
[27] G?chter, S., & Schulz, J. F. (2016). Intrinsic honesty and the prevalence of rule violations across societies. Nature, 531(7595), 496-499.
[28] Gamer, M., Rill, H. G., Vossel, G., & G?dert, H. W. (2006). Psychophysiological and vocal measures in the detection of guilty knowledge. International Journal of Psychophysiology, 60(1), 76-87.
URLpmid: 16005091
[29] Gao, X. X., Yu, H. B., Sáez, I., Blue, P. R., Zhu, L. S., Hsu, M., & Zhou, X. L. (2018). Distinguishing neural correlates of context-dependent advantageous-and disadvantageous- inequity aversion. Proceedings of the National Academy of Sciences, 115(33), E7680-7689.
[30] Garon, M., Lavallée, M. M., Estay, E. V., & Beauchamp, M. H. (2018). Visual encoding of social cues predicts sociomoral reasoning. PloS One, 13(7), e0201099.
[31] Garrett, N., Lazzaro, S. C., Ariely, D., & Sharot, T. (2016). The brain adapts to dishonesty. Nature Neuroscience, 19(12), 1727-1732.
[32] Gawronski, B., Conway, P., Armstrong, J., Friesdorf, R., & Hütter, M. (2018). Effects of Incidental emotions on moral dilemma judgments: An analysis using the CNI model. Emotion, 18(7), 989-1008.
URLpmid: 29389208
[33] Gershman, S. J., & Niv, Y. (2010). Learning latent structure: Carving nature at its joints. Current Opinion in Neurobiology, 20(2), 251-256.
URLpmid: 20227271
[34] Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535-574.
URLpmid: 17600525
[35] Gray, J. (1987). The economic approach to human behavior: Its prospects and limitations. In Radnitzky, G., Bernholz, P.(Eds.), The economic method applied outside the field of economics
[36] Greene, J. D. (2007). Why are vmPFC patients more utilitarian? A dual-process theory of moral judgment explains. Trends in Cognitive Sciences, 11(8), 322-323.
[37] Greene, J. (2014). Moral tribes: Emotion, reason, and the gap between us and them. Penguin.
[38] Greene, J. D., & Paxton, J. M. (2009). Patterns of neural activity associated with honest and dishonest moral decisions. Proceedings of the National Academy of Sciences, 106(30), 12506-12511.
[39] Hackel, L. M., Doll, B. B., & Amodio, D. M. (2015). Instrumental learning of traits versus rewards: Dissociable neural correlates and effects on choice. Nature Neuroscience, 18(9), 1233-1235.
URLpmid: 25064850
[40] Hackel, L. M., & Zaki, J. (2018). Propagation of economic inequality through reciprocity and reputation. Psychological science, 29(4), 604-613.
URLpmid: 29474134
[41] Hill, C. A., Suzuki, S., Polania, R., Moisa, M., O’Doherty, J. P., & Ruff, C. C. (2017). A causal account of the brain network computations underlying strategic social behavior. Nature Neuroscience, 20(8), 1142-1149.
URLpmid: 28692061
[42] Hu, Y., He, L. S., Zhang, L., W?lk, T., Dreher, J.-C., & Weber, B. (2018). Spreading inequality: Neural computations underlying paying-it-forward reciprocity. Social Cognitive and Affective Neuroscience, 13(6), 578-589.
[43] Hutcherson, C. A., Bushong, B., & Rangel, A. (2015). A neurocomputational model of altruistic choice and its implications. Neuron, 87(2), 451-462.
URLpmid: 26182424
[44] Jiang, J. F., Summerfield, C., & Egner, T. (2016). Visual prediction error spreads across object features in human visual cortex. The Journal of Neuroscience, 36(50), 12746-12763.
doi: 10.1523/JNEUROSCI.1546-16.2016URLpmid: 27810936
[45] Joiner, J., Piva, M., Turrin, C., & Chang, S. W. C . (2017). Social learning through prediction error in the brain. npj Science of Learning, 2(1), 8, 1-9.
[46] Johnson, D. D. P., Blumstein, D. T., Fowler, J. H., & Haselton, M. G. (2013). The evolution of error: Error management, cognitive constraints, and adaptive decision-making biases. Trends in Ecology & Evolution, 28(8), 474-481.
[47] Jordan, J. J., Sommers, R., Bloom, P., & Rand, D. G. (2017). Why do we hate hypocrites? Evidence for a theory of false signaling. Psychological Science, 28(3), 356-368.
doi: 10.1177/0956797616685771URLpmid: 28107103
[48] Kamm, F. M.(2015). The trolley problem mysteries. Oxford University Press.
[49] Khalvati, K., Park, S. A., Mirbagheri, S., Philippe, R., Sestito, M., Dreher, J. C., & Rao, R. P. (2019). Modeling other minds: Bayesian inference explains human choices in group decision-making. Science Advances, 5(11), eaax8783
URLpmid: 31807706
[50] Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908-911.
URLpmid: 17377536
[51] Konovalov, A., Hu, J., & Ruff, C. C. (2018). Neurocomputational approaches to social behavior. Current Opinion in Psychology, 24, 41-47.
doi: 10.1016/j.copsyc.2018.04.009URLpmid: 29738891
[52] Konovalov, A., & Krajbich, I. (2019). Revealed indifference: Using response times to infer preferences. Judgment and Decision Making, 14(4), 381-394.
[53] Krajbich, I., Armel, C., & Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 1292-1298.
[54] Krajbich, I., Hare, T., Bartling, B., Morishima, Y., & Fehr, E. (2015). A common mechanism underlying food choice and social decisions. PLoS Computational Biology, 11(10), e1004371.
doi: 10.1371/journal.pcbi.1004371URLpmid: 26460812
[55] Lee, M. D., Criss, A. H., Devezer, B., Donkin, C., Etz, A., Leite, F. P., ... Vandekerckhove, J. (2019). Robust modeling in cognitive science. Computational Brain & Behavior, 2, 141-153.
[56] Lerche, V., & Voss, A. (2019). Experimental validation of the diffusion model based on a slow response time paradigm. Psychological Research, 83(6), 1194-1209.
doi: 10.1007/s00426-017-0945-8URLpmid: 29224184
[57] Levine, E. E., Barasch, A., Rand, D. G., Berman, J. Z., & Small, D. A. (2018). Signaling emotion and reason in cooperation. Journal of Experiment Psychology: General, 147(5), 702-719.
[58] Liu, Y., Li, S., Lin, W., Li, W., Yan, X., Wang, X., ... Ma, Y. (2019). Oxytocin modulates social value representations in the amygdala. Nature Neuroscience, 22(4), 633-644.
doi: 10.1038/s41593-019-0351-1URLpmid: 30911182
[59] Lopez-Persem, A., Rigoux, L., Bourgeois-Gironde, S., Daunizeau, J., & Pessiglione, M. (2017). Choose, rate or squeeze: comparison of economic value functions elicited by different behavioral tasks. PLoS Computational Biology, 13(11), e1005848.
doi: 10.1371/journal.pcbi.1005848URLpmid: 29161252
[60] Mars, R. B., Shea, N. J., Kolling, N., & Rushworth, M. F. S . (2012). Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control. Quarterly Journal of Experimental Psychology, 65(2), 252-267.
[61] Mathys, C. D., Daunizeau, J., Friston, K. J., & Stephan, K. E. (2011). A bayesian foundation for individual learning under uncertainty. Frontiers in Human Neuroscience, 5(39), 1-20.
[62] Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K.E. (2014). Uncertainty in perception and the hierarchical gaussian filter. Frontiers in Human Neuroscience, 8, 825.
URLpmid: 25477800
[63] Meder, D., Kolling, N., Verhagen, L., Wittmann, M. K., Scholl, J., Madsen K. H, … Rushworth, M. F. S. (2017). Simultaneous representation of a spectrum of dynamically changing value estimates during decision making. Nature Communications, 8(1942), 1-11.
[64] Mormann, M. M., Malmaud, J., Huth, A., Koch, C., & Rangel, A. (2010). The drift diffusion model can account for the accuracy and reaction time of value-based choices under high and low time pressure. Judgment and Decision Making, 5(6), 437-449.
[65] Nave, G., Camerer, C., & McCullough, M. (2015). Does oxytocin increase trust in humans? A critical review of research. Perspectives on Psychological Science, 10(6), 772-789.
doi: 10.1177/1745691615600138URLpmid: 26581735
[66] Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437(7063), 1291-1298.
doi: 10.1038/nature04131URLpmid: 16251955
[67] Palminteri, S., Wyart, V., & Koechlin, E. (2017). The importance of falsification in computational cognitive modeling. Trends in Cognitive Sciences, 21(6), 425-433.
doi: 10.1016/j.tics.2017.03.011URLpmid: 28476348
[68] Qu, C., Météreau, E., Butera, L., Villeval, M. C., & Dreher, J. C. (2019). Neurocomputational mechanisms at play when weighing concerns for extrinsic rewards, moral values, and social image. PLoS Biology, 17(6), e3000283.
doi: 10.1371/journal.pbio.3000283URLpmid: 31170138
[69] Randl?v, J. & Alstr?m, P,(1998). Learning to drive a bicycle using reinforcement learning and shaping. Paper presented at the Proceedings of the Fifteenth International Conference on Machine Learning (USA), Madison, Wisconsin (pp. 463-471). The International Machine Learning Society.
[70] Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108.
[71] Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873-922.
doi: 10.1162/neco.2008.12-06-420URLpmid: 18085991
[72] Ratcliff, R., Smith, P. L., Brown, S. D., & Mckoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260-281.
doi: 10.1016/j.tics.2016.01.007URLpmid: 26952739
[73] Ratcliff, R., Thapar, A., & Mckoon, G. (2003). A diffusion model analysis of the effects of aging on brightness discrimination. Perception & Psychophysics, 65(4), 523-535.
doi: 10.3758/bf03194580URLpmid: 12812276
[74] Ratcliff, R., Thapar, A., & McKoon, G. (2004). A diffusion model analysis of the effects of aging on recognition memory. Journal of Memory and Language, 50(4), 408-424.
[75] Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H., Prokasy, W. F.(Eds.), Current research and theory (pp. 64-99). New York: Appleton-Century-Crofts.
[76] Riedmiller, M., Gabel, T., Hafner, R., & Lange, S. (2009). Reinforcement learning for robot soccer. Autonomous Robots, 27(1), 55-73.
[77] Rothkirch, M., Tonn, J., K?hler, S., & Sterzer, P. (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 1147-1157.
URLpmid: 28334960
[78] Sáez, I., Zhu, L. S., Set, E., Kayser, A., & Hsu, M. (2015). Dopamine modulates egalitarian behavior in humans. Current Biology, 25(7), 912-919.
doi: 10.1016/j.cub.2015.01.071URLpmid: 25802148
[79] Schein, C., & Gray, K. (2015). The unifying moral dyad: Liberals and conservatives share the same harm-based moral template. Personality and Social Psychology Bulletin, 41(8), 1147-1163.
doi: 10.1177/0146167215591501URLpmid: 26091912
[80] Schein, C., & Gray, K. (2018). The theory of dyadic morality: Reinventing moral judgment by redefining harm. Personality and Social Psychology Review, 22(1), 32-70.
doi: 10.1177/1088868317698288URLpmid: 28504021
[81] Shenhav, A., & Greene, J. D. (2010). Moral judgments recruit domain-general valuation mechanisms to integrate representations of probability and magnitude. Neuron, 67(4), 667-677.
doi: 10.1016/j.neuron.2010.07.020URLpmid: 20797542
[82] Shenhav, A., & Greene, J. D. (2014). Integrative moral judgment: Dissociating the roles of the amygdala and the ventromedial prefrontal cortex. Journal of Neuroscience, 34(13), 4741-4749.
doi: 10.1523/JNEUROSCI.3390-13.2014URLpmid: 24672018
[83] Siegel, J. Z., Estrada, S., Crockett, M. J., & Baskin-Sommers, A. (2019). Exposure to violence affects the development of moral impressions and trust behavior in incarcerated males. Nature Communications, 10(1), 1942.
doi: 10.1038/s41467-019-09962-9URLpmid: 31028269
[84] Siegel, J. Z., Mathys, C., Rutledge, R. B., & Crockett, M. J. (2018). Beliefs about bad people are volatile. Nature Human Behaviour, 2(10), 750-256.
doi: 10.1038/s41562-018-0425-1URLpmid: 31406285
[85] Smith, P. L., Ratcliff, R., & Wolfgang, B. J. (2004). Attention orienting and the time course of perceptual decisions: Response time distributions with masked and unmasked displays. Vision Research, 44(12), 1297-1320.
doi: 10.1016/j.visres.2004.01.002URLpmid: 15066392
[86] Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, I. I., Tobler, P. N., & Kalenscher, T. (2015). Social discounting involves modulation of neural value signals by temporoparietal junction. Proceedings of the National Academy of Sciences, 112(5), 1619-1624.
[87] Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.
[88] Suzuki, S., Harasawa, N., Ueno, K., Gardner, J. L., Ichinohe, N., Haruno, M., ... Nakahara, H. (2012). Learning to simulate others' decisions. Neuron, 74(6), 1125-1137.
doi: 10.1016/j.neuron.2012.04.030URLpmid: 22726841
[89] Sven, C., Wolfgang, M. P., Peter, B., & John, O. (2017). Neural computations underlying inverse reinforcement learning in the human brain. eLife, 6, e29718.
doi: 10.7554/eLife.29718URLpmid: 29083301
[90] Szepesvari, C. (2010). Algorithms for reinforcement learning. In Synthesis Lectures on Artificial Intelligence and Machine Learning, 4.1, 1-103.
[91] Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of the ACM, 38(3), 58-68.
[92] Thapar, A., Ratcliff, R., & Mckoon, G. (2003). A diffusion model analysis of the effects of aging on letter discrimination. Psychology & Aging, 18(3), 415-429.
doi: 10.1037/0882-7974.18.3.415URLpmid: 14518805
[93] Tyrer, P. P., Reed, G. M., & Crawford, M. J. (2015). Classification, assessment, prevalence, and effect of personality disorder. The Lancet, 385(9969), 717-726.
[94] Uhlmann, E. L., Pizarro, D. A., & Diermeier, D. (2015). A person-centered approach to moral judgment. Perspectives on Psychological Science, 10(1), 72-81.
doi: 10.1177/1745691614556679URLpmid: 25910382
[95] Uhlmann, E. L., & Zhu, L. (2014). Acts, persons, and intuitions: Person-centered cues and gut reactions to harmless transgressions. Social Psychological and Personality Science, 5(3), 279-285.
[96] Valton, V., Romaniuk, L., Steele, J. D., Lawrie, S., & Seriès, P. (2017). Comprehensive review: Computational modelling of schizophrenia. Neuroscience & Biobehavioral Reviews, 83, 631-646.
doi: 10.1016/j.neubiorev.2017.08.022URLpmid: 28867653
[97] Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32(7), 1206-1220.
doi: 10.3758/bf03196893URLpmid: 15813501
[98] Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31-56.
doi: 10.1146/annurev.neuro.30.051606.094334URLpmid: 17417936
[99] Xie, W. W., Yu, B. Y., Zhou, X. Y., Sedikides, C., & Vohs, K. D. (2014). Money, moral transgressions, and blame. Journal of Consumer Psychology, 24(3), 299-306.
doi: 10.1016/j.jcps.2013.12.002URL
[100] Yu, H. B., Siegel, J. Z., Crockett, M. J. (2019). Modeling morality in 3-D: Decision-making, judgment, and inference. Topics in Cognitive Science, 11(2), 409-432.
doi: 10.1111/tops.12382URLpmid: 31042018
[101] Zhong, S. F., Chark, R. B., Hsu, M., & Chew, S. H. (2016). Computational substrates of social norm enforcement by unaffected third parties. NeuroImage, 129, 95-104.
doi: 10.1016/j.neuroimage.2016.01.040URLpmid: 26825438
[102] Zhu, L. S., Jenkins, A. C., Set, E., Scabini, D., Knight, R. T., Chiu, P. H., ... Hsu, M. (2014). Damage to dorsolateral prefrontal cortex affects tradeoffs between honesty and self-interest. Nature Neuroscience, 17(10), 1319-1321.
doi: 10.1038/nn.3798URL
[103] Zhu, L. S., Jiang, Y. M., Scabini, D., Knight, R. T., & Hsu, M. (2019). Patients with basal ganglia damage show preserved learning in an economic game. Nature Communications, 10(802), 1-10.
doi: 10.1038/s41467-018-07882-8URL
[104] Zsuga, J., Biro, K., Papp, C., Tajti, G., & Gesztelyi, R. (2016). The “proactive” model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept. Behavioral Neuroscience, 130(1), 6-18.
doi: 10.1037/bne0000116URLpmid: 26795580




[1]刘传军, 廖江群. 道德困境研究的范式沿革及其理论价值[J]. 心理科学进展, 2021, 29(8): 1508-1520.
[2]黎穗卿, 陈新玲, 翟瑜竹, 张怡洁, 章植鑫, 封春亮. 人际互动中社会学习的计算神经机制[J]. 心理科学进展, 2021, 29(4): 677-696.
[3]高青林, 周媛. 计算模型视角下信任形成的心理和神经机制——基于信任博弈中投资者的角度[J]. 心理科学进展, 2021, 29(1): 178-189.
[4]李精精, 张剑, 田慧荣, Jeffrey B.Vancouver. 动态计算模型在组织行为学研究中的应用[J]. 心理科学进展, 2020, 28(2): 368-380.
[5]徐科朋, 杨凌倩, 吴家虹, 薛宏, 张姝玥. CNI模型在道德决策研究中的应用[J]. 心理科学进展, 2020, 28(12): 2102-2113.
[6]区健新, 吴寅, 刘金婷, 李红. 计算精神病学:抑郁症研究和临床应用的新视角[J]. 心理科学进展, 2020, 28(1): 111-127.
[7]谢家全, 谢昌颐, 杨文登. 饥饿对认知与社会行为的影响及其机制[J]. 心理科学进展, 2020, 28(1): 141-149.
[8]詹泽, 吴宝沛. 无处不在的伤害:二元论视角下的道德判断[J]. 心理科学进展, 2019, 27(1): 128-140.
[9]严瑜, 李彤. 工作场所不文明行为受害者向实施者反转的机制[J]. 心理科学进展, 2018, 26(7): 1307-1318.
[10]胡晓檬, 喻丰, 彭凯平. 文化如何影响道德?文化间变异、文化内变异与多元文化的视角[J]. 心理科学进展, 2018, 26(11): 2081-2090.
[11]李明晖, 饶俪琳. 解释水平视角下的道德判断[J]. 心理科学进展, 2017, 25(8): 1423-1430.
[12]钟毅平, 占友龙, 李琎, 范伟. 道德决策的机制及干预研究: 自我相关性与风险水平的作用[J]. 心理科学进展, 2017, 25(7): 1093-1102.
[13]叶红燕;张凤华. 从具身视角看道德判断[J]. 心理科学进展, 2015, 23(8): 1480-1488.
[14]吴宝沛;高树玲. 道德虚伪:一种机会主义的适应策略[J]. 心理科学进展, 2012, 20(6): 926-934.
[15]沈汪兵;刘昌. 道德伪善的心理学研究述评[J]. 心理科学进展, 2012, 20(5): 745-756.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5100
相关话题/心理 科学 计算 概率 文化