删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

反馈相关负波与成瘾

本站小编 Free考研考试/2022-01-01

陈乐乐, 黄蓉, 贾世伟()
山东师范大学心理学院, 济南 250358
收稿日期:2019-07-17出版日期:2020-06-15发布日期:2020-04-22
通讯作者:贾世伟E-mail:jiashiwei82@126.com

基金资助:* 国家自然科学基金青年项目(NSFC31200784)

Feedback-related negativity and addiction

CHEN Lele, HUANG Rong, JIA Shiwei()
School of Psychology, Shandong Normal University, Jinan 250358, China
Received:2019-07-17Online:2020-06-15Published:2020-04-22
Contact:JIA Shiwei E-mail:jiashiwei82@126.com






摘要/Abstract


摘要: 反馈相关负波(feedback-related negativity, FRN)是反馈加工诱发的脑电成分, 体现了个体对奖赏的敏感性。成瘾分为物质成瘾和行为成瘾, 两类个体的反馈加工都呈现病理性模式。相对于普通反馈物(如金钱), 物质成瘾个体在加工成瘾物质时诱发的FRN波幅显著增大; 在与非成瘾被试的对照研究中, 物质成瘾者加工金钱反馈时的FRN也表现出与成瘾相关的异常模式; 在行为成瘾个体中亦观察到与物质成瘾个体类似的FRN失调现象。但以往多数研究中对成瘾类型的区分还不够详细, 未来研究应进一步考虑成瘾不同亚型的特点; 且成瘾个体往往伴随其他精神障碍(如抑郁、焦虑), 将来的研究要区分共病因素的影响, 揭示成瘾独特的奖赏加工机制问题。



图1成瘾、中脑多巴胺系统与FRN示意图 注:成瘾物质摄入后作用于中脑多巴胺系统, 增加中脑腹侧被盖区(the ventral tegmental area, VTA)中多巴胺神经元冲动, 使前扣带回(anterior cingulate cortex, ACC)及伏隔核(nucleus accumben, NAc)中多巴胺水平增加产生快感, 带来强化效应, 同时造成FRN失调。
图1成瘾、中脑多巴胺系统与FRN示意图 注:成瘾物质摄入后作用于中脑多巴胺系统, 增加中脑腹侧被盖区(the ventral tegmental area, VTA)中多巴胺神经元冲动, 使前扣带回(anterior cingulate cortex, ACC)及伏隔核(nucleus accumben, NAc)中多巴胺水平增加产生快感, 带来强化效应, 同时造成FRN失调。


表1成瘾障碍与FRN相关研究
成瘾研究 成瘾物质/行为 程度 N 诊断标准/工具 实验任务 FRN
物质成瘾
Baker et al., 2011 Pol. 亚临床 18 ASSIST 赌博* 普通奖赏物 ↓
Baker et al., 2016 Pol. 亚临床 195 ASSIST 赌博 普通奖赏物 ↓
Baker, Wood, & Holroyd, 2016 Pol. 亚临床 12 ASSIST 赌博 成瘾物质 ↑
Baker et al., 2017 烟草 亚临床 20 FTND 赌博 成瘾物质 ↑
Fein et al., 2008 酒精 临床 22 DSM-Ⅳ BART 普通奖赏物 ↓
Franken et al., 2010 酒精 正常 47 QFV-I RPT 普通奖赏物 ↑
Hixson et al., 2019 酒精 临床 15 DSM-Ⅳ GRT 普通奖赏物 ↑
Kamarajan et al., 2010 酒精 临床 40 DSM-Ⅳ 赌博 普通奖赏物 ↓
Morie et al., 2016 可卡因 临床 23 DSM-Ⅳ 快速反应任务 普通奖赏物 ↓
Muñoz et al., 2012 烟草 亚临床 32 FTND 预测任务 成瘾物质 ↑
Parvaz et al., 2015 可卡因 临床 50 临床访谈 门任务 普通奖赏物 ↓
Potts et al., 2014 烟草 亚临床 22 DSM-Ⅳ RPT 普通奖赏物 ↑
Soder et al., 2019 酒精 正常 85 DDQ-R RPT, BART 普通奖赏物 ↓
Wei et al., 2018 甲基苯丙胺 临床 21 DSM-Ⅴ 赌博 普通奖赏物 ↑
行为成瘾
Hewig et al., 2010 赌博 临床 20 DSM-Ⅳ 真实赌博 普通奖赏物 ↑
He et al., 2017 网络 亚临床 16 临床访谈 赌博 普通奖赏物 ↓
Lole et al., 2015 赌博 亚临床 16 PGSI 赌博 普通奖赏物 ↓
Li et al., 2019 网络 临床 34 DSM-Ⅴ 赌博 普通奖赏物 ↓
Oberg et al., 2011 赌博 亚临床 15 CPGI IGT 普通奖赏物 ↑
Torres et al., 2013 赌博 临床 21 DSM-Ⅳ 反转学习 普通奖赏物 ↓
Ulrich et al., 2018 赌博 亚临床 20 DSM-Ⅳ 赌博 普通奖赏物 ↓
Yau et al., 2015 网络 亚临床 39 临床访谈 BART 普通奖赏物 ↓

表1成瘾障碍与FRN相关研究
成瘾研究 成瘾物质/行为 程度 N 诊断标准/工具 实验任务 FRN
物质成瘾
Baker et al., 2011 Pol. 亚临床 18 ASSIST 赌博* 普通奖赏物 ↓
Baker et al., 2016 Pol. 亚临床 195 ASSIST 赌博 普通奖赏物 ↓
Baker, Wood, & Holroyd, 2016 Pol. 亚临床 12 ASSIST 赌博 成瘾物质 ↑
Baker et al., 2017 烟草 亚临床 20 FTND 赌博 成瘾物质 ↑
Fein et al., 2008 酒精 临床 22 DSM-Ⅳ BART 普通奖赏物 ↓
Franken et al., 2010 酒精 正常 47 QFV-I RPT 普通奖赏物 ↑
Hixson et al., 2019 酒精 临床 15 DSM-Ⅳ GRT 普通奖赏物 ↑
Kamarajan et al., 2010 酒精 临床 40 DSM-Ⅳ 赌博 普通奖赏物 ↓
Morie et al., 2016 可卡因 临床 23 DSM-Ⅳ 快速反应任务 普通奖赏物 ↓
Muñoz et al., 2012 烟草 亚临床 32 FTND 预测任务 成瘾物质 ↑
Parvaz et al., 2015 可卡因 临床 50 临床访谈 门任务 普通奖赏物 ↓
Potts et al., 2014 烟草 亚临床 22 DSM-Ⅳ RPT 普通奖赏物 ↑
Soder et al., 2019 酒精 正常 85 DDQ-R RPT, BART 普通奖赏物 ↓
Wei et al., 2018 甲基苯丙胺 临床 21 DSM-Ⅴ 赌博 普通奖赏物 ↑
行为成瘾
Hewig et al., 2010 赌博 临床 20 DSM-Ⅳ 真实赌博 普通奖赏物 ↑
He et al., 2017 网络 亚临床 16 临床访谈 赌博 普通奖赏物 ↓
Lole et al., 2015 赌博 亚临床 16 PGSI 赌博 普通奖赏物 ↓
Li et al., 2019 网络 临床 34 DSM-Ⅴ 赌博 普通奖赏物 ↓
Oberg et al., 2011 赌博 亚临床 15 CPGI IGT 普通奖赏物 ↑
Torres et al., 2013 赌博 临床 21 DSM-Ⅳ 反转学习 普通奖赏物 ↓
Ulrich et al., 2018 赌博 亚临床 20 DSM-Ⅳ 赌博 普通奖赏物 ↓
Yau et al., 2015 网络 亚临床 39 临床访谈 BART 普通奖赏物 ↓







[1] 李丹阳, 李鹏, 李红 . (2018). 反馈负波及其近10年理论解释. 心理科学进展, 26(9), 1642-1650.
[2] 李鹏, 李红 . (2008). 反馈负波及其理论解释. 心理科学进展, 16(5), 705-711.
[3] 杨玲, 王斌强, 耿银凤, 姚东伟, 曹华, 张建勋, 许琼英 . (2019). 虚拟和真实金钱奖赏幅度对海洛因戒断者风险决策的影响. 心理学报, 51(4), 507-516.
[4] Ahlskog, J. E . (2011). Pathological behaviors provoked by dopamine agonist therapy of Parkinson's disease. Physiology & Behavior, 104(1), 168-172.
[5] Ahmed, S. H . (2005). Imbalance between drug and non-drug reward availability: A major risk factor for addiction. European Journal of Pharmacology, 526(1-3), 9-20.
doi: 10.1016/j.ejphar.2005.09.036URL
[6] American Psychiatric Association. DSM-5 Task Force. (2013). Diagnostic and Statistical Manual of Mental Disorders: DSM-5?. Arlington, VA, US.
[7] Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R., & Fiore, M. C . (2004). Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychological Review, 111(1), 33-51.
doi: 10.1037/0033-295X.111.1.33URL
[8] Baker, T. E., Lesperance, P., Tucholka, A., Potvin, S., Larcher, K., Zhang, Y., ... Conrod, P . (2017). Reversing the atypical valuation of drug and nondrug rewards in smokers using multimodal neuroimaging. Biological Psychiatry, 82(11), 819-827.
doi: 10.1016/j.biopsych.2017.01.015URL
[9] Baker, T. E., Stockwell, T., Barnes, G., & Holroyd, C. B . (2011). Individual differences in substance dependence: At the intersection of brain, behaviour and cognition. Addiction Biology, 16(3), 458-466.
doi: 10.1111/j.1369-1600.2010.00243.xURL
[10] Baker, T. E., Stockwell, T., Barnes, G., Haesevoets, R., & Holroyd, C. B . (2016). Reward sensitivity of ACC as an intermediate phenotype between DRD4-521T and substance misuse. Journal of Cognitive Neuroscience, 28(3), 460-471.
doi: 10.1162/jocn_a_00905URL
[11] Baker, T. E., Wood, J. M. A., & Holroyd, C. B . (2016). Atypical valuation of monetary and cigarette rewards in substance dependent smokers. Clinical Neurophysiology, 127(2), 1358-1365.
doi: 10.1016/j.clinph.2015.11.002URL
[12] Baler, R. D., & Volkow, N. D . (2006). Drug addiction: The neurobiology of disrupted self-control. Trends in Molecular Medicine, 12(12), 559-566.
doi: 10.1016/j.molmed.2006.10.005URL
[13] Bjork, J. M., Momenan, R., Smith, A. R., & Hommer, D. W . (2008). Reduced posterior mesofrontal cortex activation by risky rewards in substance-dependent patients. Drug and Alcohol Dependence, 95(1-2), 115-128.
doi: 10.1016/j.drugalcdep.2007.12.014URL
[14] Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., ... Comings, D. E . (2000). The reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. Journal of Psychoactive Drugs, 32(suppl1-4), 1-112.
[15] Bodkyn, C. N., & Holroyd, C. B . (2019). Neural mechanisms of affective instability and cognitive control in substance use. International Journal of Psychophysiology, 146, 1-19.
doi: 10.1016/j.ijpsycho.2019.08.003URL
[16] Bolla, K., Ernst, M., Kiehl, K., Mouratidis, M., Eldreth, D., Contoreggi, C., … London, E . (2004). Prefrontal cortical dysfunction in abstinent cocaine abusers. Journal of Neuropsychiatry and Clinical Neurosciences, 16(4), 456-464.
doi: 10.1176/jnp.16.4.456URL
[17] Carbonell, X . (2017). From pong to pokemon go, catching the essence of the internet gaming disorder diagnosis. Journal of Behavioral Addictions, 6(2), 124-127.
doi: 10.1556/2006.6.2017.010URL
[18] Cockburn, J., & Holroyd, C. B . (2018). Feedback information and the reward positivity. International Journal of Psychophysiology, 132, 243-251.
doi: 10.1016/j.ijpsycho.2017.11.017URL
[19] Euser, A. S., Greaves-Lord, K., Crowley, M. J., Evans, B. E., Huizink, A. C., & Franken, I. H. A . (2013). Blunted feedback processing during risky decision making in adolescents with a parental history of substance use disorders. Development and Psychopathology, 25(4pt1), 1119-1136.
doi: 10.1017/S0954579413000412URL
[20] Euser, A. S., van Meel, C. S., Snelleman, M., & Franken, I. H. A . (2011). Acute effects of alcohol on feedback processing and outcome evaluation during risky decision-making: An ERP study. Psychopharmacology, 217(1), 111.
doi: 10.1007/s00213-011-2264-xURL
[21] Fein, G., & Chang, M . (2008). Smaller feedback ERN amplitudes during the BART are associated with a greater family history density of alcohol problems in treatment- naive alcoholics. Drug and Alcohol Dependence, 92(1-3), 141-148.
doi: 10.1016/j.drugalcdep.2007.07.017URL
[22] Franken, I. H. A., van den Berg, I., & van Strien, J. W . (2010). Individual differences in alcohol drinking frequency are associated with electrophysiological responses to unexpected nonrewards. Alcoholism: Clinical and Experimental Research, 34(4), 702-707.
doi: 10.1111/acer.2010.34.issue-4URL
[23] Gehring, W. J., & Willoughby, A. R . (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295(5563), 2279-2282.
[24] Goldstein, R. Z., Parvaz, M. A., Maloney, T., Alia-Klein, N., Woicik, P. A., Telang, F., ... Volkow, N. D . (2008). Compromised sensitivity to monetary reward in current cocaine users: An ERP study. Psychophysiology, 45(5), 705-713.
[25] Goldstein, R. Z., Tomasi, D., Alia-Klein, N., Cottone, L. A., Zhang, L., Telang, F., & Volkow, N. D . (2007). Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug and Alcohol Dependence, 87(2-3), 233-240.
[26] Gu, R., Jiang, Y., Kiser, S., Black, C. L., Broster, L. S., Luo, Y. J., & Kelly, T. H . (2017). Impulsive personality dimensions are associated with altered behavioral performance and neural responses in the monetary incentive delay task. Neuropsychologia, 103, 59-68.
[27] Haber, S. N., & Knutson, B . (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4-26.
[28] Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F . (2006). The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71(2), 148-154.
[29] He, W., Qi, A., Wang, Q., Wu, H., Zhang, Z., Gu, R., & Luo, W . (2017). Abnormal reward and punishment sensitivity associated with Internet addicts. Computers in Human Behavior, 75, 678-683.
[30] Hewig, J., Kretschmer, N., Trippe, R. H., Hecht, H., Coles, M. G. H., Holroyd, C. B., & Miltner, W. H. R . (2010). Hypersensitivity to reward in problem gamblers. Biological Psychiatry, 67(8), 781-783.
[31] Hixson, H., Burkhouse, K. L., Gorka, S. M., & Klumpp, H . (2019). A preliminary examination of the relation between neural sensitivity to reward and history of alcohol use disorder among adults with internalizing psychopathologies. Neuroscience Letters, 690, 17-22.
[32] Holroyd, C. B., & Coles, M. G. H . (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709.
[33] Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E . (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688-697.
[34] Howse, A. D., Hassall, C. D., Williams, C. C., Hajcak, G., & Krigolson, O. E . (2018). Alcohol hangover impacts learning and reward processing within the medial-frontal cortex. Psychophysiology, 55(8), e13081.
[35] Ikemoto, S., & Bonci, A . (2014). Neurocircuitry of drug reward. Neuropharmacology, 76, 329-341.
doi: 10.1016/j.neuropharm.2013.04.031URL
[36] Jiang, D., Zhang, D., Chen, Y., He, Z., Gao, Q., Gu, R., & Xu, P . (2018). Trait anxiety and probabilistic learning: Behavioral and electrophysiological findings. Biological Psychology, 132, 17-26.
[37] Kamarajan, C., Rangaswamy, M., Tang, Y., Chorlian, D. B., Pandey, A. K., Roopesh, B. N., ... Porjesz, B . (2010). Dysfunctional reward processing in male alcoholics: An ERP study during a gambling task. Journal of Psychiatric Research, 44(9), 576-590.
[38] Koob, G. F . (2013). Negative reinforcement in drug addiction: The darkness within. Current Opinion in Neurobiology, 23(4), 559-563.
[39] Koob, G. F., & Le Moal, M . (2005). Plasticity of reward neurocircuitry and the 'dark side' of drug addiction. Nature Neuroscience, 8(11), 1442-1444.
[40] Krigolson, O. E . (2018). Event-related brain potentials and the study of reward processing: Methodological considerations. International Journal of Psychophysiology, 132, 175-183.
[41] Kuss, D. J., & Lopez-Fernandez, O . (2016). Internet addiction and problematic internet use: A systematic review of clinical research. World Journal of Psychiatry, 6(1), 143-176.
[42] Leshner, A. I . (1997). Addiction Is a Brain Disease, and It Matters. Science, 278(5335), 45-47.
[43] Li, P., Peng, W., Li, H., & Holroyd, C. B . (2018). Electrophysiological measures reveal the role of anterior cingulate cortex in learning from unreliable feedback. Cognitive, Affective, & Behavioral Neuroscience, 18(5), 949-963.
[44] Li, Q., Wang, Y., Yang, Z., Dai, W., Zheng, Y., Sun, Y., & Liu, X . (2019). Dysfunctional cognitive control and reward processing in adolescents with Internet gaming disorder. Psychophysiology, e13469.
[45] Lole, L., Gonsalvez, C. J., & Barry, R. J . (2015). Reward and punishment hyposensitivity in problem gamblers: A study of event-related potentials using a principal components analysis. Clinical Neurophysiology, 126(7), 1295-1309.
doi: 10.1016/j.clinph.2014.10.011URL
[46] Miltner, W. H. R., Braun, C. H., & Coles, M. G. H . (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a "generic" neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788-798.
doi: 10.1162/jocn.1997.9.6.788URL
[47] Morie, K. P., de Sanctis, P., Garavan, H., & Foxe, J. J . (2016). Regulating task-monitoring systems in response to variable reward contingencies and outcomes in cocaine addicts. Psychopharmacology, 233(6), 1105-1118.
[48] Morie, K. P., Wu, J., Landi, N., Potenza, M. N., Mayes, L. C., & Crowley, M. J . (2018). Feedback processing in adolescents with prenatal cocaine exposure: An electrophysiological investigation. Developmental Neuropsychology, 43(3), 183-197.
doi: 10.1080/87565641.2018.1439945URL
[49] Muñoz, M. á., Anllo-Vento, L., del Carmen Fernández, M., Montoya, P., & Vila, J . (2012). Modulation of the outcome-related negativity associated with nicotine abstinence. Experimental and Clinical Psychopharmacology, 20(2), 151.
doi: 10.1037/a0025991URL
[50] Nelson, L. D., Patrick, C. J., Collins, P., Lang, A. R., & Bernat, E. M . (2011). Alcohol impairs brain reactivity to explicit loss feedback. Psychopharmacology, 218(2), 419-428.
[51] Nestor, L., Hester, R., & Garavan, H . (2010). Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage, 49(1), 1133-1143.
doi: 10.1016/j.neuroimage.2009.07.022URL
[52] Oberg, S. A. K., Christie, G. J., & Tata, M. S . (2011). Problem gamblers exhibit reward hypersensitivity in medial frontal cortex during gambling. Neuropsychologia, 49(13), 3768-3775.
doi: 10.1016/j.neuropsychologia.2011.09.037URL
[53] Parvaz, M. A., Konova, A. B., Proudfit, G. H., Dunning, J. P., Malaker, P., Moeller, S. J., ... Goldstein, R. Z . (2015). Impaired neural response to negative prediction errors in cocaine addiction. Journal of Neuroscience, 35(5), 1872-1879.
doi: 10.1523/JNEUROSCI.2777-14.2015URL
[54] Peoples, L. L . (2002). Neuroscience: Will, anterior cingulate cortex, and addiction. Science, 296(5573), 1623-1624.
[55] Petry, N. M . (2006). Should the scope of addictive behaviors be broadened to include pathological gambling? Addiction, 101( Suppl 1), 152-160.
doi: 10.1111/add.2006.101.issue-s1URL
[56] Potenza, M. N . (2006). Should addictive disorders include non-substance-related conditions? Addiction, 101(Suppl. 1), 142-151.
[57] Potts, G. F., Bloom, E. L., Evans, D. E., & Drobes, D. J . (2014). Neural reward and punishment sensitivity in cigarette smokers. Drug and Alcohol Dependence, 144, 245-253.
doi: 10.1016/j.drugalcdep.2014.09.773URL
[58] Proudfit, G. H . (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459.
[59] Quandt, T . (2017). Stepping back to advance: Why IGD needs an intensified debate instead of a consensus. Journal of Behavioral Addictions, 6(2), 121-123.
[60] Redish, A. D., Jensen, S., & Johnson, A . (2008). A unified framework for addiction: Vulnerabilities in the decision process. Behavioral & Brain Sciences, 31(4), 415-437.
[61] Robinson, T. E., & Berridge, K. C . (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research Reviews, 18(3), 247-291.
[62] Soder, H. E., Webber, T. A., Bornovalova, M. A., Park, J. Y., & Potts, G. F . (2019). A test of dopamine hyper-and hyposensitivity in alcohol use. Addictive Behaviors, 90, 395-401.
[63] Torres, A., Catena, A., Cándido, A., Maldonado, A., Megías, A., & Perales, J. C . (2013). Cocaine dependent individuals and gamblers present different associative learning anomalies in feedback-driven decision making: A behavioral and ERP study. Frontiers in Psychology, 4, 122.
[64] Ulrich, N., & Hewig, J . (2018). Electrophysiological correlates of near outcome and outcome sequence processing in problem gamblers and controls. International Journal of Psychophysiology, 132, 379-392.
[65] van Rooij, A. J., Ferguson, C. J., Colder, C. M., Kardefelt- Winther, D., Shi, J., Aarseth, E., ... Przybylski, A. K . (2018). A weak scientific basis for gaming disorder: Let us err on the side of caution. Journal of Behavior Addiction, 7(1), 1-9.
[66] Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., ... Hallett, M . (2011). Dopamine agonists and risk: Impulse control disorders in Parkinson's disease. Brain, 134(5), 1438-1446.
[67] Walsh, J. J., Colino, F. L., Krigolson, O. E., Luehr, S., Gurd, B. J., & Tschakovsky, M. E . (2019). High-intensity interval exercise impairs neuroelectric indices of reinforcement-learning. Physiology & Behavior, 198, 18-26.
[68] Wei, S., Zheng, Y., Li, Q., Dai, W., Sun, J., Wu, H., & Liu, X . (2018). Enhanced neural responses to monetary rewards in methamphetamine use disordered individuals compared to healthy controls. Physiology & Behavior, 195, 118-127.
[69] Yau, Y. H. C., Potenza, M. N., Mayes, L. C., & Crowley, M. J . (2015). Blunted feedback processing during risk-taking in adolescents with features of problematic Internet use. Addictive Behaviors, 45, 156-163.
[70] Yeung, N., & Sanfey, A. G . (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24(28), 6258-6264.
doi: 10.1523/JNEUROSCI.4537-03.2004URL




[1]黎穗卿, 陈新玲, 翟瑜竹, 张怡洁, 章植鑫, 封春亮. 人际互动中社会学习的计算神经机制[J]. 心理科学进展, 2021, 29(4): 677-696.
[2]秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413.
[3]刘宇, 胡传鹏, 樊富珉, 孙沛, 徐杰, 蔡玉清, 刘雪莉. 基于网络理论的物质成瘾新视角[J]. 心理科学进展, 2021, 29(2): 296-310.
[4]杨玲, 刘文鑫, 张炀, 张建勋, 牛禄霖. 物质成瘾领域延迟折扣研究中的外部效度问题[J]. 心理科学进展, 2021, 29(1): 140-149.
[5]褚昕宇, 王泽军, 肖焕禹. 身体活动的双系统理论:一种强化学习的视角[J]. 心理科学进展, 2020, 28(8): 1337-1350.
[6]万楠, 朱树青, 贾世伟. 反馈间隔影响反馈加工:整合行为和电生理研究的视角[J]. 心理科学进展, 2020, 28(2): 230-239.
[7]苏波波, 郑美红. 物质相关线索对成瘾者反应抑制的影响[J]. 心理科学进展, 2019, 27(11): 1863-1874.
[8]靳宇倡, 余梦, 胡云龙. 网络游戏成瘾研究的争议及趋势[J]. 心理科学进展, 2019, 27(1): 83-95.
[9]李丹阳, 李鹏, 李红. 反馈负波及其近10年理论解释[J]. 心理科学进展, 2018, 26(9): 1642-1650.
[10]王志燕, 崔彩莲. 个体冲动性对物质滥用与成瘾的影响及脑机制[J]. 心理科学进展, 2017, 25(12): 2063-2074.
[11]杨玲;苏波波;张建勋;柳斌;卫晓芸;赵鑫. 物质成瘾人群金钱奖赏加工的异常机制及可恢复性[J]. 心理科学进展, 2015, 23(9): 1617-1626.
[12]赵春黎. 社会从众的生物学基础[J]. 心理科学进展, 2015, 23(11): 1956-1965.
[13]曾红;叶浩生;杨文登. 镜像神经在药物心理渴求中的作用及机制[J]. 心理科学进展, 2013, 21(4): 581-588.
[14]袁媛;刘昌;沈汪兵. 反馈相关负波与社会关系认知[J]. 心理科学进展, 2012, 20(10): 1593-1603.
[15]李鹏;李红. 反馈负波及其理论解释[J]. 心理科学进展, 2008, 16(5): 705-711.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5056
相关话题/临床 物质 心理 科学 网络