
电子科技大学生命科学与技术学院, 成都 610054
收稿日期:
2017-11-24出版日期:
2018-07-15发布日期:
2018-05-29通讯作者:
尧德中E-mail:dyao@uestc.edu.cn基金资助:
****和创新团队发展计划项目(IRT0910);中央高校基本科研业务费项目(ZYGX2016J266)Modern dance training and string instrument training have different effects on grey matter architecture
LI Gujing, LI Xin, HE Hui, LUO Cheng, YAO Dezhong(
School of Life Science And Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
Received:
2017-11-24Online:
2018-07-15Published:
2018-05-29Contact:
YAO Dezhong E-mail:dyao@uestc.edu.cn摘要/Abstract
摘要: 目前舞蹈与音乐两种训练对脑灰质结构影响的差异尚不明确。本研究利用基于体素的形态学分析方法(voxel-based morphometry, VBM), 比较现代舞训练被试、弦乐训练被试与对照组被试的脑结构磁共振数据。结果表明现代舞训练组在涉及感觉运动控制的皮层、皮层下结构及小脑多个区域出现灰质体积的显著增加与减少; 弦乐训练组则在与音乐训练直接相关的听-动-读皮层出现灰质体积的显著增加。这一发现提示现代舞训练可能系统性地影响广泛脑区的灰质结构, 弦乐训练可能局部地改变了具体功能脑区的灰质结构, 两种训练对脑灰质结构的影响模式存在差异。
图/表 3
表1被试人口学信息
人口学变量 | 现代舞训练组 | 弦乐训练组 | 对照组 | p |
---|---|---|---|---|
性别(男/女) | 5/13 | 7/13 | 8/17 | 0.892 |
年龄(岁) | 19.00 ± 1.41 | 19.05 ± 1.19 | 19.24 ± 0.87 | 0.765 df (2,60) |
教育水平(年) | 12.83 ± 1.33 | 13.05 ± 1.09 | 13.20 ± 1.11 | 0.574 df (2,60) |
训练年限(年) | 11.44 ± 3.24 | 11.33 ± 2.72 | — | 0.282 df (36) |
表1被试人口学信息
人口学变量 | 现代舞训练组 | 弦乐训练组 | 对照组 | p |
---|---|---|---|---|
性别(男/女) | 5/13 | 7/13 | 8/17 | 0.892 |
年龄(岁) | 19.00 ± 1.41 | 19.05 ± 1.19 | 19.24 ± 0.87 | 0.765 df (2,60) |
教育水平(年) | 12.83 ± 1.33 | 13.05 ± 1.09 | 13.20 ± 1.11 | 0.574 df (2,60) |
训练年限(年) | 11.44 ± 3.24 | 11.33 ± 2.72 | — | 0.282 df (36) |
表2现代舞训练组、弦乐训练组与对照组灰质体积的组间比较
脑区 | MNI坐标 | 体素 个数 | F(2,60)值 (最大点) | dan-con | dan- con (p) | dan- con (t41) | mus-con | mus- con (p) | mus- con (t43) | mus-dan | mus-dan (p) | mus- dan (t36) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | z | ||||||||||||
Cerebelum_ Crus1_R | 33 | -58 | -40 | 32 | 9.99 | p < 0.05 | 0.01029 | 2.69 | 0.07979 | -1.79 | p < 0.001 | 0.00029 | -4.01 | |
Frontal_ Med_Orb_R | 6 | 40 | -6 | 82 | 11.29 | p < 0.001 | 0.00039 | 3.86 | 0.74462 | -0.33 | p < 0.001 | 0.00058 | -3.76 | |
Thalamus_R | 12 | -21 | -1 | 267 | 18.05 | p < 0.001 | 0.00028 | -3.97 | 0.16760 | 1.40 | p < 0.001 | 0.00001 | 5.26 | |
Thalamus_L | -10 | -16 | 1 | 240 | 13.33 | p < 0.001 | 0.00036 | -3.89 | 0.26093 | 1.14 | p < 0.001 | 0.00001 | 5.26 | |
Temporal_ Sup_R | 55 | -15 | 1 | 131 | 13.47 | 0.74732 | 0.32 | p < 0.001 | 0.00002 | 4.80 | p < 0.001 | 0.00090 | 3.61 | |
Putamen_R | 25 | 4 | 13 | 112 | 12.88 | p < 0.001 | 0.00009 | 4.33 | 0.29734 | 1.05 | p < 0.01 | 0.00233 | -3.27 | |
Supp_Motor_ Area_R | 6 | 1 | 63 | 128 | 11.83 | p < 0.01 | 0.00161 | -3.38 | 0.34007 | 0.96 | p < 0.001 | 0.00001 | 5.12 | |
Precentral_L | -34 | -6 | 58 | 120 | 12.12 | p < 0.01 | 0.00564 | -2.92 | p < 0.05 | 0.04677 | 2.05 | p < 0.001 | 0.00004 | 4.68 |
Frontal_ Mid_R | 42 | -3 | 57 | 71 | 11.30 | 0.23886 | -1.20 | p < 0.01 | 0.00225 | 3.24 | p < 0.001 | 0.00003 | 4.77 |
表2现代舞训练组、弦乐训练组与对照组灰质体积的组间比较
脑区 | MNI坐标 | 体素 个数 | F(2,60)值 (最大点) | dan-con | dan- con (p) | dan- con (t41) | mus-con | mus- con (p) | mus- con (t43) | mus-dan | mus-dan (p) | mus- dan (t36) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | y | z | ||||||||||||
Cerebelum_ Crus1_R | 33 | -58 | -40 | 32 | 9.99 | p < 0.05 | 0.01029 | 2.69 | 0.07979 | -1.79 | p < 0.001 | 0.00029 | -4.01 | |
Frontal_ Med_Orb_R | 6 | 40 | -6 | 82 | 11.29 | p < 0.001 | 0.00039 | 3.86 | 0.74462 | -0.33 | p < 0.001 | 0.00058 | -3.76 | |
Thalamus_R | 12 | -21 | -1 | 267 | 18.05 | p < 0.001 | 0.00028 | -3.97 | 0.16760 | 1.40 | p < 0.001 | 0.00001 | 5.26 | |
Thalamus_L | -10 | -16 | 1 | 240 | 13.33 | p < 0.001 | 0.00036 | -3.89 | 0.26093 | 1.14 | p < 0.001 | 0.00001 | 5.26 | |
Temporal_ Sup_R | 55 | -15 | 1 | 131 | 13.47 | 0.74732 | 0.32 | p < 0.001 | 0.00002 | 4.80 | p < 0.001 | 0.00090 | 3.61 | |
Putamen_R | 25 | 4 | 13 | 112 | 12.88 | p < 0.001 | 0.00009 | 4.33 | 0.29734 | 1.05 | p < 0.01 | 0.00233 | -3.27 | |
Supp_Motor_ Area_R | 6 | 1 | 63 | 128 | 11.83 | p < 0.01 | 0.00161 | -3.38 | 0.34007 | 0.96 | p < 0.001 | 0.00001 | 5.12 | |
Precentral_L | -34 | -6 | 58 | 120 | 12.12 | p < 0.01 | 0.00564 | -2.92 | p < 0.05 | 0.04677 | 2.05 | p < 0.001 | 0.00004 | 4.68 |
Frontal_ Mid_R | 42 | -3 | 57 | 71 | 11.30 | 0.23886 | -1.20 | p < 0.01 | 0.00225 | 3.24 | p < 0.001 | 0.00003 | 4.77 |

图1现代舞训练组、弦乐训练组与对照组灰质体积的组间比较注:MFG. R: 右侧额中回; STG. R: 右侧颞上回; SMA. R: 右侧辅助运动皮层; PreCG. L: 左侧中央前回; THA. L: 左侧丘脑; THA. R: 右侧丘脑; CERC1. R: 右侧小脑; PUT. R: 右侧壳核; ORBsup. R: 右侧眶部额上回。彩图见电子版。

参考文献 50
1 | 段旭君 . ( 2013). 基于大尺度脑网络分析方法的脑可塑性研究(博士学位论文). 电子科技大学, 成都. |
2 | 蒋存梅 . ( 2016). 音乐心理学. 上海: 华东师范大学出版社. |
3 | 马清 . ( 2000). 音乐理论与管弦乐基础. 北京: 北京大学出版社. |
4 | 平心 . ( 2004). 舞蹈心理学. 北京: 高等教育出版社. |
5 | 吕艺生 . ( 2003). 舞蹈学导论. 上海: 上海音乐出版社. |
6 | 覃嫔 . ( 2018). 舞蹈艺术的训练研究. 北京: 北京理工大学出版社. |
7 | 周临舒, 赵怀阳, 蒋存梅 . ( 2017). 音乐表演训练对神经可塑性的影响: 元分析研究. 心理科学进展, 25( 11), 1877-1887. doi: 10.3724/SP.J.1042.2017.01877URL |
8 | Ashburner, J., & Friston K. J, . ( 2000). Voxel-based morphometry--the methods. NeuroImage, 11, 805-821. doi: 10.1006/nimg.2000.0582URL |
9 | Ashburner, J., & Friston K. J, . ( 2005). Unified segmentation. NeuroImage, 26( 3), 839-851. doi: 10.1016/j.neuroimage.2005.02.018URL |
10 | Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., .. Altenmüller E . ( 2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30( 3), 917-926. doi: 10.1016/j.neuroimage.2005.10.044URLpmid: 16380270 |
11 | Bangert, M., & Schlaug G. , ( 2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24( 6), 1832-1834. doi: 10.1111/j.1460-9568.2006.05031.xURLpmid: 1700494617004946 |
12 | Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., & Jancke L . ( 2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78. doi: 10.1016/j.brainres.2007.05.045URLpmid: 17603027 |
13 | Bermudez P., Lerch J. P., Evans A. C., & Zatorre R. J . ( 2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19( 7), 1583-1596. doi: 10.1093/cercor/bhn196URLpmid: 19073623 |
14 | Bostan A. C., Dum R. P., & Strick P. L . ( 2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17( 5), 241-254. doi: 10.1016/j.tics.2013.03.003URL |
15 | Brown S., Martinez M. J., & Parsons L. M . ( 2006). The neural basis of human dance. Cerebral Cortex, 16( 8), 1157-1167. doi: 10.1093/cercor/bhj057URLpmid: 16221923 |
16 | Burzynska A. Z., Finc K., Taylor B. K., Knecht A. M., & Kramer A. F . ( 2017). The dancing brain: Structural and functional signatures of expert dance training. Frontiers in Human Neuroscience, 11, 566. doi: 10.3389/fnhum.2017.00566URLpmid: 5711858 |
17 | Calvo-Merino B., Glaser D. E., Grèzes J., Passingham R. E., & Haggard P . ( 2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15( 8), 1243-1249. doi: 10.1093/cercor/bhi007URLpmid: 15616133 |
18 | Cross E. S., Hamilton A. F., & Grafton S. T . ( 2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31( 3), 1257-1267. doi: 10.1016/j.neuroimage.2006.01.033URL |
19 | Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., & May A . ( 2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427( 6972), 311-312. doi: 10.1038/427311aURL |
20 | Giacosa C., Karpati F. J., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286. doi: 10.1016/j.neuroimage.2016.04.048URLpmid: 27114054 |
21 | Groussard M., Rauchs G., Landeau B., Viader F., Desgranges B., Eustache F., & Platel H . ( 2010). The neural substrates of musical memory revealed by fMRI and two semantic tasks. NeuroImage, 53( 4), 1301-1309. doi: 10.1016/j.neuroimage.2010.07.013URLpmid: 20627131 |
22 | Groussard M., Viader F., Landeau B., Desgranges B., Eustache F., & Platel H . ( 2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180. doi: 10.1016/j.bandc.2014.06.013URLpmid: 25127369 |
23 | Han Y., Yang H., Lv Y. T., Zhu C. Z., He Y., Tang H. H., .. Dong Q . ( 2009). Gray matter density and white matter integrity in pianists' brain: A combined structural and diffusion tensor MRI study. Neuroscience Letters, 459( 1), 3-6. doi: 10.1016/j.neulet.2008.07.056URLpmid: 18672026 |
24 | Hänggi J., Koeneke S., Bezzola L., & Jäncke L . ( 2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31( 8), 1196-1206. doi: 10.1002/hbm.20928URLpmid: 20024944 |
25 | Huang H. Y., Wang J. J., Seger C., Min L., Feng D., Wu X. Y., .. Huang R. W . ( 2017). Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: An independent component analysis. Brain Structure and Function, 223( 1), 131-144. doi: 10.1007/s00429-017-1479-yURLpmid: 28733834 |
26 | Huang R. W., Lu M., Song Z., & Wang J . ( 2015). Long-term intensive training induced brain structural changes in world class gymnasts. Brain Structure and Function, 220( 2), 625-644. doi: 10.1007/s00429-013-0677-5URLpmid: 24297657 |
27 | Hutchinson S., Lee L. H. L., Gaab N., & Schlaug G . ( 2003). Cerebellar volume of musicians. Cerebral Cortex, 13( 9), 943-949. doi: 10.1093/cercor/13.9.943URL |
28 | Hyde K. L., Peretz I., & Zatorre R. J . ( 2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46( 2), 632-639. doi: 10.1016/j.neuropsychologia.2007.09.004URLpmid: 17959204 |
29 | Jola C., McAleer P., Grosbras M. H., Love S. A., Morison G., & Pollick F. E . ( 2013). Uni- and multisensory brain areas are synchronised across spectators when watching unedited dance recordings. i-Perception, 4( 4), 265-284. doi: 10.1068/i0536URLpmid: 24349687 |
30 | Jones J., Adlam A., Benattayallah A., & Milton F . ( 2017, July). Working memory training increases recruitment of the middle frontal gyrus in children. Poster session presented at the Conference of Experimental Psychology Society, Reading, UK. |
31 | Karpati F. J., Giacosa C., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2017). Dance and music share gray matter structural correlates. Brain Research, 1657, 62-73. doi: 10.1016/j.brainres.2016.11.029URLpmid: 27923638 |
32 | Kheradmand, A., & Zee D. S, . ( 2011). Cerebellum and ocular motor control. Frontiers in Neurology, 2, 53. doi: 10.3389/fneur.2011.00053URLpmid: 3164106 |
33 | Koelsch, S., & Siebel W. A, . ( 2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9( 12), 578-584. doi: 10.1016/j.tics.2010.01.002URL |
34 | Lahav A., Saltzman E., & Schlaug G . ( 2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27( 2), 308-314. doi: 10.1523/JNEUROSCI.4822-06.2007URL |
35 | Laufer I., Negishi M., Lacadie C. M., Papademetris X., & Constable R. T . ( 2011). Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming. PLoS One, 6( 8), e22368. doi: 10.1371/journal.pone.0022368URLpmid: 21829619 |
36 | Li G. J., He H., Huang M. T., Zhang X. X., Lu J., Lai Y. X., .. Yao D. Z . ( 2015). Identifying enhanced cortico- basal ganglia loops associated with prolonged dance training. Scientific Reports, 5, 10271. doi: 10.1038/srep10271URLpmid: 26035693 |
37 | Li S. Y., Han Y., Wang D. Y., Yang H., Fan Y. B., Lv Y. T., .. He Y . ( 2010). Mapping surface variability of the central sulcus in musicians. Cerebral Cortex, 20( 1), 25-33. doi: 10.1093/cercor/bhp074URLpmid: 19433652 |
38 | Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S. J., & Frith C. D . ( 2000) Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97( 8), 4398-4403. doi: 10.1073/pnas.070039597URLpmid: 10716738 |
39 | Mutschler I., Schulze-Bonhage A., Glauche V., Demandt E., Speck O., & Ball T . ( 2007). A rapid sound-action association effect in human insular cortex. PLoS One, 2( 2), e259. doi: 10.1371/journal.pone.0000259URLpmid: 17327919 |
40 | Nichols, T. E . ( 2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62( 2), 811-815. doi: 10.1016/j.neuroimage.2012.04.014URLpmid: 22521256 |
41 | Oldfield, R. C . ( 1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9( 1), 97-113. doi: 10.1016/0028-3932(71)90067-4URLpmid: 5146491 |
42 | Ono Y., Nomoto Y., Tanaka S., Sato K., Shimada S., Tachibana A., .. Noah J. A . ( 2014). Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: Temporal characteristics of top-down and bottom-up cortical activities. NeuroImage, 85, 461-470. doi: 10.1016/j.neuroimage.2013.05.071URLpmid: 23707582 |
43 | Öztürk A. H., Tasçioglu B., Aktekin M., Kurtoglu Z., & Erden I . ( 2002). Morphometric comparison of the human corpus callosum in professional musicians and non- musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29( 1), 29-34. doi: 10.1002/jmri.10067URLpmid: 11984475 |
44 | Rüber T., Lindenberg R., & Schlaug G . ( 2015). Differential adaptation of descending motor tracts in musicians. Cerebral Cortex, 25( 6), 1490-1498. doi: 10.1093/cercor/bht331URLpmid: 24363265 |
45 | Schlaug G., Jancke L., Huang Y., & Steinmetz H . ( 1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267( 5198), 699-701. doi: 10.1126/science.7839149URL |
46 | Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694. doi: 10.1038/nn871URLpmid: 12068300 |
47 | Shibasaki H., Sadato N., Lyshkow H., Yonekura Y., Honda M., Nagamine T., .. Konishi J . ( 1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116, 1387-1398. doi: 10.1093/brain/116.6.1387URLpmid: 8293277 |
48 | Sluming V., Barrick T., Howard M., Cezayirli E., Mayes A., & Roberts N . ( 2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17( 3), 1613-1622. doi: 10.1006/nimg.2002.1288URLpmid: 12414299 |
49 | Taubert M., Draganski B., Anwander A., Muller K., Horstmann A., Villringer A., & Ragert P . ( 2010). Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience, 30( 35), 11670-11677. doi: 10.1523/JNEUROSCI.2567-10.2010URLpmid: 20810887 |
50 | Turner R. S., Grafton S. T., Votaw J. R., Delong M. R., & Hoffman J. M . ( 1998). Motor subcircuits mediating the control of movement velocity: A PET study. Journal of Neurophysiology, 80( 4), 2162-2176. doi: 10.1097/00005072-199810000-00010URLpmid: 9772269 |
相关文章 15
[1] | 王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250. |
[2] | 欧华星, 陈伟海. 多巴胺D2受体参与调节感觉门控的机制[J]. 心理科学进展, 2021, 29(6): 1030-1041. |
[3] | 陈红, 刘馨元. 中国人限制性饮食和食物渴求的认知神经机制[J]. 心理科学进展, 2021, 29(6): 951-958. |
[4] | 关旭旭, 王红波. 抑制引起的遗忘及其神经机制[J]. 心理科学进展, 2021, 29(4): 665-676. |
[5] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
[6] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
[7] | 刘宇, 胡传鹏, 樊富珉, 孙沛, 徐杰, 蔡玉清, 刘雪莉. 基于网络理论的物质成瘾新视角[J]. 心理科学进展, 2021, 29(2): 296-310. |
[8] | 薛冰, 王雪娇, 马宁, 高军. 催产素调控心理韧性:基于对海马的作用机制[J]. 心理科学进展, 2021, 29(2): 311-322. |
[9] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[10] | 周璨, 周临舒, 蒋存梅. 音乐愉悦体验的神经机制[J]. 心理科学进展, 2021, 29(1): 123-130. |
[11] | 王红波, 关旭旭, 李梓萌. 即刻消退缺损的原因分析及其神经生物学机制[J]. 心理科学进展, 2021, 29(1): 150-159. |
[12] | 冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988. |
[13] | 王盛, 陈雅弘, 王锦琰. 动物前注意加工模型的建立及评价: 基于精神类疾病损伤[J]. 心理科学进展, 2020, 28(12): 2027-2039. |
[14] | 李灵, 侯晓旭, 张亚, 隋雪. 食物线索注意偏向及其神经机制[J]. 心理科学进展, 2020, 28(12): 2040-2051. |
[15] | 南瑜, 李红, 吴寅. 睾酮与人类攻击行为[J]. 心理科学进展, 2020, 28(10): 1697-1712. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4369