) 电子科技大学生命科学与技术学院, 成都 610054
收稿日期:2017-11-24出版日期:2018-07-15发布日期:2018-05-29通讯作者:尧德中E-mail:dyao@uestc.edu.cn基金资助:****和创新团队发展计划项目(IRT0910);中央高校基本科研业务费项目(ZYGX2016J266)Modern dance training and string instrument training have different effects on grey matter architecture
LI Gujing, LI Xin, HE Hui, LUO Cheng, YAO Dezhong(
) School of Life Science And Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
Received:2017-11-24Online:2018-07-15Published:2018-05-29Contact:YAO Dezhong E-mail:dyao@uestc.edu.cn摘要/Abstract
摘要: 目前舞蹈与音乐两种训练对脑灰质结构影响的差异尚不明确。本研究利用基于体素的形态学分析方法(voxel-based morphometry, VBM), 比较现代舞训练被试、弦乐训练被试与对照组被试的脑结构磁共振数据。结果表明现代舞训练组在涉及感觉运动控制的皮层、皮层下结构及小脑多个区域出现灰质体积的显著增加与减少; 弦乐训练组则在与音乐训练直接相关的听-动-读皮层出现灰质体积的显著增加。这一发现提示现代舞训练可能系统性地影响广泛脑区的灰质结构, 弦乐训练可能局部地改变了具体功能脑区的灰质结构, 两种训练对脑灰质结构的影响模式存在差异。
图/表 3
表1被试人口学信息
| 人口学变量 | 现代舞训练组 | 弦乐训练组 | 对照组 | p |
|---|---|---|---|---|
| 性别(男/女) | 5/13 | 7/13 | 8/17 | 0.892 |
| 年龄(岁) | 19.00 ± 1.41 | 19.05 ± 1.19 | 19.24 ± 0.87 | 0.765 df (2,60) |
| 教育水平(年) | 12.83 ± 1.33 | 13.05 ± 1.09 | 13.20 ± 1.11 | 0.574 df (2,60) |
| 训练年限(年) | 11.44 ± 3.24 | 11.33 ± 2.72 | — | 0.282 df (36) |
表1被试人口学信息
| 人口学变量 | 现代舞训练组 | 弦乐训练组 | 对照组 | p |
|---|---|---|---|---|
| 性别(男/女) | 5/13 | 7/13 | 8/17 | 0.892 |
| 年龄(岁) | 19.00 ± 1.41 | 19.05 ± 1.19 | 19.24 ± 0.87 | 0.765 df (2,60) |
| 教育水平(年) | 12.83 ± 1.33 | 13.05 ± 1.09 | 13.20 ± 1.11 | 0.574 df (2,60) |
| 训练年限(年) | 11.44 ± 3.24 | 11.33 ± 2.72 | — | 0.282 df (36) |
表2现代舞训练组、弦乐训练组与对照组灰质体积的组间比较
| 脑区 | MNI坐标 | 体素 个数 | F(2,60)值 (最大点) | dan-con | dan- con (p) | dan- con (t41) | mus-con | mus- con (p) | mus- con (t43) | mus-dan | mus-dan (p) | mus- dan (t36) | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| x | y | z | ||||||||||||
| Cerebelum_ Crus1_R | 33 | -58 | -40 | 32 | 9.99 | p < 0.05 | 0.01029 | 2.69 | 0.07979 | -1.79 | p < 0.001 | 0.00029 | -4.01 | |
| Frontal_ Med_Orb_R | 6 | 40 | -6 | 82 | 11.29 | p < 0.001 | 0.00039 | 3.86 | 0.74462 | -0.33 | p < 0.001 | 0.00058 | -3.76 | |
| Thalamus_R | 12 | -21 | -1 | 267 | 18.05 | p < 0.001 | 0.00028 | -3.97 | 0.16760 | 1.40 | p < 0.001 | 0.00001 | 5.26 | |
| Thalamus_L | -10 | -16 | 1 | 240 | 13.33 | p < 0.001 | 0.00036 | -3.89 | 0.26093 | 1.14 | p < 0.001 | 0.00001 | 5.26 | |
| Temporal_ Sup_R | 55 | -15 | 1 | 131 | 13.47 | 0.74732 | 0.32 | p < 0.001 | 0.00002 | 4.80 | p < 0.001 | 0.00090 | 3.61 | |
| Putamen_R | 25 | 4 | 13 | 112 | 12.88 | p < 0.001 | 0.00009 | 4.33 | 0.29734 | 1.05 | p < 0.01 | 0.00233 | -3.27 | |
| Supp_Motor_ Area_R | 6 | 1 | 63 | 128 | 11.83 | p < 0.01 | 0.00161 | -3.38 | 0.34007 | 0.96 | p < 0.001 | 0.00001 | 5.12 | |
| Precentral_L | -34 | -6 | 58 | 120 | 12.12 | p < 0.01 | 0.00564 | -2.92 | p < 0.05 | 0.04677 | 2.05 | p < 0.001 | 0.00004 | 4.68 |
| Frontal_ Mid_R | 42 | -3 | 57 | 71 | 11.30 | 0.23886 | -1.20 | p < 0.01 | 0.00225 | 3.24 | p < 0.001 | 0.00003 | 4.77 | |
表2现代舞训练组、弦乐训练组与对照组灰质体积的组间比较
| 脑区 | MNI坐标 | 体素 个数 | F(2,60)值 (最大点) | dan-con | dan- con (p) | dan- con (t41) | mus-con | mus- con (p) | mus- con (t43) | mus-dan | mus-dan (p) | mus- dan (t36) | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| x | y | z | ||||||||||||
| Cerebelum_ Crus1_R | 33 | -58 | -40 | 32 | 9.99 | p < 0.05 | 0.01029 | 2.69 | 0.07979 | -1.79 | p < 0.001 | 0.00029 | -4.01 | |
| Frontal_ Med_Orb_R | 6 | 40 | -6 | 82 | 11.29 | p < 0.001 | 0.00039 | 3.86 | 0.74462 | -0.33 | p < 0.001 | 0.00058 | -3.76 | |
| Thalamus_R | 12 | -21 | -1 | 267 | 18.05 | p < 0.001 | 0.00028 | -3.97 | 0.16760 | 1.40 | p < 0.001 | 0.00001 | 5.26 | |
| Thalamus_L | -10 | -16 | 1 | 240 | 13.33 | p < 0.001 | 0.00036 | -3.89 | 0.26093 | 1.14 | p < 0.001 | 0.00001 | 5.26 | |
| Temporal_ Sup_R | 55 | -15 | 1 | 131 | 13.47 | 0.74732 | 0.32 | p < 0.001 | 0.00002 | 4.80 | p < 0.001 | 0.00090 | 3.61 | |
| Putamen_R | 25 | 4 | 13 | 112 | 12.88 | p < 0.001 | 0.00009 | 4.33 | 0.29734 | 1.05 | p < 0.01 | 0.00233 | -3.27 | |
| Supp_Motor_ Area_R | 6 | 1 | 63 | 128 | 11.83 | p < 0.01 | 0.00161 | -3.38 | 0.34007 | 0.96 | p < 0.001 | 0.00001 | 5.12 | |
| Precentral_L | -34 | -6 | 58 | 120 | 12.12 | p < 0.01 | 0.00564 | -2.92 | p < 0.05 | 0.04677 | 2.05 | p < 0.001 | 0.00004 | 4.68 |
| Frontal_ Mid_R | 42 | -3 | 57 | 71 | 11.30 | 0.23886 | -1.20 | p < 0.01 | 0.00225 | 3.24 | p < 0.001 | 0.00003 | 4.77 | |

图1现代舞训练组、弦乐训练组与对照组灰质体积的组间比较注:MFG. R: 右侧额中回; STG. R: 右侧颞上回; SMA. R: 右侧辅助运动皮层; PreCG. L: 左侧中央前回; THA. L: 左侧丘脑; THA. R: 右侧丘脑; CERC1. R: 右侧小脑; PUT. R: 右侧壳核; ORBsup. R: 右侧眶部额上回。彩图见电子版。
图1现代舞训练组、弦乐训练组与对照组灰质体积的组间比较注:MFG. R: 右侧额中回; STG. R: 右侧颞上回; SMA. R: 右侧辅助运动皮层; PreCG. L: 左侧中央前回; THA. L: 左侧丘脑; THA. R: 右侧丘脑; CERC1. R: 右侧小脑; PUT. R: 右侧壳核; ORBsup. R: 右侧眶部额上回。彩图见电子版。参考文献 50
| 1 | 段旭君 . ( 2013). 基于大尺度脑网络分析方法的脑可塑性研究(博士学位论文). 电子科技大学, 成都. |
| 2 | 蒋存梅 . ( 2016). 音乐心理学. 上海: 华东师范大学出版社. |
| 3 | 马清 . ( 2000). 音乐理论与管弦乐基础. 北京: 北京大学出版社. |
| 4 | 平心 . ( 2004). 舞蹈心理学. 北京: 高等教育出版社. |
| 5 | 吕艺生 . ( 2003). 舞蹈学导论. 上海: 上海音乐出版社. |
| 6 | 覃嫔 . ( 2018). 舞蹈艺术的训练研究. 北京: 北京理工大学出版社. |
| 7 | 周临舒, 赵怀阳, 蒋存梅 . ( 2017). 音乐表演训练对神经可塑性的影响: 元分析研究. 心理科学进展, 25( 11), 1877-1887. doi: 10.3724/SP.J.1042.2017.01877URL |
| 8 | Ashburner, J., & Friston K. J, . ( 2000). Voxel-based morphometry--the methods. NeuroImage, 11, 805-821. doi: 10.1006/nimg.2000.0582URL |
| 9 | Ashburner, J., & Friston K. J, . ( 2005). Unified segmentation. NeuroImage, 26( 3), 839-851. doi: 10.1016/j.neuroimage.2005.02.018URL |
| 10 | Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., .. Altenmüller E . ( 2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30( 3), 917-926. doi: 10.1016/j.neuroimage.2005.10.044URLpmid: 16380270 |
| 11 | Bangert, M., & Schlaug G. , ( 2006). Specialization of the specialized in features of external human brain morphology. European Journal of Neuroscience, 24( 6), 1832-1834. doi: 10.1111/j.1460-9568.2006.05031.xURLpmid: 1700494617004946 |
| 12 | Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., & Jancke L . ( 2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 65-78. doi: 10.1016/j.brainres.2007.05.045URLpmid: 17603027 |
| 13 | Bermudez P., Lerch J. P., Evans A. C., & Zatorre R. J . ( 2009). Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19( 7), 1583-1596. doi: 10.1093/cercor/bhn196URLpmid: 19073623 |
| 14 | Bostan A. C., Dum R. P., & Strick P. L . ( 2013). Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences, 17( 5), 241-254. doi: 10.1016/j.tics.2013.03.003URL |
| 15 | Brown S., Martinez M. J., & Parsons L. M . ( 2006). The neural basis of human dance. Cerebral Cortex, 16( 8), 1157-1167. doi: 10.1093/cercor/bhj057URLpmid: 16221923 |
| 16 | Burzynska A. Z., Finc K., Taylor B. K., Knecht A. M., & Kramer A. F . ( 2017). The dancing brain: Structural and functional signatures of expert dance training. Frontiers in Human Neuroscience, 11, 566. doi: 10.3389/fnhum.2017.00566URLpmid: 5711858 |
| 17 | Calvo-Merino B., Glaser D. E., Grèzes J., Passingham R. E., & Haggard P . ( 2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15( 8), 1243-1249. doi: 10.1093/cercor/bhi007URLpmid: 15616133 |
| 18 | Cross E. S., Hamilton A. F., & Grafton S. T . ( 2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31( 3), 1257-1267. doi: 10.1016/j.neuroimage.2006.01.033URL |
| 19 | Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., & May A . ( 2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427( 6972), 311-312. doi: 10.1038/427311aURL |
| 20 | Giacosa C., Karpati F. J., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2016). Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. NeuroImage, 135, 273-286. doi: 10.1016/j.neuroimage.2016.04.048URLpmid: 27114054 |
| 21 | Groussard M., Rauchs G., Landeau B., Viader F., Desgranges B., Eustache F., & Platel H . ( 2010). The neural substrates of musical memory revealed by fMRI and two semantic tasks. NeuroImage, 53( 4), 1301-1309. doi: 10.1016/j.neuroimage.2010.07.013URLpmid: 20627131 |
| 22 | Groussard M., Viader F., Landeau B., Desgranges B., Eustache F., & Platel H . ( 2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180. doi: 10.1016/j.bandc.2014.06.013URLpmid: 25127369 |
| 23 | Han Y., Yang H., Lv Y. T., Zhu C. Z., He Y., Tang H. H., .. Dong Q . ( 2009). Gray matter density and white matter integrity in pianists' brain: A combined structural and diffusion tensor MRI study. Neuroscience Letters, 459( 1), 3-6. doi: 10.1016/j.neulet.2008.07.056URLpmid: 18672026 |
| 24 | Hänggi J., Koeneke S., Bezzola L., & Jäncke L . ( 2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31( 8), 1196-1206. doi: 10.1002/hbm.20928URLpmid: 20024944 |
| 25 | Huang H. Y., Wang J. J., Seger C., Min L., Feng D., Wu X. Y., .. Huang R. W . ( 2017). Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: An independent component analysis. Brain Structure and Function, 223( 1), 131-144. doi: 10.1007/s00429-017-1479-yURLpmid: 28733834 |
| 26 | Huang R. W., Lu M., Song Z., & Wang J . ( 2015). Long-term intensive training induced brain structural changes in world class gymnasts. Brain Structure and Function, 220( 2), 625-644. doi: 10.1007/s00429-013-0677-5URLpmid: 24297657 |
| 27 | Hutchinson S., Lee L. H. L., Gaab N., & Schlaug G . ( 2003). Cerebellar volume of musicians. Cerebral Cortex, 13( 9), 943-949. doi: 10.1093/cercor/13.9.943URL |
| 28 | Hyde K. L., Peretz I., & Zatorre R. J . ( 2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46( 2), 632-639. doi: 10.1016/j.neuropsychologia.2007.09.004URLpmid: 17959204 |
| 29 | Jola C., McAleer P., Grosbras M. H., Love S. A., Morison G., & Pollick F. E . ( 2013). Uni- and multisensory brain areas are synchronised across spectators when watching unedited dance recordings. i-Perception, 4( 4), 265-284. doi: 10.1068/i0536URLpmid: 24349687 |
| 30 | Jones J., Adlam A., Benattayallah A., & Milton F . ( 2017, July). Working memory training increases recruitment of the middle frontal gyrus in children. Poster session presented at the Conference of Experimental Psychology Society, Reading, UK. |
| 31 | Karpati F. J., Giacosa C., Foster N. E. V., Penhune V. B., & Hyde K. L . ( 2017). Dance and music share gray matter structural correlates. Brain Research, 1657, 62-73. doi: 10.1016/j.brainres.2016.11.029URLpmid: 27923638 |
| 32 | Kheradmand, A., & Zee D. S, . ( 2011). Cerebellum and ocular motor control. Frontiers in Neurology, 2, 53. doi: 10.3389/fneur.2011.00053URLpmid: 3164106 |
| 33 | Koelsch, S., & Siebel W. A, . ( 2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9( 12), 578-584. doi: 10.1016/j.tics.2010.01.002URL |
| 34 | Lahav A., Saltzman E., & Schlaug G . ( 2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27( 2), 308-314. doi: 10.1523/JNEUROSCI.4822-06.2007URL |
| 35 | Laufer I., Negishi M., Lacadie C. M., Papademetris X., & Constable R. T . ( 2011). Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming. PLoS One, 6( 8), e22368. doi: 10.1371/journal.pone.0022368URLpmid: 21829619 |
| 36 | Li G. J., He H., Huang M. T., Zhang X. X., Lu J., Lai Y. X., .. Yao D. Z . ( 2015). Identifying enhanced cortico- basal ganglia loops associated with prolonged dance training. Scientific Reports, 5, 10271. doi: 10.1038/srep10271URLpmid: 26035693 |
| 37 | Li S. Y., Han Y., Wang D. Y., Yang H., Fan Y. B., Lv Y. T., .. He Y . ( 2010). Mapping surface variability of the central sulcus in musicians. Cerebral Cortex, 20( 1), 25-33. doi: 10.1093/cercor/bhp074URLpmid: 19433652 |
| 38 | Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S. J., & Frith C. D . ( 2000) Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97( 8), 4398-4403. doi: 10.1073/pnas.070039597URLpmid: 10716738 |
| 39 | Mutschler I., Schulze-Bonhage A., Glauche V., Demandt E., Speck O., & Ball T . ( 2007). A rapid sound-action association effect in human insular cortex. PLoS One, 2( 2), e259. doi: 10.1371/journal.pone.0000259URLpmid: 17327919 |
| 40 | Nichols, T. E . ( 2012). Multiple testing corrections, nonparametric methods, and random field theory. NeuroImage, 62( 2), 811-815. doi: 10.1016/j.neuroimage.2012.04.014URLpmid: 22521256 |
| 41 | Oldfield, R. C . ( 1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9( 1), 97-113. doi: 10.1016/0028-3932(71)90067-4URLpmid: 5146491 |
| 42 | Ono Y., Nomoto Y., Tanaka S., Sato K., Shimada S., Tachibana A., .. Noah J. A . ( 2014). Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: Temporal characteristics of top-down and bottom-up cortical activities. NeuroImage, 85, 461-470. doi: 10.1016/j.neuroimage.2013.05.071URLpmid: 23707582 |
| 43 | Öztürk A. H., Tasçioglu B., Aktekin M., Kurtoglu Z., & Erden I . ( 2002). Morphometric comparison of the human corpus callosum in professional musicians and non- musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29( 1), 29-34. doi: 10.1002/jmri.10067URLpmid: 11984475 |
| 44 | Rüber T., Lindenberg R., & Schlaug G . ( 2015). Differential adaptation of descending motor tracts in musicians. Cerebral Cortex, 25( 6), 1490-1498. doi: 10.1093/cercor/bht331URLpmid: 24363265 |
| 45 | Schlaug G., Jancke L., Huang Y., & Steinmetz H . ( 1995). In vivo evidence of structural brain asymmetry in musicians. Science, 267( 5198), 699-701. doi: 10.1126/science.7839149URL |
| 46 | Schneider P., Scherg M., Dosch H. G., Specht H. J., Gutschalk A., & Rupp A . ( 2002). Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5( 7), 688-694. doi: 10.1038/nn871URLpmid: 12068300 |
| 47 | Shibasaki H., Sadato N., Lyshkow H., Yonekura Y., Honda M., Nagamine T., .. Konishi J . ( 1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain, 116, 1387-1398. doi: 10.1093/brain/116.6.1387URLpmid: 8293277 |
| 48 | Sluming V., Barrick T., Howard M., Cezayirli E., Mayes A., & Roberts N . ( 2002). Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. NeuroImage, 17( 3), 1613-1622. doi: 10.1006/nimg.2002.1288URLpmid: 12414299 |
| 49 | Taubert M., Draganski B., Anwander A., Muller K., Horstmann A., Villringer A., & Ragert P . ( 2010). Dynamic properties of human brain structure: Learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience, 30( 35), 11670-11677. doi: 10.1523/JNEUROSCI.2567-10.2010URLpmid: 20810887 |
| 50 | Turner R. S., Grafton S. T., Votaw J. R., Delong M. R., & Hoffman J. M . ( 1998). Motor subcircuits mediating the control of movement velocity: A PET study. Journal of Neurophysiology, 80( 4), 2162-2176. doi: 10.1097/00005072-199810000-00010URLpmid: 9772269 |
相关文章 15
| [1] | 王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250. |
| [2] | 欧华星, 陈伟海. 多巴胺D2受体参与调节感觉门控的机制[J]. 心理科学进展, 2021, 29(6): 1030-1041. |
| [3] | 陈红, 刘馨元. 中国人限制性饮食和食物渴求的认知神经机制[J]. 心理科学进展, 2021, 29(6): 951-958. |
| [4] | 关旭旭, 王红波. 抑制引起的遗忘及其神经机制[J]. 心理科学进展, 2021, 29(4): 665-676. |
| [5] | 叶超群, 林郁泓, 刘春雷. 创造力产生过程中的神经振荡机制[J]. 心理科学进展, 2021, 29(4): 697-706. |
| [6] | 秦浩方, 黄蓉, 贾世伟. 反馈相关负波:一种抑郁症的生物标记物[J]. 心理科学进展, 2021, 29(3): 404-413. |
| [7] | 刘宇, 胡传鹏, 樊富珉, 孙沛, 徐杰, 蔡玉清, 刘雪莉. 基于网络理论的物质成瘾新视角[J]. 心理科学进展, 2021, 29(2): 296-310. |
| [8] | 薛冰, 王雪娇, 马宁, 高军. 催产素调控心理韧性:基于对海马的作用机制[J]. 心理科学进展, 2021, 29(2): 311-322. |
| [9] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
| [10] | 周璨, 周临舒, 蒋存梅. 音乐愉悦体验的神经机制[J]. 心理科学进展, 2021, 29(1): 123-130. |
| [11] | 王红波, 关旭旭, 李梓萌. 即刻消退缺损的原因分析及其神经生物学机制[J]. 心理科学进展, 2021, 29(1): 150-159. |
| [12] | 冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988. |
| [13] | 王盛, 陈雅弘, 王锦琰. 动物前注意加工模型的建立及评价: 基于精神类疾病损伤[J]. 心理科学进展, 2020, 28(12): 2027-2039. |
| [14] | 李灵, 侯晓旭, 张亚, 隋雪. 食物线索注意偏向及其神经机制[J]. 心理科学进展, 2020, 28(12): 2040-2051. |
| [15] | 南瑜, 李红, 吴寅. 睾酮与人类攻击行为[J]. 心理科学进展, 2020, 28(10): 1697-1712. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4369
