Soliton and other solutions to the (1【-逻*辑*与-】nbsp;+【-逻*辑*与-】nbsp;2)-dimensional chiral nonlinear Sc
本站小编 Free考研考试/2022-01-02
K Hosseini,1,∗, M Mirzazadeh,2,∗1Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran 2Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan, University of Guilan, P.C. 44891-63157 Rudsar-Vajargah, Iran
First author contact: Authors to whom any correspondence should be addressed. Received:2020-07-04Revised:2020-08-10Accepted:2020-09-10Online:2020-12-01
Abstract The (1+2)-dimensional chiral nonlinear Schrödinger equation (2D-CNLSE) as a nonlinear evolution equation is considered and studied in a detailed manner. To this end, a complex transform is firstly adopted to arrive at the real and imaginary parts of the model, and then, the modified Jacobi elliptic expansion method is formally utilized to derive soliton and other solutions of the 2D-CNLSE. The exact solutions presented in this paper can be classified as topological and nontopological solitons as well as Jacobi elliptic function solutions. Keywords:modified Jacobi elliptic expansion method;(1 + 2)-dimensional chiral nonlinear Schrödinger equation;topological and nontopological solitons;Jacobi elliptic function solutions
PDF (480KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article K Hosseini, M Mirzazadeh. Soliton and other solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation. Communications in Theoretical Physics, 2020, 72(12): 125008- doi:10.1088/1572-9494/abb87b
1. Introduction
Nishino et al [1] studied a nonlinear evolution equation known as the (1+1)-dimensional chiral nonlinear Schrödinger equation (1D-CNLSE) in the form$\begin{eqnarray*}{\rm{i}}{u}_{t}+{c}_{1}{u}_{xx}+{\rm{i}}{c}_{2}\left(u{u}_{x}^{* }-{u}^{* }{u}_{x}\right)u=0,\end{eqnarray*}$and obtained its bright and dark solitons. The 1D-CNLSE was established as a one-dimensional reduction of a system describing the edge states of the Fractional Quantum Hall Effect [2]. Thereafter, the (1+2)-dimensional form of the chiral nonlinear Schrödinger equation (2D-CNLSE), namely [3-6]$\begin{eqnarray}\begin{array}{l}{\rm{i}}{u}_{t}+{c}_{1}\left({u}_{xx}+{u}_{yy}\right)+{\rm{i}}\left({c}_{2}\left(u{u}_{x}^{* }-{u}^{* }{u}_{x}\right)\right.\\ \,+\,\left.{c}_{3}\left(u{u}_{y}^{* }-{u}^{* }{u}_{y}\right)\right)u=0,\end{array}\end{eqnarray}$was studied by a series of researchers using different methods. For example, Biswas [3] obtained chiral solitons of the 2D-CNLSE using several soliton ansatz methods. Eslami [4] used the trial solution method to derive solitons and other solutions of the 2D-CNLSE. Raza and Javid [5] derived exact solutions of the 2D-CNLSE through the modified extended direct algebraic method. Raza and Arshed [6] utilized the sine-Gordon expansion method to obtain chiral bright and dark soliton solutions of the 2D-CNLSE.
It should be mentioned that the first and second terms appeared in equation (1) present the evolution term and the dispersion term, respectively. Besides, ${c}_{2}$ and ${c}_{3}$ signify the coefficients of nonlinear coupling terms. Unfortunately, the 2D-CNLSE is not Galilean invariant and does not possess the Painlevé test [3]. Such features of the 2D-CNLSE reveal the importance of extracting solitons and other solutions to it.
The current paper aims to present soliton and other solutions of the 2D-CNLSE using the modified Jacobi elliptic expansion (MJEE) method [7-14]. To highlight the effectiveness of the MJEE method for handling nonlinear evolution equations, a review of its recent applications is provided below. Ma et al [7] used the MJEE method to construct new exact solutions of MKdV and BBM equations. Hosseini et al [8] obtained solitons and Jacobi elliptic function solutions of the complex Ginzburg-Landau equation using the MJEE method. The reader is referred to [15-36].
The organization of this paper is as follows: in section 2, the MJEE method is described in detail. In section 3, soliton and other solutions of the 2D-CNLSE are constructed using the MJEE method. Finally, conclusions are presented in the last section.
2. The MJEE method
The key ideas of the MJEE method are summarized in this section. To start, consider the following nonlinear ordinary differential equation$\begin{eqnarray}P\left(u,u^{\prime} ,u^{\prime\prime} ,\,\mathrm{...}\right)=0,^{\prime} =\displaystyle \frac{{\rm{d}}}{{\rm{d}}{\epsilon }}.\end{eqnarray}$
Suppose that the exact solution of equation (2) can be written as a finite series in the form$\begin{eqnarray}\begin{array}{l}u\left({\epsilon }\right)={a}_{0}+\displaystyle {\sum }_{i=1}^{N}{\left(\displaystyle \frac{J\left({\epsilon }\right)}{1+{J}^{2}\left({\epsilon }\right)}\right)}^{i-1}\left({a}_{i}\displaystyle \frac{J\left({\epsilon }\right)}{1+{J}^{2}\left({\epsilon }\right)}\right.\\ \,\,\,+\,\left.{b}_{i}\displaystyle \frac{1-{J}^{2}\left({\epsilon }\right)}{1+{J}^{2}\left({\epsilon }\right)}\right),\,{a}_{N}\,{\rm{or}}\,{b}_{N}\ne 0,\end{array}\end{eqnarray}$where ${a}_{0},$ ${a}_{i},$ and ${b}_{i}$ ($1\leqslant i\leqslant N$) are determined later, $N$ is obtained by the balance principle, and $J\left({\epsilon }\right)$ is a Jacobi elliptic function satisfying$\begin{eqnarray}{\left(J^{\prime} \left({\epsilon }\right)\right)}^{2}=D+E{J}^{2}\left({\epsilon }\right)+F{J}^{4}\left({\epsilon }\right).\end{eqnarray}$
The exact solutions of the Jacobi elliptic equation (4) depending on the parameters $D,$ $E,$ and $F$ have been listed in table 1.
Table 1. Table 1.Jacobi elliptic function solutions of equation (4).
By inserting the finite series (3) into equation (2) and exerting some operations, we get a nonlinear algebraic system whose solution results in exact solutions of equation (2).
Several useful properties of the Jacobi elliptic functions have been given below: ${{\rm{sn}}}^{2}\left(\xi \right)+{{\rm{cn}}}^{2}\left(\xi \right)=1.$ ${\rm{sn}}\left(\xi \right)={\rm{sn}}\left(\xi ,m\right)\to \,\tanh \left(\xi \right)$ when $m\to 1.$ ${\rm{ns}}\left(\xi \right)={\left({\rm{sn}}\left(\xi ,m\right)\right)}^{-1}\to \,\coth \left(\xi \right)$ when $m\to 1.$
3. The 2D-CNLSE and its soliton and other solutions
The main aim of this section is to present soliton and other solutions of the 2D-CNLSE using the MJEE method. To this end, a complex transformation is firstly considered as$\begin{eqnarray}u\left(x,y,t\right)=U\left({\epsilon }\right){{\rm{e}}}^{{\rm{i}}\left({\kappa }_{2}x+{\lambda }_{2}y+{\mu }_{2}t\right)},{\epsilon }={\kappa }_{1}x+{\lambda }_{1}y-{\mu }_{1}t,\end{eqnarray}$where
${\kappa }_{1}:$ The inverse width of the soliton in the $x$-direction,
${\lambda }_{1}:$ The inverse width of the soliton in the $y$-direction,
${\mu }_{1}:$ The velocity of the soliton,
${\kappa }_{2}:$ The frequency in the $x$-direction,
${\lambda }_{2}:$ The frequency in the $y$-direction,
From equation (7), the soliton velocity is found as$\begin{eqnarray*}{\mu }_{1}=2{c}_{1}\left({\kappa }_{1}{\kappa }_{2}+{\lambda }_{1}{\lambda }_{2}\right).\end{eqnarray*}$
Now, balancing the terms $\tfrac{{{\rm{d}}}^{2}U\left({\epsilon }\right)}{{\rm{d}}{{\epsilon }}^{2}}$ and ${U}^{3}\left({\epsilon }\right)$ appeared in equation (6) results in $N=1.$ Consequently, based on the initial assumption of the MJEE method, the solution of equation (6) can be written as follows$\begin{eqnarray}U\left({\epsilon }\right)={a}_{0}+{a}_{1}\displaystyle \frac{J\left({\epsilon }\right)}{1+{J}^{2}\left({\epsilon }\right)}+{a}_{2}\displaystyle \frac{1-{J}^{2}\left({\epsilon }\right)}{1+{J}^{2}\left({\epsilon }\right)},\,{a}_{2}={b}_{1},\end{eqnarray}$where ${a}_{0},$ ${a}_{1},$ and ${a}_{2}$ are unknowns. Substituting the solution (8) into equation (6) and exerting some operations, a system of nonlinear algebraic equations is derived as$\begin{eqnarray*}\begin{array}{l}-4D{a}_{2}{c}_{1}{{\kappa }_{1}}^{2}-4D{a}_{2}{c}_{1}{{\lambda }_{1}}^{2}+2{{a}_{0}}^{3}{c}_{2}{\kappa }_{2}+2{{a}_{0}}^{3}{c}_{3}{\lambda }_{2}\\ \,+\,6{{a}_{0}}^{2}{a}_{2}{c}_{2}{\kappa }_{2}+6{{a}_{0}}^{2}{a}_{2}{c}_{3}{\lambda }_{2}+6{a}_{0}{{a}_{2}}^{2}{c}_{2}{\kappa }_{2}\\ \,+\,6{a}_{0}{{a}_{2}}^{2}{c}_{3}{\lambda }_{2}+2{{a}_{2}}^{3}{c}_{2}{\kappa }_{2}+2{{a}_{2}}^{3}{c}_{3}{\lambda }_{2}-{a}_{0}{c}_{1}{{\kappa }_{2}}^{2}\\ \,-\,{a}_{0}{c}_{1}{{\lambda }_{2}}^{2}-{a}_{2}{c}_{1}{{\kappa }_{2}}^{2}-{a}_{2}{c}_{1}{{\lambda }_{2}}^{2}-{a}_{0}{\mu }_{2}-{a}_{2}{\mu }_{2}=0,\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}-6D{a}_{1}{c}_{1}{{\kappa }_{1}}^{2}-6D{a}_{1}{c}_{1}{{\lambda }_{1}}^{2}+E{a}_{1}{c}_{1}{{\kappa }_{1}}^{2}+E{a}_{1}{c}_{1}{{\lambda }_{1}}^{2}\\ \,+\,6{{a}_{0}}^{2}{a}_{1}{c}_{2}{\kappa }_{2}+6{{a}_{0}}^{2}{a}_{1}{c}_{3}{\lambda }_{2}+12{a}_{0}{a}_{1}{a}_{2}{c}_{2}{\kappa }_{2}\\ \,+\,12{a}_{0}{a}_{1}{a}_{2}{c}_{3}{\lambda }_{2}+6{a}_{1}{{a}_{2}}^{2}{c}_{2}{\kappa }_{2}+6{a}_{1}{{a}_{2}}^{2}{c}_{3}{\lambda }_{2}\\ \,-\,{a}_{1}{c}_{1}{{\kappa }_{2}}^{2}-{a}_{1}{c}_{1}{{\lambda }_{2}}^{2}-{a}_{1}{\mu }_{2}=0,\end{array}\,\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}12D{a}_{2}{c}_{1}{{\kappa }_{1}}^{2}+12D{a}_{2}{c}_{1}{{\lambda }_{1}}^{2}-8E{a}_{2}{c}_{1}{{\kappa }_{1}}^{2}-8E{a}_{2}{c}_{1}{{\lambda }_{1}}^{2}\\ \,+\,6{{a}_{0}}^{3}{c}_{2}{\kappa }_{2}+6{{a}_{0}}^{3}{c}_{3}{\lambda }_{2}+6{{a}_{0}}^{2}{a}_{2}{c}_{2}{\kappa }_{2}+6{{a}_{0}}^{2}{a}_{2}{c}_{3}{\lambda }_{2}\\ \,+\,6{a}_{0}{{a}_{1}}^{2}{c}_{2}{\kappa }_{2}+6{a}_{0}{{a}_{1}}^{2}{c}_{3}{\lambda }_{2}-6{a}_{0}{{a}_{2}}^{2}{c}_{2}{\kappa }_{2}\\ \,-\,6{a}_{0}{{a}_{2}}^{2}{c}_{3}{\lambda }_{2}+6{{a}_{1}}^{2}{a}_{2}{c}_{2}{\kappa }_{2}+6{{a}_{1}}^{2}{a}_{2}{c}_{3}{\lambda }_{2}\\ \,-\,6{{a}_{2}}^{3}{c}_{2}{\kappa }_{2}-6{{a}_{2}}^{3}{c}_{3}{\lambda }_{2}-3{a}_{0}{c}_{1}{{\kappa }_{2}}^{2}-3{a}_{0}{c}_{1}{{\lambda }_{2}}^{2}\\ \,-\,{a}_{2}{c}_{1}{{\kappa }_{2}}^{2}-{a}_{2}{c}_{1}{{\lambda }_{2}}^{2}-3{a}_{0}{\mu }_{2}-{a}_{2}{\mu }_{2}=0,\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}2D{a}_{1}{c}_{1}{{\kappa }_{1}}^{2}+2D{a}_{1}{c}_{1}{{\lambda }_{1}}^{2}-6E{a}_{1}{c}_{1}{{\kappa }_{1}}^{2}-6E{a}_{1}{c}_{1}{{\lambda }_{1}}^{2}\\ \,+\,2F{a}_{1}{c}_{1}{{\kappa }_{1}}^{2}+2F{a}_{1}{c}_{1}{{\lambda }_{1}}^{2}+12{{a}_{0}}^{2}{a}_{1}{c}_{2}{\kappa }_{2}\\ \,+\,12{{a}_{0}}^{2}{a}_{1}{c}_{3}{\lambda }_{2}+2{{a}_{1}}^{3}{c}_{2}{\kappa }_{2}+2{{a}_{1}}^{3}{c}_{3}{\lambda }_{2}-12{a}_{1}{{a}_{2}}^{2}{c}_{2}{\kappa }_{2}\\ \,-\,12{a}_{1}{{a}_{2}}^{2}{c}_{3}{\lambda }_{2}-2{a}_{1}{c}_{1}{{\kappa }_{2}}^{2}-2{a}_{1}{c}_{1}{{\lambda }_{2}}^{2}-2{a}_{1}{\mu }_{2}=0,\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}8E{a}_{2}{c}_{1}{{\kappa }_{1}}^{2}+8E{a}_{2}{c}_{1}{{\lambda }_{1}}^{2}-12F{a}_{2}{c}_{1}{{\kappa }_{1}}^{2}-12F{a}_{2}{c}_{1}{{\lambda }_{1}}^{2}\\ \,+\,6{{a}_{0}}^{3}{c}_{2}{\kappa }_{2}+6{{a}_{0}}^{3}{c}_{3}{\lambda }_{2}-6{{a}_{0}}^{2}{a}_{2}{c}_{2}{\kappa }_{2}-6{{a}_{0}}^{2}{a}_{2}{c}_{3}{\lambda }_{2}\\ \,+\,6{a}_{0}{{a}_{1}}^{2}{c}_{2}{\kappa }_{2}+6{a}_{0}{{a}_{1}}^{2}{c}_{3}{\lambda }_{2}-6{a}_{0}{{a}_{2}}^{2}{c}_{2}{\kappa }_{2}\\ \,-\,6{a}_{0}{{a}_{2}}^{2}{c}_{3}{\lambda }_{2}-6{{a}_{1}}^{2}{a}_{2}{c}_{2}{\kappa }_{2}-6{{a}_{1}}^{2}{a}_{2}{c}_{3}{\lambda }_{2}\\ \,+\,6{{a}_{2}}^{3}{c}_{2}{\kappa }_{2}+6{{a}_{2}}^{3}{c}_{3}{\lambda }_{2}-3{a}_{0}{c}_{1}{{\kappa }_{2}}^{2}-3{a}_{0}{c}_{1}{{\lambda }_{2}}^{2}\\ \,+\,{a}_{2}{c}_{1}{{\kappa }_{2}}^{2}+{a}_{2}{c}_{1}{{\lambda }_{2}}^{2}-3{a}_{0}{\mu }_{2}+{a}_{2}{\mu }_{2}=0,\end{array}\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}E{a}_{1}{c}_{1}{{\kappa }_{1}}^{2}+E{a}_{1}{c}_{1}{{\lambda }_{1}}^{2}-6F{a}_{1}{c}_{1}{{\kappa }_{1}}^{2}-6F{a}_{1}{c}_{1}{{\lambda }_{1}}^{2}\\ \,+\,6{{a}_{0}}^{2}{a}_{1}{c}_{2}{\kappa }_{2}+6{{a}_{0}}^{2}{a}_{1}{c}_{3}{\lambda }_{2}-12{a}_{0}{a}_{1}{a}_{2}{c}_{2}{\kappa }_{2}\\ \,-\,12{a}_{0}{a}_{1}{a}_{2}{c}_{3}{\lambda }_{2}+6{a}_{1}{{a}_{2}}^{2}{c}_{2}{\kappa }_{2}+6{a}_{1}{{a}_{2}}^{2}{c}_{3}{\lambda }_{2}\\ \,-\,{a}_{1}{c}_{1}{{\kappa }_{2}}^{2}-{a}_{1}{c}_{1}{{\lambda }_{2}}^{2}-{a}_{1}{\mu }_{2}=0,\end{array}\,\end{eqnarray*}$$\begin{eqnarray*}\begin{array}{l}4F{a}_{2}{c}_{1}{{\kappa }_{1}}^{2}+4F{a}_{2}{c}_{1}{{\lambda }_{1}}^{2}+2{{a}_{0}}^{3}{c}_{2}{\kappa }_{2}+2{{a}_{0}}^{3}{c}_{3}{\lambda }_{2}\\ \,-\,6{{a}_{0}}^{2}{a}_{2}{c}_{2}{\kappa }_{2}-6{{a}_{0}}^{2}{a}_{2}{c}_{3}{\lambda }_{2}+6{a}_{0}{{a}_{2}}^{2}{c}_{2}{\kappa }_{2}\\ \,+\,6{a}_{0}{{a}_{2}}^{2}{c}_{3}{\lambda }_{2}-2{{a}_{2}}^{3}{c}_{2}{\kappa }_{2}-2{{a}_{2}}^{3}{c}_{3}{\lambda }_{2}-{a}_{0}{c}_{1}{{\kappa }_{2}}^{2}\\ \,-\,{a}_{0}{c}_{1}{{\lambda }_{2}}^{2}+{a}_{2}{c}_{1}{{\kappa }_{2}}^{2}+{a}_{2}{c}_{1}{{\lambda }_{2}}^{2}-{a}_{0}{\mu }_{2}+{a}_{2}{\mu }_{2}=0,\end{array}\end{eqnarray*}$whose solution leads to the following cases:
When $D=1,$ $E=-\left({m}^{2}+1\right),$ and $F={m}^{2},$ one derives
Now, the exact solutions of the 2D-CNLSE can be established as follows$\begin{eqnarray*}\begin{array}{l}{u}_{15,16}\left(x,y,t\right)=\pm \sqrt{-\displaystyle \frac{-{c}_{1}{{\kappa }_{1}}^{2}-{c}_{1}{{\lambda }_{1}}^{2}}{4{c}_{2}{\kappa }_{2}+4{c}_{3}{\lambda }_{2}}}\mp \displaystyle \frac{1}{2}\displaystyle \frac{{c}_{1}\left({{\kappa }_{1}}^{2}+{{\lambda }_{1}}^{2}\right)}{{c}_{2}{\kappa }_{2}+{c}_{3}{\lambda }_{2}}\\ \,\times \,\displaystyle \frac{1}{\sqrt{-\tfrac{-{c}_{1}{{\kappa }_{1}}^{2}-{c}_{1}{{\lambda }_{1}}^{2}}{4{c}_{2}{\kappa }_{2}+4{c}_{3}{\lambda }_{2}}}}\\ \,\times \,\displaystyle \frac{1-{{\rm{nc}}}^{2}\left({\kappa }_{1}x+{\lambda }_{1}y-2{c}_{1}\left({\kappa }_{1}{\kappa }_{2}+{\lambda }_{1}{\lambda }_{2}\right)t,\tfrac{1}{2}\right)}{1+{{\rm{nc}}}^{2}\left({\kappa }_{1}x+{\lambda }_{1}y-2{c}_{1}\left({\kappa }_{1}{\kappa }_{2}+{\lambda }_{1}{\lambda }_{2}\right)t,\tfrac{1}{2}\right)}\\ \,\times \,{{\rm{e}}}^{{\rm{i}}\left({\kappa }_{2}x+{\lambda }_{2}y+\displaystyle \frac{1}{2}\left(5{{\kappa }_{1}}^{2}-2{{\kappa }_{2}}^{2}+5{{\lambda }_{1}}^{2}-2{{\lambda }_{2}}^{2}\right){c}_{1}t\right)}.\end{array}\end{eqnarray*}$
Figures 1 and 2 present the 3-dimensional and density plots of $\left|{u}_{1}\left(x,y,t\right)\right|$ and $\left|{u}_{3}\left(x,y,t\right)\right|$ for a series of suitable parameters. More precisely, the parameters ${c}_{1}=-0.1,$ ${c}_{2}=0.1,$ ${c}_{3}=0.1,$ ${\kappa }_{1}=0.3,$ ${\kappa }_{2}=0.3,$ ${\lambda }_{1}=-0.3,$ and ${\lambda }_{2}=0.3$ have been used to portray figure 1 while the parameters ${c}_{1}=0.1,$ ${c}_{2}=0.1,$ ${c}_{3}=0.1,$ ${\kappa }_{1}=0.7,$ ${\kappa }_{2}=0.7,$ ${\lambda }_{1}=-0.7,$ and ${\lambda }_{2}=0.7$ have been utilized to depict figure 2. Clearly, figure 1 shows a dark or topological soliton while figure 2 indicates a bright or nontopological soliton.
According to the knowledge of the authors, the results given in the current paper are new and have not been presented previously.
The results presented in the current research work were examined by Maple, confirming their correctness.
Figure 1.
New window|Download| PPT slide Figure 1.The 3-dimensional and density plots of $\left|{u}_{1}\left(x,y,t\right)\right|$ for ${c}_{1}=-0.1,$ ${c}_{2}=0.1,$ ${c}_{3}=0.1,$ ${\kappa }_{1}=0.3,$ ${\kappa }_{2}=0.3,$ ${\lambda }_{1}=-0.3,$ ${\lambda }_{2}=0.3,$ and $t=0.$
Figure 2.
New window|Download| PPT slide Figure 2.The 3-dimensional and density plots of $\left|{u}_{3}\left(x,y,t\right)\right|$ for ${c}_{1}=0.1,$ ${c}_{2}=0.1,$ ${c}_{3}=0.1,$ ${\kappa }_{1}=0.7,$ ${\kappa }_{2}=0.7,$ ${\lambda }_{1}=-0.7,$ ${\lambda }_{2}=0.7,$ and $t=0.$
4. Conclusion
The main aim of the current article was to study a nonlinear evolution equation referred to as the 2D-CNLSE in mathematical physics. The study firstly progressed with adopting a complex transform to reduce the 2D-CNLSE to a nonlinear ODE in the real domain with a known soliton velocity. The MJEE method was then adopted to obtain soliton and other solutions of the 2D-CNLSE that were classified as topological and nontopological solitons as well as Jacobi elliptic function solutions. The present article provided useful information regarding the 2D-CNLSE and its exact solutions.
HosseiniKMirzazadehMOsmanM SAl QurashiMBaleanuD2020 Solitons and Jacobi elliptic function solutions to the complex Ginzburg-Landau equation 8 225 DOI:10.3389/fphy.2020.00225 [Cited within: 1]
ZayedE M EShohibR M ABiswasAYıldırımYMallawiFBelicM R2019 Chirped and chirp-free solitons in optical fiber Bragg gratings with dispersive reflectivity having parabolic law nonlinearity by Jacobi's elliptic function 15 102784 DOI:10.1016/j.rinp.2019.102784
ZayedE M EAlngarM E M2020 Optical solitons in birefringent fibers with Biswas-Arshed model by generalized Jacobi elliptic function expansion method 203 163922 DOI:10.1016/j.ijleo.2019.163922
HosseiniKMirzazadehMIlieMGómez-AguilarJ F2020 Biswas-Arshed equation with the beta time derivative: optical solitons and other solutions 217 164801 DOI:10.1016/j.ijleo.2020.164801
El-SheikhM M ASeadawyA RAhmedH MArnousA HRabieW B2020 Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations 537 122662 DOI:10.1016/j.physa.2019.122662
HosseiniKMirzazadehMVahidiJAsghariR2020 Optical wave structures to the Fokas-Lenells equation 207 164450 DOI:10.1016/j.ijleo.2020.164450
HosseiniKMatinfarMMirzazadehM2020 A (3+1)-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions 207 164458 DOI:10.1016/j.ijleo.2020.164458 [Cited within: 1]
HosseiniKOsmanM SMirzazadehMRabieiF2020 Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation 206 164259 DOI:10.1016/j.ijleo.2020.164259
HosseiniKMirzazadehMZhouQLiuYMoradiM2019 Analytic study on chirped optical solitons in nonlinear metamaterials with higher order effects 29 095402 DOI:10.1088/1555-6611/ab356f
HosseiniKMirzazadehMRabieiFBaskonusH MYelG2020 Dark optical solitons to the Biswas-Arshed equation with high order dispersions and absence of self-phase modulation 209 164576 DOI:10.1016/j.ijleo.2020.164576
HosseiniKMaW XAnsariRMirzazadehMPouyanmehrRSamadaniF2020 Evolutionary behavior of rational wave solutions to the (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation 95 065208 DOI:10.1088/1402-4896/ab7fee
BiswasAArshedS2018 Optical solitons in presence of higher order dispersions and absence of self-phase modulation 174 452459 DOI:10.1016/j.ijleo.2018.08.037
BiswasAUllahM ZZhouQMoshokoaS PTrikiHBelicM2017 Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle 145 1821 DOI:10.1016/j.ijleo.2017.07.028
KumarSMalikSBiswasAYıldırımYAlshomraniA SBelicM R2020 Optical solitons with generalized anti-cubic nonlinearity by Lie symmetry 206 163638 DOI:10.1016/j.ijleo.2019.163638
YıldırımYBiswasAJawadA J MEkiciMZhouQKhanSAlzahraniA KBelicM R2020 Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion 16 102913 DOI:10.1016/j.rinp.2019.102913
KudryashovN A2020 Method for finding highly dispersive optical solitons of nonlinear differential equations 206 163550 DOI:10.1016/j.ijleo.2019.163550
KudryashovN A2020 Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation 206 164335 DOI:10.1016/j.ijleo.2020.164335
KudryashovN A2020 Solitary wave solutions of the generalized Biswas-Arshed equation 219 165002 DOI:10.1016/j.ijleo.2020.165002
HouweAIncMDokaS YAkinlarM ABaleanuD2020 Chirped solitons in negative index materials generated by Kerr nonlinearity 17 103097 DOI:10.1016/j.rinp.2020.103097
AliyuA IIncMYusufABaleanuD2019 Optical solitons and stability analysis with spatio-temporal dispersion in Kerr and quadric-cubic nonlinear media 178 923931 DOI:10.1016/j.ijleo.2018.10.046
IncMAliyuA IYusufABaleanuD2018 Combined optical solitary waves and conservation laws for nonlinear Chen-Lee-Liu equation in optical fibers 158 297304 DOI:10.1016/j.ijleo.2017.12.075
SrivastavaH MBaleanuDMachadoJ A TOsmanM SRezazadehRArshedSGünerhanH2020 Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method 95 075217 DOI:10.1088/1402-4896/ab95af
ChenY XXuF QHuY L2019 Excitation control for three-dimensional Peregrine solution and combined breather of a partially nonlocal variable-coefficient nonlinear Schrödinger equation 95 19571964 DOI:10.1007/s11071-018-4670-7
DaiC QFanYZhangN2019 Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method 96 2026 DOI:10.1016/j.aml.2019.04.009
WangB HWangY Y2020 Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE 110 106583 DOI:10.1016/j.aml.2020.106583
YuL JWuG ZWangY YChenY X2020 Traveling wave solutions constructed by Mittag-Leffler function of a (2+1)-dimensional space-time fractional NLS equation 17 103156 DOI:10.1016/j.rinp.2020.103156
DaiC QFanYWangY Y2019 Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials 98 489499 DOI:10.1007/s11071-019-05206-z [Cited within: 1]