删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Solitons and periodic waves for a generalized (3【-逻*辑*与-】plus;1)-dimensional Kadomtsev【-逻*辑*与-】ndash

本站小编 Free考研考试/2022-01-02

Dong Wang,, Yi-Tian Gao, Cui-Cui Ding, Cai-Yin ZhangMinistry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

First author contact: Author to whom any correspondence should be addressed.
Received:2020-03-12Revised:2020-05-8Accepted:2020-05-27Online:2020-10-21


Abstract
Under investigation in this paper is a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics. Soliton and one-periodic-wave solutions are obtained via the Hirota bilinear method and Hirota–Riemann method. Magnitude and velocity of the one soliton are derived. Graphs are presented to discuss the solitons and one-periodic waves: the coefficients in the equation can determine the velocity components of the one soliton, but cannot alter the soliton magnitude; the interaction between the two solitons is elastic; the coefficients in the equation can influence the periods and velocities of the periodic waves. Relation between the one-soliton solution and one-periodic wave solution is investigated.
Keywords: fluid dynamics;plasma physics;generalized (3+1)-dimensional Kadomtsev–Petviashvili equation;solitons;periodic waves


PDF (559KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Dong Wang, Yi-Tian Gao, Cui-Cui Ding, Cai-Yin Zhang. Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics. Communications in Theoretical Physics[J], 2020, 72(11): 115004- doi:10.1088/1572-9494/aba241

1. Introduction

The Kadomtsev–Petviashvili-type equations have been introduced to describe the water waves in long wavelengths with the weakly nonlinear restoring forces, waves in the ferromagnetic media and matter waves in the Bose–Einstein condensates [112], and have been applied to investigate the motion of the near-resonant wave humps in the near shore of Harilaid [13], long and rouge waves in the river Seven Ghosts [14], dynamics of the tsunamis generated by undersea earthquakes in the northern Indian Sea [15], and interaction/generation of the long-crested internal solitary waves in the South China Sea [16]. Methods to solve such equations have been proposed, including the Darboux transformation [1729], Bäcklund transformation [30, 31], Hirota bilinear method [3236], inverse scattering method [3739], multiple exp-function method [4043], similarity transformation [44], Kadomtsev–Petviashvili hierarchy reduction [4549], Hirota–Riemann method [5053] and Lie group analysis [5457].

In this paper, we will investigate a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics [58]$ \begin{eqnarray}\begin{array}{l}{u}_{{xxxy}}+3{\left({u}_{x}{u}_{y}\right)}_{x}+\alpha {u}_{{xxxz}}+3\alpha {\left({u}_{x}{u}_{z}\right)}_{x}+{\zeta }_{1}{u}_{{xt}}\\ \quad +\,{\zeta }_{2}{u}_{{yt}}+{\zeta }_{3}{u}_{{zt}}+{\varpi }_{1}{u}_{{xz}}+{\varpi }_{2}{u}_{{yz}}+{\varpi }_{3}{u}_{{zz}}=0,\end{array}\end{eqnarray}$ where u (x, y, z, t) is a real function of the variables x, y, z and t, the coefficients α, ζκ 's and ϖκ 's (κ =1, 2, 3) are the real constants, and the subscripts with respect to the variables x, y, z and t represent the partial derivatives. Special cases of equation (1 ) have been investigated, as follows: When α =ζ1 =ζ3 =ϖ2 =ϖ3 =0, ζ2 =−1 and ϖ1 = −3, equation (1 ) can be reduced to the generalized B-type Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics [59, 60].
When α =ϖ2 =ϖ3 =0, ζ1 =ζ2 =ζ3 =2 and ϖ1 = −3, equation (1 ) can be reduced to the extended Jimbo–Miwa equation in fluid dynamics [61, 62].
When α =ζ1 =ζ3 =ϖ2 =ϖ3 =0 and ζ2 =ϖ1 =−1, equation (1 ) can be reduced to the generalized shallow water wave equation [63, 64].


With the logarithm transformation $u=2{(\mathrm{ln}F)}_{x}$, the bilinear form for equation (1 ) has been obtained as [58]$ \begin{eqnarray}\begin{array}{l}({D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}+{\zeta }_{2}{D}_{y}{D}_{t}+{\zeta }_{3}{D}_{z}{D}_{t}\\ \quad +\,{\varpi }_{1}{D}_{x}{D}_{z}+{\varpi }_{2}{D}_{y}{D}_{z}+{\varpi }_{3}{D}_{z}^{2})F\cdot F=0,\end{array}\end{eqnarray}$ where F is a real function of x, y, z and t, D is the Hirota bilinear operator defined as [65]
$ \begin{eqnarray*}\begin{array}{l}\displaystyle \prod _{j=1}^{\varphi }{D}_{{X}_{j}}^{{l}_{j}}\check{F}\cdot \check{G}=\displaystyle \prod _{j=1}^{\varphi }{\left(\displaystyle \frac{\partial }{\partial {X}_{j}}-\displaystyle \frac{\partial }{\partial {Y}_{j}}\right)}^{{l}_{j}}\check{F}({X}_{1},{X}_{2},\,\ldots ,\,{X}_{\varphi })\\ \quad \cdot \,{\left.\check{G}({Y}_{1},{Y}_{2},\ldots ,{Y}_{\varphi })\right|}_{{X}_{1}={Y}_{1},{X}_{2}={Y}_{2},\ldots ,{X}_{\varphi }={Y}_{\varphi }},\end{array}\end{eqnarray*}$
where $\check{F}$ and $\check{G}$ are the complex functions of (X1, X2, ..., Xφ ) and (Y1, Y2, ..., Yφ ), φ is a positive integer, Xς 's and Yς 's (ς =1,2, …, φ) are the formal variables, and lς 's are the non-negative integers. Lump and lump strip solutions for equation (1 ) have been derived [58].

However, to our knowledge, soliton and periodic wave solutions for equation (1 ) have not been obtained. In section 2, one-, two- and three-soliton solutions for equation (1 ) will be derived via the Hirota bilinear method. In section 3, one-periodic wave solution for equation (1 ) will be obtained via the Hirota–Riemann method. In section 4, we will discuss the solitons and the one-periodic waves graphically, and investigate the relation between the one-periodic wave solution and one-soliton solution. In section 5, conclusions will be given.

2. Soliton solutions for equation (1 )

Soliton solutions can be obtained by means of expanding F (x, y, z, t) as$ \begin{eqnarray}F(x,y,z,t)=1+\varepsilon {F}_{1}+{\varepsilon }^{2}{F}_{2}+{\varepsilon }^{3}{F}_{3}+\ldots +{\varepsilon }^{N}{F}_{N},\end{eqnarray}$ substituting expansion (3 ) into bilinear form (2 ), and then equating the coefficients on the same order of ϵ with zero, where N is a positive integer, ${F}_{\varrho }(x,y,z,t)$ 's ($\varrho =1,2,3,\ldots $ ) are the real functions and ϵ is a real constant.

2.1. One-soliton solution for equation (1 )

Truncating expression (3 ) to$ \begin{eqnarray}F(x,y,z,t)=1+\varepsilon {F}_{1},\end{eqnarray}$ and assuming that ${F}_{1}={{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}$, ϵ =1, we can obtain the one-soliton solution as$ \begin{eqnarray}u=2\displaystyle \frac{{F}_{1}{k}_{1}}{1+{F}_{1}},\end{eqnarray}$ where ${k}_{1},{m}_{1},{\omega }_{1}\,{n}_{1},{\rm{a}}{\rm{n}}{\rm{d}}\,{\eta }_{1}$ are the real constants,
$ \begin{eqnarray*}{\omega }_{1}=-\displaystyle \frac{{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})}{{k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3}}.\end{eqnarray*}$
This solution suggests that the magnitude of the one soliton is $2{k}_{1}$ . Characteristic line equation for solution (5 ) is written as$ \begin{eqnarray}{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}=\mathrm{constant}.\end{eqnarray}$ Differentiating the distance of two characteristic lines with respect to t, we can obtain the velocity ${\boldsymbol{V}}={\left[{V}_{x},{V}_{y},{V}_{z}\right]}^{{\rm{T}}}$ for the one soliton, where$ \begin{eqnarray}\begin{array}{rcl}{V}_{x} & = & \displaystyle \frac{{k}_{1}[{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})]}{({k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3})({k}_{1}^{2}+{m}_{1}^{2}+{n}_{1}^{2})},\\ {V}_{y} & = & \displaystyle \frac{{m}_{1}[{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})]}{({k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3})({k}_{1}^{2}+{m}_{1}^{2}+{n}_{1}^{2})},\\ {V}_{z} & = & \displaystyle \frac{{n}_{1}[{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})]}{({k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3})({k}_{1}^{2}+{m}_{1}^{2}+{n}_{1}^{2})},\end{array}\end{eqnarray}$ and T represents the transposition of a matrix. Therefore, the coefficients α, ζκ 's, ϖκ 's determine the velocity of the one soliton.

2.2. Two-soliton solution for equation (1 )

Truncating F (x, y, z, t) into$ \begin{eqnarray}F=1+\varepsilon {F}_{1}+{\varepsilon }^{2}{F}_{2},\end{eqnarray}$ and assuming that
$ \begin{eqnarray*}\begin{array}{rcl}{F}_{1} & = & {{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}+{{\rm{e}}}^{{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}},\\ {F}_{2} & = & A{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}},\,\varepsilon =1,\end{array}\end{eqnarray*}$
we can construct the two-soliton solution as$ \begin{eqnarray}u=2\displaystyle \frac{{F}_{1x}+{F}_{2x}}{1+{F}_{1}+{F}_{2}},\end{eqnarray}$ where A, kι 's, mι 's, nι 's, ωι 's and ηι 's (ι =1, 2) are the real constants,
$ \begin{eqnarray*}\begin{array}{rcl}{\omega }_{1} & = & -\displaystyle \frac{{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})}{{k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3}},\\ {\omega }_{2} & = & -\displaystyle \frac{{k}_{2}^{3}({m}_{2}+\alpha {n}_{2})+{n}_{2}({k}_{2}{\varpi }_{1}+{m}_{2}{\varpi }_{2}+{n}_{2}{\varpi }_{3})}{{k}_{2}{\zeta }_{1}+{m}_{2}{\zeta }_{2}+{n}_{2}{\zeta }_{3}},\\ A & = & -\displaystyle \frac{{N}_{1}}{{L}_{1}},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{N}_{1} & = & \left[{m}_{1}-{m}_{2}+\alpha ({n}_{1}-{n}_{2})\right]{\left({k}_{1}-{k}_{2}\right)}^{3}\\ & & +[({k}_{1}-{k}_{2}){\varpi }_{1}+({m}_{1}-{m}_{2}){\varpi }_{2}+({n}_{1}-{n}_{2}){\varpi }_{3}]\\ & & \times ({n}_{1}-{n}_{2})+[({k}_{1}-{k}_{2}){\zeta }_{1}+({m}_{1}-{m}_{2}){\zeta }_{2}\\ & & +({n}_{1}-{n}_{2}){\zeta }_{3}]({\omega }_{1}-{\omega }_{2}),\\ {L}_{1} & = & [{m}_{1}+{m}_{2}+\alpha ({n}_{1}+{n}_{2})]{\left({k}_{1}+{k}_{2}\right)}^{3}\\ & & +[({k}_{1}+{k}_{2}){\varpi }_{1}+({m}_{1}+{m}_{2}){\varpi }_{2}+({n}_{1}+{n}_{2}){\varpi }_{3}]\\ & & \times ({n}_{1}+{n}_{2})+[({k}_{1}+{k}_{2}){\zeta }_{1}+({m}_{1}+{m}_{2}){\zeta }_{2}\\ & & +({n}_{1}+{n}_{2}){\zeta }_{3}]({\omega }_{1}+{\omega }_{2}).\end{array}\end{eqnarray*}$

2.3. Three-soliton solution for equation (1 )

Truncating expression (3 ) as$ \begin{eqnarray}F=1+\varepsilon {F}_{1}+{\varepsilon }^{2}{F}_{2}+{\varepsilon }^{3}{F}_{3},\end{eqnarray}$ and supposing that
$ \begin{eqnarray*}\begin{array}{rcl}{F}_{1} & = & {{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}\\ & & +{{\rm{e}}}^{{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}}\\ & & +{{\rm{e}}}^{{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}},\\ {F}_{2} & = & {A}_{12}{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}}\\ & & +{A}_{13}{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}}\\ & & +{A}_{23}{{\rm{e}}}^{{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}+{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}},\\ {F}_{3} & = & {A}_{123}{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}+{k}_{2}x+{m}_{2}y+{n}_{2}z+{\omega }_{2}t+{\eta }_{2}}\\ & & \cdot {{\rm{e}}}^{{k}_{3}x+{m}_{3}y+{n}_{3}z+{\omega }_{3}t+{\eta }_{3}},\varepsilon =1,\end{array}\end{eqnarray*}$
we hereby acquire the three-soliton solution as$ \begin{eqnarray}u=2\displaystyle \frac{{F}_{1x}+{F}_{2x}+{F}_{3x}}{1+{F}_{1}+{F}_{2}+{F}_{3}},\end{eqnarray}$ where A12, A13, A23, A123, kκ 's, mκ 's, nκ 's, ωκ 's and ηκ 's are the real constants,
$ \begin{eqnarray*}\begin{array}{rcl}{\omega }_{\kappa } & = & -\displaystyle \frac{{k}_{\kappa }^{3}({m}_{\kappa }+\alpha {n}_{\kappa })+{n}_{\kappa }({k}_{\kappa }{\varpi }_{1}+{m}_{\kappa }{\varpi }_{2}+{n}_{\kappa }{\varpi }_{3})}{{k}_{\kappa }{\zeta }_{1}+{m}_{\kappa }{\zeta }_{2}+{n}_{\kappa }{\zeta }_{3}},\\ {A}_{{pq}} & = & -\displaystyle \frac{{N}_{{pq}}}{{L}_{{pq}}},\,(p=1,2,\,q=2,3\,\mathrm{and}\,p\lt q),\\ {N}_{{pq}} & = & \left[{m}_{p}-{m}_{q}+\alpha ({n}_{p}-{n}_{q})\right]{\left({k}_{p}-{k}_{q}\right)}^{3}\\ & & +[({k}_{p}-{k}_{q}){\varpi }_{1}+({m}_{p}-{m}_{q}){\varpi }_{2}+({n}_{p}-{n}_{q}){\varpi }_{3}]\\ & & \times ({n}_{p}-{n}_{q})+[({k}_{p}-{k}_{q}){\zeta }_{1}+({m}_{p}-{m}_{q}){\zeta }_{2}\\ & & +({n}_{p}-{n}_{q}){\zeta }_{3}]({\omega }_{p}-{\omega }_{q}),\\ {L}_{{pq}} & = & [{m}_{p}+{m}_{q}+\alpha ({n}_{p}+{n}_{q})]{\left({k}_{p}+{k}_{q}\right)}^{3}\\ & & +[({k}_{p}+{k}_{q}){\varpi }_{1}+({m}_{p}+{m}_{q}){\varpi }_{2}+({n}_{p}+{n}_{q}){\varpi }_{3}]\\ & & \times ({n}_{p}+{n}_{q})+[({k}_{p}+{k}_{q}){\zeta }_{1}+({m}_{p}+{m}_{q}){\zeta }_{2}\\ & & +({n}_{p}+{n}_{q}){\zeta }_{3}]({\omega }_{p}+{\omega }_{q}),\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{A}_{123} & = & -\displaystyle \frac{{M}_{12}{A}_{12}+{M}_{13}{A}_{13}+{M}_{23}{A}_{23}}{{L}_{123}},(r=6-p-q),\\ {M}_{{pq}} & = & [{m}_{p}+{m}_{q}-{m}_{r}+\alpha ({n}_{p}+{n}_{q}-{n}_{r})]{\left({k}_{p}+{k}_{q}-{k}_{r}\right)}^{3}\\ & & +[({k}_{p}+{k}_{q}-{k}_{r}){\varpi }_{1}+({m}_{p}+{m}_{q}-{m}_{r}){\varpi }_{2}\\ & & +({n}_{p}+{n}_{q}-{n}_{r}){\varpi }_{3}]({n}_{p}+{n}_{q}-{n}_{r})\\ & & +[({k}_{p}+{k}_{q}-{k}_{r}){\zeta }_{1}+({m}_{p}+{m}_{q}-{m}_{r}){\zeta }_{2}\\ & & +({n}_{p}+{n}_{q}-{n}_{r}){\zeta }_{3}]({\omega }_{p}+{\omega }_{q}-{\omega }_{r}),\\ {L}_{123} & = & [{m}_{1}+{m}_{2}+{m}_{3}+\alpha ({n}_{1}+{n}_{2}+{n}_{3})]{\left({k}_{1}+{k}_{2}+{k}_{3}\right)}^{3}\\ & & +[({k}_{1}+{k}_{2}+{k}_{3}){\varpi }_{1}+({m}_{1}+{m}_{2}+{m}_{3}){\varpi }_{2}\\ & & +({n}_{1}+{n}_{2}+{n}_{3}){\varpi }_{3}]({n}_{1}+{n}_{2}+{n}_{3})\\ & & +[({k}_{1}+{k}_{2}+{k}_{3}){\zeta }_{1}+({m}_{1}+{m}_{2}+{m}_{3}){\zeta }_{2}\\ & & +({n}_{1}+{n}_{2}+{n}_{3}){\zeta }_{3}]({\omega }_{1}+{\omega }_{2}+{\omega }_{3}),\end{array}\end{eqnarray*}$
with the constraint ${A}_{123}={A}_{12}{A}_{13}{A}_{23}$ .

3. One-periodic wave solution for equation (1 )

In order to derive the one-periodic wave solution for equation (1 ), we introduce the one-Riemann theta function [33] as$ \begin{eqnarray}\theta (\xi ,\tau )=\displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi },\end{eqnarray}$ where n is an integer, ${\rm{i}}=\sqrt{-1}$, ξ =μx +νy + ρz + γt +δ, τ is a complex constant satisfying Im(τ)>0, and μ, ν, ρ, γ and δ are the real constants. Substituting θ (ξ, τ) into bilinear form (2 ), we get$ \begin{eqnarray}\begin{array}{l}\bar{G}[{D}_{x},{D}_{y},{D}_{z},{D}_{t},c]\theta (\xi ,\tau )\cdot \theta (\xi ,\tau )\\ \quad \triangleq \,[{D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}+{\zeta }_{2}{D}_{y}{D}_{t}\\ \qquad +\,{\zeta }_{3}{D}_{z}{D}_{t}+{\varpi }_{1}{D}_{x}{D}_{z}+{\varpi }_{2}{D}_{y}{D}_{z}\\ \qquad +\,{\varpi }_{3}{D}_{z}^{2}+c]\theta (\xi ,\tau )\cdot \theta (\xi ,\tau )=0,\end{array}\end{eqnarray}$ where c is a constant to be determined.

With the following property of the Hirota bilinear operators,$ \begin{eqnarray}\begin{array}{l}{D}_{x}^{r1}{D}_{y}^{r2}{D}_{z}^{r3}{D}_{t}^{r4}{{\rm{e}}}^{{\xi }_{1}}\cdot {{\rm{e}}}^{{\xi }_{2}}\\ =\,{\left({\mu }_{1}-{\mu }_{2}\right)}^{{r}_{1}}{\left({\nu }_{1}-{\nu }_{2}\right)}^{{r}_{2}}{\left({\rho }_{1}-{\rho }_{2}\right)}^{{r}_{3}}{\left({\gamma }_{1}-{\gamma }_{2}\right)}^{{r}_{4}}{{\rm{e}}}^{{\xi }_{1}+{\xi }_{2}},\end{array}\end{eqnarray}$ where ${r}_{1},{r}_{2},{r}_{3},{r}_{4},{\mu }_{\iota },{\nu }_{\iota },{\rho }_{\iota },{\gamma }_{\iota }\,{\rm{a}}{\rm{n}}{\rm{d}}\,{\delta }_{\iota }$ are the real constants, ${\xi }_{\iota }={\mu }_{\iota }x+{\nu }_{\iota }y+{\rho }_{\iota }z+{\gamma }_{\iota }t+{\delta }_{\iota },$ expression (13 ) can be further derived as$ \begin{eqnarray}\begin{array}{l}\bar{G}[{D}_{x},{D}_{y},{D}_{z},{D}_{t},c]\theta (\xi ,\tau )\cdot \theta (\xi ,\tau )\\ =\,[{D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}+{\zeta }_{2}{D}_{y}{D}_{t}\\ \quad +\,{\zeta }_{3}{D}_{z}{D}_{t}+{\varpi }_{1}{D}_{x}{D}_{z}+{\varpi }_{2}{D}_{y}{D}_{z}\\ \quad +\,{\varpi }_{3}{D}_{z}^{2}+c]\displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi }\cdot \displaystyle \sum _{m=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi {m}^{2}\tau +2{\rm{i}}\pi m\xi }\\ =\,\displaystyle \sum _{n=-\infty }^{+\infty }\displaystyle \sum _{m=-\infty }^{+\infty }[{D}_{x}^{3}{D}_{y}+\alpha {D}_{x}^{3}{D}_{z}+{\zeta }_{1}{D}_{x}{D}_{t}\\ \quad +\,{\zeta }_{2}{D}_{y}{D}_{t}+{\zeta }_{3}{D}_{z}{D}_{t}+{\varpi }_{1}{D}_{x}{D}_{z}\\ \quad +\,{\varpi }_{2}{D}_{y}{D}_{z}+{\varpi }_{3}{D}_{z}^{2}+c]{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi }\cdot {{\rm{e}}}^{{\rm{i}}\pi {m}^{2}\tau +2{\rm{i}}\pi m\xi }\\ =\,\displaystyle \sum _{n=-\infty }^{+\infty }\displaystyle \sum _{m=-\infty }^{+\infty }\bar{G}[2{\rm{i}}\pi (n-m)\mu ,2{\rm{i}}\pi (n-m)\nu ,\\ \quad 2{\rm{i}}\pi (n-m)\rho ,2{\rm{i}}\pi (n-m)\gamma ]\,{{\rm{e}}}^{2{\rm{i}}\pi (n+m)\xi +{\rm{i}}\pi ({n}^{2}+{m}^{2})\tau }\\ \underset{{m}^{{\prime} }=n+m}{\overset{{\rm{def}}}{=======}}\displaystyle \sum _{{m}^{{\prime} }=-\infty }^{+\infty }\hat{G}[{m}^{{\prime} }]{{\rm{e}}}^{2{\rm{i}}\pi {m}^{{\prime} }\xi },\end{array}\end{eqnarray}$ where m is an integer and
$ \begin{eqnarray*}\begin{array}{l}\hat{G}[{m}^{{\rm{{\prime} }}}]\triangleq \displaystyle \displaystyle \sum _{n=-\infty }^{+\infty }\hat{G}[2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\mu ,2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\nu ,\\ \,2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\rho ,2{\rm{i}}\pi (2n-{m}^{{\rm{{\prime} }}})\gamma ]{{\rm{e}}}^{{\rm{i}}\pi [{n}^{2}+{\left(n-{m}^{{\rm{{\prime} }}}\right)}^{2}]\tau }\\ \,\displaystyle \mathop{\mathop{=======}\limits^{{\rm{d}}{\rm{e}}{\rm{f}}}}\limits_{{n}^{{\rm{{\prime} }}}=n-1}\displaystyle \displaystyle \sum _{{n}^{{\rm{{\prime} }}}=-\infty }^{+\infty }\hat{G}[2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)]\mu ,\\ \,2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)]\nu ,\\ \,2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)]\rho ,2{\rm{i}}\pi [2{n}^{{\rm{{\prime} }}}\\ \,-({m}^{{\rm{{\prime} }}}-2)]\gamma ]{{\rm{e}}}^{{\rm{i}}\pi [{n}^{{\rm{{\prime} }}2}+{\left({n}^{{\rm{{\prime} }}}-({m}^{{\rm{{\prime} }}}-2)\right)}^{2}]\tau }\cdot {{\rm{e}}}^{2{\rm{i}}\pi ({m}^{{\rm{{\prime} }}}-1)\tau }\\ \,=\,\hat{G}[{m}^{{\rm{{\prime} }}}-2]{{\rm{e}}}^{2{\rm{i}}\pi ({m}^{{\rm{{\prime} }}}-1)\tau }\\ \,=\ldots =\left\{\begin{array}{l}\hat{G}[0]{{\rm{e}}}^{{\textstyle \tfrac{1}{2}}{m}^{{\rm{{\prime} }}2}{\rm{i}}\pi \tau },({m}^{{\rm{{\prime} }}}\,{\rm{i}}{\rm{s}}\,{\rm{e}}{\rm{v}}{\rm{e}}{\rm{n}}),\\ \hat{G}[1]{{\rm{e}}}^{{\textstyle \tfrac{1}{2}}({m}^{{\rm{{\prime} }}2}-1){\rm{i}}\pi \tau },({m}^{{\rm{{\prime} }}}\,{\rm{i}}{\rm{s}}\,{\rm{o}}{\rm{d}}{\rm{d}}).\end{array}\right.\end{array}\end{eqnarray*}$

To ensure that expression (15 ) satisfies equation (13 ), it is required that $\hat{G}[0]=0$ and $\hat{G}[1]=0$, where$ \begin{eqnarray}\begin{array}{rcl}\hat{G}[0] & = & \displaystyle \sum _{n=-\infty }^{+\infty }G[2{\rm{i}}\pi (2n)\mu ,2{\rm{i}}\pi (2n)\nu ,2{\rm{i}}\pi (2n)\rho ,\\ & & 2{\rm{i}}\pi (2n)\gamma ]{{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau }\\ & = & \displaystyle \sum _{n=-\infty }^{+\infty }(256{\pi }^{4}{n}^{4}{\mu }^{3}\nu +256\alpha {\pi }^{4}{n}^{4}{\mu }^{3}\rho \\ & & -16{\zeta }_{1}{\pi }^{2}{n}^{2}\mu \gamma -16{\zeta }_{2}{\pi }^{2}{n}^{2}\nu \gamma -16{\zeta }_{3}{\pi }^{2}{n}^{2}\rho \gamma \\ & & -16{\varpi }_{1}{\pi }^{2}{n}^{2}\mu \rho -16{\varpi }_{2}{\pi }^{2}{n}^{2}\nu \rho \\ & & -16{\varpi }_{3}{\pi }^{2}{n}^{2}{\rho }^{2}+c){{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ \hat{G}[1] & = & \displaystyle \sum _{n=-\infty }^{+\infty }G[2{\rm{i}}\pi (2n-1)\mu ,2{\rm{i}}\pi (2n-1)\nu ,\\ & & 2{\rm{i}}\pi (2n-1)\rho ,2{\rm{i}}\pi (2n-1)\gamma ]{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau }\\ & = & \displaystyle \sum _{n=-\infty }^{+\infty }[16{\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\nu \\ & & +16\alpha {\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\rho -4{\zeta }_{1}{\pi }^{2}{\left(2n-1\right)}^{2}\mu \gamma \\ & & -4{\zeta }_{2}{\pi }^{2}{\left(2n-1\right)}^{2}\nu \gamma -4{\zeta }_{3}{\pi }^{2}{\left(2n-1\right)}^{2}\rho \gamma \\ & & -4{\varpi }_{1}{\pi }^{2}{\left(2n-1\right)}^{2}\mu \rho -4{\varpi }_{2}{\pi }^{2}{\left(2n-1\right)}^{2}\nu \rho \\ & & -4{\varpi }_{3}{\pi }^{2}{\left(2n-1\right)}^{2}{\rho }^{2}+c]{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau }.\end{array}\end{eqnarray}$ Therefore, $\hat{G}[0]=0$ and $\hat{G}[1]=0$ are equivalent to$ \begin{eqnarray}\left[\begin{array}{cc}{a}_{11} & {a}_{12}\\ {a}_{21} & {a}_{22}\end{array}\right]\left[\begin{array}{c}\gamma \\ c\end{array}\right]=\left[\begin{array}{c}{b}_{1}\\ {b}_{2}\end{array}\right],\end{eqnarray}$ where$ \begin{eqnarray}\begin{array}{rcl}{a}_{11} & = & \displaystyle \sum _{n=-\infty }^{+\infty }-16{\pi }^{2}{n}^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho ){{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ {a}_{12} & = & \displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ {b}_{1} & = & \displaystyle \sum _{n=-\infty }^{+\infty }(-256{\pi }^{4}{n}^{4}{\mu }^{3}\nu -256\alpha {\pi }^{4}{n}^{4}{\mu }^{3}\rho \\ & & +16{\varpi }_{1}{\pi }^{2}{n}^{2}\mu \rho +16{\varpi }_{2}{\pi }^{2}{n}^{2}\nu \rho \\ & & +16{\varpi }_{3}{\pi }^{2}{n}^{2}{\rho }^{2}){{\rm{e}}}^{2{\rm{i}}\pi {n}^{2}\tau },\\ {a}_{21} & = & \displaystyle \sum _{n=-\infty }^{+\infty }-4{\pi }^{2}{\left(2n-1\right)}^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )\\ & & \cdot {{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau },\\ {a}_{22} & = & \displaystyle \sum _{n=-\infty }^{+\infty }{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau },\\ {b}_{2} & = & \displaystyle \sum _{n=-\infty }^{+\infty }[-16{\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\nu \\ & & -\,16\alpha {\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}\rho +4{\varpi }_{1}{\pi }^{2}{\left(2n-1\right)}^{2}\mu \rho \\ & & +\,4{\varpi }_{2}{\pi }^{2}{\left(2n-1\right)}^{2}\nu \rho +4{\varpi }_{3}{\pi }^{2}{\left(2n-1\right)}^{2}{\rho }^{2}]\\ & & \times \,{{\rm{e}}}^{{\rm{i}}\pi (2{n}^{2}-2n+1)\tau }.\end{array}\end{eqnarray}$ Solving expression (17 ), we can obtain$ \begin{eqnarray}\gamma =\displaystyle \frac{{a}_{22}{b}_{1}-{a}_{12}{b}_{2}}{{a}_{11}{a}_{22}-{a}_{12}{a}_{21}},\,c=\displaystyle \frac{{a}_{21}{b}_{1}-{a}_{11}{b}_{2}}{{a}_{12}{a}_{21}-{a}_{11}{a}_{22}}.\end{eqnarray}$

According to the theorems in [33], the one-periodic wave solution for equation (1 ) can be constructed as$ \begin{eqnarray}u={u}_{0}+2{\left[\mathrm{ln}\theta (\xi ,\tau )\right]}_{x},\end{eqnarray}$ where ${u}_{0}$ is a real constant satisfying the asymptotic condition $u\to {u}_{0}$ when $| \xi | \to 0$ .

4. Discussions

4.1. Discussions on the soliton solitons for equation (1 )

Figure 1 presents the one-soliton propagations on the xt plane. In figure 1, the magnitude of the one soliton keeps unaltered. Compared with figure 1 (a), figures 1 (b) and 1 (c) illustrate that the coefficients α, ζκ 's, ϖκ 's can determine the velocity components of the one soliton, but cannot alter the magnitude of it.

Figure 1.

New window|Download| PPT slide
Figure 1.One soliton via solution (5 ), with y =0, z =0, ζ1 =ζ3 =ϖ1 =ϖ2 =ϖ3 =1, k1 =1, m1 =2, n1 =1, η1 =0: (a) α =1, ζ2 =1; (b) α =6, ζ2 =1; (c) α =1, ζ2 =6.


Figure 2 reveals the interaction of the two solitons on the xt, yt and zt planes. These two solitons propagate parallelly in the x and z directions, while in the y direction the two solitons interact around t =0 and keep their velocities and magnitudes unchanged after the interaction. This phenomenon indicates that the interaction between the two solitons is elastic.

Figure 2.

New window|Download| PPT slide
Figure 2.Two solitons via solution (9 ), with α =ζ1 =ζ2 =ζ3 =ϖ1 =ϖ2 =ϖ3 =1, k1 =1, m1 =1, n1 =0.5, η1 =0, k2 =1, m2 =0.5, n2 =0.5, η2 =0: (a)y =0, z =0; (b)x =0, z =0; (c)x =0, y =0.


4.2. Discussions on the one-periodic wave solution for equation (1 )

Figure 3 presents the one-periodic waves on the xt plane. Compared with figure 3 (a), in figures 3 (b) and 3 (c) we find that the coefficients α, ζκ 's and ϖκ 's can influence the periods and velocity components of the one-periodic waves, while the amplitudes of the one-periodic waves keep unchanged when α, ζκ 's and ϖκ 's take different values.

Figure 3.

New window|Download| PPT slide
Figure 3.One-periodic waves via solution (20 ), with y =0, z =0, ζ2 =ζ3 =ϖ1 =ϖ2 =ϖ3 =0.5, u0 =0, μ =ν =ρ =0.1, δ =0, τ =0.5i : (a) α =0.5, ζ1 =0.5; (b) α =10, ζ1 =0.5; (c) α =0.5, ζ1 =2.


Furthermore, we are going to discover the relation between the one-soliton solution and one-periodic wave solution, i.e. solutions (5 ) and (20 ).

Defining ${\rm{\Phi }}={{\rm{e}}}^{{\rm{i}}\pi \tau }$, expression (18 ) can be written as$ \begin{eqnarray}\begin{array}{rcl}{a}_{11} & = & -32{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )({{\rm{\Phi }}}^{2}\\ & & +4{{\rm{\Phi }}}^{8}+\ldots +{n}^{2}{{\rm{\Phi }}}^{2{n}^{2}}+\ldots ),\\ {a}_{12} & = & 1+2({{\rm{\Phi }}}^{2}+{{\rm{\Phi }}}^{8}+\ldots +{{\rm{\Phi }}}^{2{n}^{2}}+\ldots ),\\ {b}_{1} & = & 2[-256{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )+16{\pi }^{2}\rho ({\varpi }_{1}\mu \\ & & +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{2}\\ & & +2[-4096{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +64{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{8}+\ldots \\ & & +2[-256{n}^{4}{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +16{n}^{2}{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{2{n}^{2}}+\ldots ,\\ {a}_{21} & = & -8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )({\rm{\Phi }}+9{{\rm{\Phi }}}^{5}\\ & & +\ldots +{\left(2n-1\right)}^{2}{{\rm{\Phi }}}^{2{n}^{2}-2n+1}+\ldots ),\\ {a}_{22} & = & 2({\rm{\Phi }}+{{\rm{\Phi }}}^{5}+\ldots +{{\rm{\Phi }}}^{2{n}^{2}-2n+1}+\ldots ),\\ {b}_{2} & = & 2[-16{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +4{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{\rm{\Phi }}\\ & & +2[-144{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +36{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]{{\rm{\Phi }}}^{5}\\ & & +\ldots +2[-16{\pi }^{4}{\left(2n-1\right)}^{4}{\mu }^{3}(\nu +\alpha \rho )\\ & & +4{\pi }^{2}{\left(2n-1\right)}^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\\ & & \times {{\rm{\Phi }}}^{2{n}^{2}-2n+1}+\ldots \,.\end{array}\end{eqnarray}$ Accordingly, expression (17 ) can be transformed as$ \begin{eqnarray}\begin{array}{l}\left[\begin{array}{cc}{a}_{11} & {a}_{12}\\ {a}_{21} & {a}_{22}\end{array}\right]\,=\,{{\boldsymbol{A}}}_{0}+{{\boldsymbol{A}}}_{1}{\rm{\Phi }}+{{\boldsymbol{A}}}_{2}{{\rm{\Phi }}}^{2}\,+\ldots ,\\ \left[\begin{array}{c}{b}_{1}\\ {b}_{2}\end{array}\right]\,=\,{{\boldsymbol{B}}}_{0}+{{\boldsymbol{B}}}_{1}{\rm{\Phi }}+{{\boldsymbol{B}}}_{2}{{\rm{\Phi }}}^{2}\,+\ldots ,\\ \left[\begin{array}{c}\gamma \\ c\end{array}\right]\,=\,{{\boldsymbol{X}}}_{0}+{{\boldsymbol{X}}}_{1}{\rm{\Phi }}+{{\boldsymbol{X}}}_{2}{{\rm{\Phi }}}^{2}+\ldots ,\end{array}\end{eqnarray}$ where$ \begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{A}}}_{0} & = & \left[\begin{array}{cc}0 & 1\\ 0 & 0\end{array}\right],\,{{\boldsymbol{A}}}_{1}=\left[\begin{array}{cc}0 & 0\\ -8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho ) & 2\end{array}\right],\\ {{\boldsymbol{A}}}_{2} & = & \left[\begin{array}{cc}-32{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho ) & 2\\ 0 & 0\end{array}\right],\\ {{\boldsymbol{A}}}_{3} & = & {\bf{0}},\,{{\boldsymbol{A}}}_{4}={\bf{0}},\ldots ,\\ {{\boldsymbol{B}}}_{0} & = & {\bf{0}},\,\\ {{\boldsymbol{B}}}_{1} & = & \left[\begin{array}{c}0\\ 8[-4{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )+{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\end{array}\right],\\ {{\boldsymbol{B}}}_{2} & = & \left[\begin{array}{c}32[-16{\pi }^{4}{\mu }^{3}(\nu +\alpha \rho )+{\pi }^{2}\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\\ 0\end{array}\right],\\ {{\boldsymbol{B}}}_{3} & = & {\bf{0}},\,{{\boldsymbol{B}}}_{4}={\bf{0}},\ldots \,.\end{array}\end{eqnarray}$ Substituting expression (22 ) into expression (17 ), we have$ \begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{X}}}_{0} & = & \left[\begin{array}{c}\tfrac{2{{\boldsymbol{B}}}_{0}^{[1]}-{{\boldsymbol{B}}}_{1}^{[2]}}{8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )}\\ {{\boldsymbol{B}}}_{0}^{[1]}\end{array}\right],\,{{\boldsymbol{X}}}_{1}=\left[\begin{array}{c}\tfrac{2{{\boldsymbol{B}}}_{1}^{[1]}-{\left[{{\boldsymbol{B}}}_{2}-{{\boldsymbol{A}}}_{2}{{\boldsymbol{X}}}_{0}\right]}^{[2]}}{8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )}\\ {{\boldsymbol{B}}}_{1}^{[1]}\end{array}\right],\ldots ,\\ {{\boldsymbol{X}}}_{n} & = & \left[\begin{array}{c}\tfrac{2{\left[{{\boldsymbol{B}}}_{n+1}-{\displaystyle \sum }_{j=2}^{n}{{\boldsymbol{A}}}_{j}{{\boldsymbol{X}}}_{n-j}\right]}^{[1]}-{\left[{{\boldsymbol{B}}}_{n+1}-{\displaystyle \sum }_{j=2}^{n+1}{{\boldsymbol{A}}}_{j}{{\boldsymbol{X}}}_{n+1-j}\right]}^{[2]}}{8{\pi }^{2}({\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho )}\\ {\left[{{\boldsymbol{B}}}_{n+1}-{\displaystyle \sum }_{j=2}^{n}{{\boldsymbol{A}}}_{j}{{\boldsymbol{X}}}_{n-j}\right]}^{[1]}\end{array}\right],\ldots ,\end{array}\end{eqnarray}$ where the superscripts [1] and [2] respectively represent the first and second elements of a two-dimensional vector. Taking expression (24 ) into consideration, we can derive$ \begin{eqnarray}\begin{array}{rcl}{{\boldsymbol{X}}}_{0} & = & \left[\begin{array}{c}\tfrac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 0\end{array}\right],\,{{\boldsymbol{X}}}_{1}={\bf{0}},\\ {{\boldsymbol{X}}}_{2} & = & \left[\begin{array}{c}\tfrac{8[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 32{\pi }^{2}[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\end{array}\right],\ldots \,.\end{array}\end{eqnarray}$ Therefore, the vector [γ, c ]T can be expressed as$ \begin{eqnarray}\begin{array}{l}\left[\begin{array}{c}\gamma \\ c\end{array}\right]=\left[\begin{array}{c}\tfrac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 0\end{array}\right]\\ +\,\left[\begin{array}{c}\tfrac{8[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }\\ 32{\pi }^{2}[-4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )+\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )]\end{array}\right]{{\rm{\Phi }}}^{2}+\ldots ,\end{array}\end{eqnarray}$ which implies that when ${\rm{\Phi }}\to 0$, we have $\gamma \,\to \frac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }$ and $c\to 0$ . Considering solution (5 ), we are inspired to assume that$ \begin{eqnarray}\mu =\displaystyle \frac{{k}_{1}}{2{\rm{i}}\pi },\,\nu =\displaystyle \frac{{m}_{1}}{2{\rm{i}}\pi },\,\rho =\displaystyle \frac{{n}_{1}}{2{\rm{i}}\pi },\,\delta =\displaystyle \frac{{\eta }_{1}-{\rm{i}}\pi \tau }{2{\rm{i}}\pi },\end{eqnarray}$ based on which we obtain$ \begin{eqnarray}\begin{array}{l}2{\rm{i}}\pi \xi \,=\,2{\rm{i}}\pi \mu x+2{\rm{i}}\pi \nu y+2{\rm{i}}\pi \rho z+2{\rm{i}}\pi \gamma t+2{\rm{i}}\pi \delta \\ \,\mathop{=}\limits^{{\rm{\Phi }}\to 0}\,{k}_{1}x+{m}_{1}y+{n}_{1}z\\ \,+\,2{\rm{i}}\pi \displaystyle \frac{4{\pi }^{2}{\mu }^{3}(\nu +\alpha \rho )-\rho ({\varpi }_{1}\mu +{\varpi }_{2}\nu +{\varpi }_{3}\rho )}{{\zeta }_{1}\mu +{\zeta }_{2}\nu +{\zeta }_{3}\rho }t\\ \,+\,{\eta }_{1}-{\rm{i}}\pi \tau \\ \,=\,{k}_{1}x+{m}_{1}y+{n}_{1}z\\ \,-\displaystyle \frac{{k}_{1}^{3}({m}_{1}+\alpha {n}_{1})+{n}_{1}({k}_{1}{\varpi }_{1}+{m}_{1}{\varpi }_{2}+{n}_{1}{\varpi }_{3})}{{k}_{1}{\zeta }_{1}+{m}_{1}{\zeta }_{2}+{n}_{1}{\zeta }_{3}}t\\ \,+\,{\eta }_{1}-{\rm{i}}\pi \tau \\ \,=\,{k}_{1}x+{m}_{1}y+{n}_{1}z+{\varpi }_{1}\,t+{\eta }_{1}-{\rm{i}}\pi \tau .\end{array}\end{eqnarray}$ Thus, expression (12 ) can be derived as$ \begin{eqnarray}\begin{array}{rcl}\theta (\xi ,\tau ) & = & \displaystyle \sum _{n=-{\rm{\infty }}}^{+{\rm{\infty }}}{{\rm{e}}}^{{\rm{i}}\pi {n}^{2}\tau +2{\rm{i}}\pi n\xi }\\ & = & 1+({{\rm{e}}}^{2{\rm{i}}\pi \xi }+{{\rm{e}}}^{-2{\rm{i}}\pi \xi }){\rm{\Phi }}+\ldots +({{\rm{e}}}^{2{\rm{i}}\pi n\xi }+{{\rm{e}}}^{-2{\rm{i}}\pi n\xi }){{\rm{\Phi }}}^{{n}^{2}}\\ & = & 1+({{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}-{\rm{i}}\pi \tau }\\ & & +{{\rm{e}}}^{-({k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1})+{\rm{i}}\pi \tau }){\rm{\Phi }}+\ldots \\ & = & 1+{{\rm{e}}}^{{k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1}}\\ & & +\,{{\rm{e}}}^{-({k}_{1}x+{m}_{1}y+{n}_{1}z+{\omega }_{1}t+{\eta }_{1})}{{\rm{\Phi }}}^{2}+\ldots \\ & \mathop{=}\limits^{{\rm{\Phi }}\to 0} & 1+{F}_{1}.\end{array}\end{eqnarray}$

Therefore, we can conclude that when ${\rm{\Phi }}\to 0$, the one-periodic wave solution approaches to the one-soliton solution.

5. Conclusions

In this paper, we have investigated a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics, i.e. equation (1 ). Via the Hirota bilinear method, we have obtained the one-, two- and three-soliton solutions for equation (1 ), i.e. solutions (5 ), (9 ) and (11 ), respectively. In addition, the one-periodic wave solution for equation (1 ), i.e. solution (20 ), has been constructed by virtue of the Hirota–Riemann method. When the factor ${\rm{\Phi }}\to 0$, the one-periodic wave solution approaches to the one-soliton solution. Propagation velocity of the one soliton has been derived as expression (7 ), and magnitude of the one soliton is 2k1 . Figures have been constructed: figure 1 illustrates that the coefficients α, ζκ 's and ϖκ 's can determine the velocity components of the one soliton, but cannot alter the magnitude of it; in figure 2, we find that the interaction between the two solitons is elastic; figure 3 indicates that the coefficients α, ζκ 's and ϖκ 's can influence the periods and velocities of the one-periodic waves, but cannot alter the wave amplitudes.

Acknowledgments

We express our sincere thanks to all the members of our discussion group for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11 272 023, and by the Fundamental Research Funds for the Central Universities under Grant No. 50 100 002 016 105 010.


Reference By original order
By published year
By cited within times
By Impact factor

Liu D Tariq K U Osman M S Baleanu D Younis M Khater M M A 2019 Results Phys. 14 102491
DOI:10.1016/j.rinp.2019.102491 [Cited within: 1]

Ma W X 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2663
DOI:10.1016/j.cnsns.2010.10.003

Chen Y Yan Z Y Zhang H 2003 Phys. Lett. A 307 107
DOI:10.1016/S0375-9601(02)01668-7

Hu C C Tian B Yin H M Zhang C R Zhang Z 2019 Comput. Math. Appl. 78 166
DOI:10.1016/j.camwa.2019.02.026

Hu C C Tian B Wu X Y Yuan Y Q Du Z 2018 Eur. Phys. J. Plus 133 40
DOI:10.1140/epjp/i2018-11875-5

Hosseini K Aligoli M Mirzazadeh M 2019 Mod. Phys. Lett. B 33 1950437
DOI:10.1142/S0217984919504372

Seadawy A R Iqbal M Lu D 2019 Comput. Math. Appl. 78 3620
DOI:10.1016/j.camwa.2019.06.013

David D Kamran N Levi D Winternitz P 1985 Phys. Rev. Lett. 55 2111
DOI:10.1103/PhysRevLett.55.2111

Gao X Y 2019 Appl. Math. Lett. 91 165
DOI:10.1016/j.aml.2018.11.020

Yuan Y Q Tian B Qu Q X Zhao X H Du X X 2020 Angew. Math. Phys. 71 46
DOI:10.1007/s00033-020-1252-6

Gao X Y Guo Y J Shan W R 2020 Commun. Theor. Phys. 72 095002
DOI:10.1088/1572-9494/aba23d

Gao X Y Guo Y J Shan W R Yuan Y Q Zhang C R Chen S S 2021 Appl. Math. Lett. 111 106627
DOI:10.1016/j.aml.2020.106627 [Cited within: 1]

Soomere T 2010 Eur. Phys. J.-Spec. Top. 185 81
DOI:10.1140/epjst/e2010-01240-1 [Cited within: 1]

Kovalyov M 2014 Discrete Continuous Dyn. A 38 3061
DOI:10.3934/dcds.2014.34.3061 [Cited within: 1]

Arcas D Segur H 2012 Phil. Trans. R. Soc. A 370 1505
DOI:10.1098/rsta.2011.0457 [Cited within: 1]

Chen G Y Liu C T Wang Y H Hsu M K 2011 J. Geophys. Res.-Atmos. 116 C06013
DOI:10.1029/2010JC006392 [Cited within: 1]

Sarfraz H Saleem U 2020 Chaos Solitons Fractals 130 109451
DOI:10.1016/j.chaos.2019.109451 [Cited within: 1]

Amjad Z Haider B 2020 Chaos Solitons Fractals 130 109404
DOI:10.1016/j.chaos.2019.109404

Guo D Tian S F 2018 Mod. Phys. Lett. B 32 1850345
DOI:10.1142/S0217984918503451

Yin H M Tian B Zhao X C 2020 Appl. Math. Comput. 368 124768
DOI:10.1016/j.amc.2019.124768

Du Z Tian B Qu Q X Wu X Y Zhao X H 2020 Appl. Numer. Math. 153 179
DOI:10.1016/j.apnum.2020.02.002

Zhang C R Tian B Qu Q X Liu L Tian H 2020 Z. Angew. Math. Phys. 71 18
DOI:10.1007/s00033-019-1225-9

Yian H M Tian B Zhao X C 2020 J. Magn. Magn. Mater. 495 165871
DOI:10.1016/j.jmmm.2019.165871

Li J Gu X F Yu T Zhan Y L Liu Z Lv X Li L L Wang C M 2016 Nonlinear Dyn. 83 1463
DOI:10.1007/s11071-015-2419-0

Yuan Y Q Tian B Qu Q X Zhang C R Du X X 2020 Nonlinear Dyn. 99 3001
DOI:10.1007/s11071-020-05483-z

Chen S S Tian B Sun Y Zhang C R 2019 Ann. Phys.-Berlin 531 1900011
DOI:10.1002/andp.201900011

Chen S S Tian B Liu L Yuan Y Q Zhang C R 2019 Chaos Solitons Fractals 118 337
DOI:10.1016/j.chaos.2018.11.010

Du Z Tian B Chai H-P Zhao X-H 2020 Appl. Math. Lett. 102 106110
DOI:10.1016/j.aml.2019.106110

Zhang C-R Tian B Sun Y Yin H-M 2019 EPL 127 40003
DOI:10.1209/0295-5075/127/40003 [Cited within: 1]

Gao X Y Guo Y J Shan W R 2020 Appl. Math. Lett. 104 106170
DOI:10.1016/j.aml.2019.106170 [Cited within: 1]

Gao X Y Guo Y J Shan W R 2020 Chaos Solitons Fractals 138 109950
DOI:10.1016/j.chaos.2020.109950 [Cited within: 1]

Huang Q M Gao Y T Jia S L Wang Y L Deng G F 2017 Nonlinear Dyn. 87 2529
DOI:10.1007/s11071-016-3209-z [Cited within: 1]

Ma P L Tian S F 2014 Commun. Theor. Phys. 62 17
DOI:10.1088/0253-6102/62/1/04 [Cited within: 2]

Mabrouk S M Rashed A S 2019 Chin. J. Phys. 60 48
DOI:10.1016/j.cjph.2019.02.032

Wang M Tian B Qu Q X Du X X Zhang C R Zhang Z 2019 Eur. J. Phys. Plus 134 578
DOI:10.1140/epjp/i2019-12909-2

Wang M Tian B Sun Y Zhang Z 2020 Comput. Math. Appl. 79 576
DOI:10.1016/j.camwa.2019.07.006 [Cited within: 1]

Bilman D Miller P D 2019 Commun. Pure Appl. Math. 72 1722
DOI:10.1002/cpa.21819 [Cited within: 1]

Luo X D 2019 Chaos 29 073118
DOI:10.1063/1.5090426

Hirota M J Ablowitz M Clarkson P Clarkson P A 1990 Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform London Cambridge University Press
[Cited within: 1]

Hamid M Usman M Zubair T Haq R U Shafee A 2019 Physica A 528 121320
DOI:10.1016/j.physa.2019.121320 [Cited within: 1]

Darvishi M T Najafi M Arbabi S Kavitha L 2016 Nonlinear Dyn. 83 1453
DOI:10.1007/s11071-015-2417-2

Yildirim Y Yasar E Adem A R 2017 Nonlinear Dyn. 89 2291
DOI:10.1007/s11071-017-3588-9

Adem A R 2016 Int. J. Mod. Phys. B 30 1640001
DOI:10.1142/S0217979216400014 [Cited within: 1]

Gao X Y Guo Y J Shan W R 2020 Phys. Lett. A 384 126788
DOI:10.1016/j.physleta.2020.126788 [Cited within: 1]

Angelelli M 2019 J. Math. Phys. 60 073511
DOI:10.1063/1.5086165 [Cited within: 1]

Svinin A K 2004 Theor. Math. Phys. 141 1542
DOI:10.1023/B:TAMP.0000046562.61970.ef

Chu M X Tian B Yuan Y Q Zhang Z Tian H Y 2019 Commun. Theor. Phys. 71 1393
DOI:10.1088/0253-6102/71/12/1393

Chen J C Feng B F Maruno K Ohta Y 2018 Stud. Appl. Math. 141 145
DOI:10.1111/sapm.12216

Jaradat H M Al-Shara S Awawdeh F Alquran M 2012 Phys. Scr. 85 035001
DOI:10.1088/0031-8949/85/03/035001 [Cited within: 1]

Tian S F Zhang H Q 2010 J. Math. Anal. Appl. 371 585
DOI:10.1016/j.jmaa.2010.05.070 [Cited within: 1]

Tian S F Zhang H Q 2013 Chaos Solitons Fractals 47 27
DOI:10.1016/j.chaos.2012.12.004

Yan H Tian S F Feng L L Zhang T T 2016 Waves Random Media 26 444
DOI:10.1080/17455030.2016.1166289

Tu J M Tian S F Xu M J Song X Q Zhang T T 2016 Nonlinear Dyn. 83 1199
DOI:10.1007/s11071-015-2397-2 [Cited within: 1]

Rizvi S T R Afzal I Ali K Younis M 2019 Acta Phys. Pol. A 136 187
DOI:10.12693/APhysPolA.136.187 [Cited within: 1]

Hu S H Tian B Du X X Liu L Zhang C R 2019 Pramana-J. Phys. 93 38
DOI:10.1007/s12043-019-1790-7

Du X X Tian B Qu Q X Yuan Y Q Zhao X H 2020 Chaos Solitons Fractals 134 109709
DOI:10.1016/j.chaos.2020.109709

Du X X Tian B Yuan Y Q Du Z 2019 Ann. Phys.-Berlin 531 1900198
DOI:10.1002/andp.201900198 [Cited within: 1]

Guan X Liu W J Zhou Q Biswas A 2020 Appl. Math. Comput. 366 124757
DOI:10.1016/j.amc.2019.124757 [Cited within: 3]

Liu S Ding Y Liu J G 2017 Int. J. Nonlinear Sci. 18 137
DOI:10.1515/ijnsns-2016-0086 [Cited within: 1]

Ding C C Gao Y T Deng G F 2019 Nonlinear Dyn. 97 2023
DOI:10.1007/s11071-019-05093-4 [Cited within: 1]

Liu J G Yang X J Cheng M H Feng Y Y Wang Y D 2019 Comput. Math. Appl. 78 1947
DOI:10.1016/j.camwa.2019.03.034 [Cited within: 1]

Wazwaz A M 2017 Appl. Math. Lett. 64 21
DOI:10.1016/j.aml.2016.08.005 [Cited within: 1]

Zhang Y Dong H H Zhang X E Yang H W 2017 Comput. Math. Appl. 73 246
DOI:10.1016/j.camwa.2016.11.009 [Cited within: 1]

Tang Y N Ma W X Xu W 2012 Chin. Phys. B 21 070212
DOI:10.1088/1674-1056/21/7/070212 [Cited within: 1]

Hirota R 2004 The Direct Method in Soliton Theory London Cambridge University Press
[Cited within: 1]

相关话题/Solitons periodic waves