删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers

本站小编 Free考研考试/2022-01-02

Savaissou Nestor,1,6, Souleymanou Abbagari,2, Alphonse Houwe,1, Mustafa Inc,3,4, Gambo Betchewe,1, Serge Y Doka,51Department of Physics, Faculty of Science, the University of Maroua, P O Box 814, Maroua, Cameroon
2Department of Basic Science, Faculty of Mines and Petroleum Industries, University of Maroua, Maroua, Cameroon
3Firat University, Science Faculty, Department of Mathematics, 23119 Elazig, Turkey
4Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, China
5Department of Physics, Faculty of Science, the University of Ngaoundere, P O Box 454, Cameroon

First author contact: 6Author to whom any correspondence should be addressed.
Received:2019-12-4Revised:2020-02-29Accepted:2020-03-3Online:2020-05-18


Abstract
This paper studies chirped optical solitons in nonlinear optical fibers. However, we obtain diverse soliton solutions and new chirped bright and dark solitons, trigonometric function solutions and rational solutions by adopting two formal integration methods. The obtained results take into account the different conditions set on the parameters of the nonlinear ordinary differential equation of the new extended direct algebraic equation method. These results are more general compared to Hadi et al (2018 Optik172 545–53) and Yakada et al (2019 Optik 197 163108).
Keywords: diverse chirped optical solitons;nonlinear optical fibers;new extended direct algebraic method


PDF (932KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Savaissou Nestor, Souleymanou Abbagari, Alphonse Houwe, Mustafa Inc, Gambo Betchewe, Serge Y Doka. Diverse chirped optical solitons and new complex traveling waves in nonlinear optical fibers. Communications in Theoretical Physics, 2020, 72(6): 065501- doi:10.1088/1572-9494/ab7ecd

1. Introduction

Today, research in the field of optical solitons has reached cruising speed. However, a lot of the attention has been concentrated on the investigatation of solitons of different suitable modeling equations describing sub-picosecond pulse propagation in optical fibers, with a plethora of mathematical integration to manipulate them. Moreover, the interesting aspect of optical solitons lies in optic fiber communication, which has revolutionized long-distance communication (i.e trans-continental and trans-oceanic). Hence, the transport of data has become fluid, and even reliable.

Over the last five years, a handful of categories of solitons like traveling-wave solutions and array breathers have been reported in the literature, such as variable sinh-Gaussian solitons, dark-combo solitons, soliton pairs, bright solitons, complexiton solitons, Gaussian-shaped solitons and singular solitons [112]. In addition, one of the environments that have shown themselves favorable to the propagation of these optical solitons is metamaterials.

Metamaterials are artificial materials which display unusual electromagnetic (EM) properties [13]. Because of these attractive properties, several studies on localized wave research have been successfully conducted. Furthermore, these localized solutions in nonlinear metamaterials usually take the forms of shift solitons, spatiotemporal solitons, temporal solitons and spatial solitons [13]. More recently, many works have been conducted in nonlinear metamaterials. For example, chirped soliton and periodic solutions of the generalized nonlinear Schrödinger equation, bright and dark soliton solutions for the (3+1)-dimensional coupled nonlinear Schrödinger equation with electric and magnetic fields, and the gray solitary wave of an extended nonlinear Schrödinger equation with third-order dispersion [35, 8, 13, 14] were investigated analytically.

The hard task today is to adopt some relevant methods to build exact traveling-wave solutions of these nonlinear Schrödinger equations which describe a short pulse propagation in nonlinear metamaterials. In this way, some mathematical tools were successfully used to investigate analytical solutions for partial differential equations (PDEs), such as the sine-Gordon expansion method [15], the auxiliary equation method [16], the first integral method [17], the new extended direct algebraic method [18, 19] and the generalized tanh method [18]. Thus, exact optical solitons in metamaterials with dispersive permeability have been reported by [1315]. Recently, some authors have investigated optical solitons for higher-order nonlinear Schrödinger’s equations, describing a sub-picosecond pulse propagation in nonlinear metamaterials with cubic-quintic nonlinearity and fourth-order dispersion [12]. This work aims to study chirped optical solitons for the cubic nonlinear Schrödinger’s equation (CNLSE), describing a sub-picosecond pulse propagation in a nonlinear metamaterial with Kerr dispersion, low group velocity dispersion (GVD) and Kerr nonlinearity. The following governing equation will be adopted$\begin{eqnarray}{\rm{i}}{q}_{x}+\displaystyle \frac{1}{2}{\beta }_{2}{q}_{{tt}}+{\gamma }_{1}| q{| }^{2}q-{\rm{i}}{\alpha }_{1}{\left(| {q}^{2}| q\right)}_{t}-{\rm{i}}{\alpha }_{2}q{\left(| q{| }^{2}\right)}_{t}=0.\end{eqnarray}$Here, q(x, t) stands for a complex envelop amplitude, t represents the time (in the group velocity frame), x is the distance along the direction of propagation, while β2, α1 and α2 are, respectively, the GVD and the self-phase modulation (SPM) parameters. However, γ1 is the cubic nonlinearity term which compensates the dispersion and SPM terms to obtain the soliton.

Therefore, the paper is organized as follows: section 2 is devoted to the description of the methods. In section 3 the application of the methods will be carried out, and some graphical illustrations will follow. The last section will summarize the work.

2. The sight of methods

2.1. The new extended direct algebraic methods

The fundamental of the new extended direct algebraic method is given by the following steps [1820].

Step 1: adopting the PDE in the following form$\begin{eqnarray}H(u,{u}_{t},{u}_{x},{u}_{{xx}},{u}_{{xt}},\ldots )=0,\end{eqnarray}$where u(x, t) is an unknown function, and H is a polynomial of u. Surmise the traveling-wave hypothesis as follows and then by adopting u(x, t)=F(ξ)$\begin{eqnarray}\xi =x-{vt},\end{eqnarray}$therefore, the PDE can turn into an ordinary differential equation$\begin{eqnarray}G(F,{F}^{{\prime} },{F}^{{\prime\prime} },{F}^{\prime\prime\prime },...)=0,\end{eqnarray}$and prime denotes the derivative with respect to ξ.

Step 2: considering that (4) has the solution in the following expression$\begin{eqnarray}F(\xi )=\sum _{j=0}^{N}{h}_{i}{Q}^{{\rm{i}}}(\xi ),\quad {g}_{n}\ne 0.\end{eqnarray}$Where gj(0≤jN) are constants to be determined later, and Q(ξ) satisfies the following ordinary differential equation (ODE)$\begin{eqnarray}{Q}^{{\prime} }(\xi )=\mathrm{ln}(A)(\lambda +\mu Q(\xi )+\sigma {Q}^{2}(\xi )),\end{eqnarray}$and $A\ne 0,1$. The solutions of the ODE (6) are:

Case 1: ${\mu }^{2}-4\lambda \sigma \lt 0$ and $\sigma \ne 0$$\begin{eqnarray}{Q}_{1}(\xi )=-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right),\end{eqnarray}$$\begin{eqnarray}{Q}_{2}(\xi )=-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right),\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{3}(\xi ) & = & -\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\\ & & \pm \displaystyle \frac{\sqrt{-{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\sec }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{4}(\xi ) & = & -\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\\ & & \pm \displaystyle \frac{\sqrt{-{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\csc }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{5}(\xi ) & = & -\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)\\ & & -\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right),\end{array}\end{eqnarray}$Case 2: ${\mu }^{2}-4\lambda \sigma \gt 0$ and $\sigma \ne 0$$\begin{eqnarray}{Q}_{6}(\xi )=-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tanh }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right),\end{eqnarray}$$\begin{eqnarray}{Q}_{7}(\xi )=-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\coth }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right),\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{8}(\xi ) & = & -\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tanh }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\\ & & \pm {\rm{i}}\displaystyle \frac{\sqrt{{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{{\rm{sech}} }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{9}(\xi ) & = & -\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\coth }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\\ & & \pm \displaystyle \frac{\sqrt{{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cosh }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{10}(\xi ) & = & -\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4\sigma }{\tanh }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)\\ & & -\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{4\sigma }{\coth }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right),\end{array}\end{eqnarray}$Case 3: $\lambda \sigma \gt 0$ and μ=0$\begin{eqnarray}{Q}_{11}(\xi )=\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\tan }_{A}\left(\sqrt{\lambda \sigma }\xi \right),\end{eqnarray}$$\begin{eqnarray}{Q}_{12}(\xi )=-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\sqrt{\lambda \sigma }\xi \right),\end{eqnarray}$$\begin{eqnarray}{Q}_{13}(\xi )=\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\tan }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm \sqrt{{pq}\displaystyle \frac{\lambda }{\sigma }}{\sec }_{A}\left(\sqrt{2\lambda \sigma }\xi \right),\end{eqnarray}$$\begin{eqnarray}{Q}_{14}(\xi )=-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm \sqrt{{pq}\displaystyle \frac{\lambda }{\sigma }}{\csc }_{A}\left(\sqrt{2\lambda \sigma }\xi \right),\end{eqnarray}$$\begin{eqnarray}{Q}_{15}(\xi )=\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\lambda }{\sigma }}\left({\tan }_{A}\left(\displaystyle \frac{\sqrt{\lambda \sigma }}{2}\xi \right)-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\displaystyle \frac{\sqrt{\lambda \sigma }}{2}\xi \right)\right),\end{eqnarray}$Case 4:λσ<0 and μ=0$\begin{eqnarray}{Q}_{16}(\xi )=-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\sqrt{-\lambda \sigma }\xi \right),\end{eqnarray}$$\begin{eqnarray}{Q}_{17}(\xi )=-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(\sqrt{-\lambda \sigma }\xi \right),\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{18}(\xi ) & = & -\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\\ & & \pm {\rm{i}}\sqrt{{pq}\displaystyle \frac{-{pq}\lambda }{\sigma }}{{\rm{sech}} }_{A}\left(2\sqrt{-\lambda \sigma }\xi \right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{19}(\xi ) & = & -\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(2\sqrt{-\lambda \sigma }\xi \right)\\ & & \pm \sqrt{-{pq}\displaystyle \frac{\lambda }{\sigma }}{\mathrm{csch}}_{A}\left(2\sqrt{-\lambda \sigma }\xi \right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{Q}_{20}(\xi ) & = & -\displaystyle \frac{1}{2}\left(\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\displaystyle \frac{\sqrt{-\lambda \sigma }}{2}\xi \right)\right.\\ & & \left.+\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(\displaystyle \frac{\sqrt{-\lambda \sigma }}{2}\xi \right)\right),\end{array}\end{eqnarray}$Case 5:μ=0 and λ=σ$\begin{eqnarray}{Q}_{21}(\xi )={\tan }_{A}(\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{22}(\xi )=-{\cot }_{A}(\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{23}(\xi )={\tan }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\sec }_{A}(2\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{24}(\xi )=-{\cot }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\csc }_{A}(2\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{25}(\xi )=\displaystyle \frac{1}{2}\left({\tan }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)-{\cot }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)\right),\end{eqnarray}$Case 6:μ=0 and λ=−σ$\begin{eqnarray}{Q}_{26}(\xi )=-{\tanh }_{A}(\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{27}(\xi )=-{\coth }_{A}(\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{28}(\xi )=-{\tanh }_{A}(2\lambda \xi )\pm {\rm{i}}\sqrt{{pq}}{{\rm{sech}} }_{A}(2\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{29}(\xi )=-{\coth }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\mathrm{csch}}_{A}(2\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{Q}_{30}(\xi )=-\displaystyle \frac{1}{2}\left({\tanh }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)+{\coth }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)\right),\end{eqnarray}$Case 7:μ2=4λσ$\begin{eqnarray}{Q}_{31}(\xi )=-\displaystyle \frac{2\lambda (\mu \xi \mathrm{ln}(A)+2)}{{\mu }^{2}\xi \mathrm{ln}(A)},\end{eqnarray}$Case 8: $\mu =k,\lambda ={mk}(m\ne 0),\ {and}\ \sigma =0,$$\begin{eqnarray}{Q}_{32}(\xi )={A}^{\xi k}-m,\end{eqnarray}$Case 9:μ=σ=0$\begin{eqnarray}{Q}_{33}(\xi )=\lambda \xi \mathrm{ln}A,\end{eqnarray}$Case 10:μ=λ=0$\begin{eqnarray}{Q}_{34}(\xi )=\displaystyle \frac{-1}{\sigma \xi \mathrm{ln}A},\end{eqnarray}$Case 11: $\mu \ne 0$ and λ=0.$\begin{eqnarray}{Q}_{35}(\xi )=\displaystyle \frac{p\mu }{\sigma ({\cosh }_{A}(\mu \xi )-{\sinh }_{A}(\mu \xi )-p)},\end{eqnarray}$$\begin{eqnarray}{Q}_{36}(\xi )=-\displaystyle \frac{\mu ({\sinh }_{A}(\mu \xi )+{\cosh }_{A}(\mu \xi ))}{\sigma ({\cosh }_{A}(\mu \xi )-{\sinh }_{A}(\mu \xi )+q)},\end{eqnarray}$Case 12:μ=k and $\sigma ={mk}(m\ne 0)$ and λ=0.$\begin{eqnarray}{Q}_{37}(\xi )=-\displaystyle \frac{{{pA}}^{k\xi }}{q-{{mpA}}^{k\xi }}.\end{eqnarray}$Step 3: by using the homogeneous balance principle the value of N can be obtained between the highest-order derivative and high-order terms in (5).

Step 4: substituting (5) and (6) into (4), then collecting all the terms of Qj(ξ) to set to zero yields a system of algebraic equations.

Step 5: with the aid of software programme, MAPLE, the results of the system of algebraic equations can be obtained, and then we use the results of (6) to construct the exact solutions of (4).

However, the details of the generalized hyperbolic and trigonometric functions are given by [18, 19].

2.2. The extended auxiliary equation method

The pipe of the extended auxiliary equation method is described by the following step.

Step 1: the extended auxiliary equation method is based on the auxiliary ordinary equation method [12].

Therefore, an auxiliary ordinary equation (4) can be written as follows$\begin{eqnarray}{\left(\displaystyle \frac{\partial F}{\partial \xi }\right)}^{2}={h}_{0}{F}^{2}+{h}_{1}{F}^{3}+{h}_{2}{F}^{4},\end{eqnarray}$where h0, h1 and h2 are constants to be determined. Then, the solutions of (4) are given as follows:

Case 1: ${h}_{0}\gt 0,{\rm{\Delta }}\gt 0$, where ${\rm{\Delta }}={h}_{1}^{2}-4{h}_{0}{h}_{2}$$\begin{eqnarray}F(\xi )=\displaystyle \frac{2{h}_{0}{{\rm{sech}} }_{A}(\sqrt{{h}_{0}}\xi )}{\sqrt{{\rm{\Delta }}}-{h}_{1}{{\rm{sech}} }_{A}(\sqrt{{h}_{0}}\xi )},\end{eqnarray}$Case 2: ${h}_{0}\gt 0,{\rm{\Delta }}\lt 0$,$\begin{eqnarray}F(\xi )=-\displaystyle \frac{2{h}_{0}{\mathrm{csch}}_{A}(\sqrt{{h}_{0}}\xi )}{\sqrt{-{\rm{\Delta }}}-{h}_{1}{{\rm{sech}} }_{A}(\sqrt{{h}_{0}}\xi )},\end{eqnarray}$Case 3: ${h}_{0}\gt 0,{{\rm{\Delta }}}_{1}\lt 0$, where ${{\rm{\Delta }}}_{1}={h}_{1}^{2}-4{h}_{0}{h}_{2}-4{h}_{0}^{2}$,$\begin{eqnarray}F(\xi )=-\displaystyle \frac{2{h}_{0}{{\rm{sech}} }_{A}(\sqrt{{h}_{0}}\xi )}{{h}_{1}{{\rm{sech}} }_{A}(\sqrt{{h}_{0}}\xi )+\sqrt{-{{\rm{\Delta }}}_{1}}\tanh (\sqrt{{h}_{0}}\xi )-2{h}_{0}},\end{eqnarray}$$\begin{eqnarray}F(\xi )=-\displaystyle \frac{2{h}_{0}{\mathrm{csch}}_{A}(\sqrt{{h}_{0}}\xi )}{{h}_{1}{\mathrm{csch}}_{A}(\sqrt{{h}_{1}}\xi )-\sqrt{{{\rm{\Delta }}}_{1}}\coth (\sqrt{{h}_{0}}\xi )+2{h}_{0}}.\end{eqnarray}$

3. Chirped optical solitons

To obtain the chirped optical solitons to the model, the following ansatz will be adopted like traveling-wave transformation$\begin{eqnarray}q(x,t)={e}^{{\rm{i}}[f(\xi )]}\phi (\xi )\quad \xi =x-{vt},\end{eqnarray}$φ(ξ) is the amplitude component of the soliton and f(ξ) is the chirp parameter, and $\delta \omega =-\tfrac{\partial }{\partial \xi }[f(\xi )]$ is the corresponding chirped optical solitons. Substituting (49) into (1) leads to$\begin{eqnarray}2{\phi }^{{\prime} }+2{\beta }_{2}{v}^{2}{\phi }^{{\prime} }{f}^{{\prime} }+{\beta }_{2}{v}^{2}\phi {f}^{{\prime\prime} }+6{\alpha }_{1}v{\phi }^{2}{\phi }^{{\prime} }+4{\alpha }_{2}v{\phi }^{2}{\phi }^{{\prime} }=0,\end{eqnarray}$and$\begin{eqnarray}2\phi {f}^{{\prime} }+2{\alpha }_{1}v{\phi }^{3}{f}^{{\prime} }+{\beta }_{2}{v}^{2}\phi {{f}^{{\prime} }}^{2}-2{\gamma }_{1}{\phi }^{3}-{\beta }_{2}{v}^{2}{\phi }^{{\prime\prime} }=0.\end{eqnarray}$From (51) the chirped component is recovered$\begin{eqnarray}\delta \omega =\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}){\phi }^{2}.\end{eqnarray}$Consequently, (50) becomes$\begin{eqnarray}\begin{array}{l}-\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}\phi -\left(\displaystyle \frac{2{\alpha }_{1}}{{\beta }_{2}v}+2{\gamma }_{1}\right){\phi }^{3}\\ \quad +\,\displaystyle \frac{1}{{\beta }_{2}}\left(\displaystyle \frac{{\alpha }_{1}}{4}(4{\alpha }_{2}-3{\alpha }_{1})+{\alpha }_{2}^{2}\right){\phi }^{5}-{\beta }_{2}{v}^{2}{\phi }^{{\prime\prime} }=0.\end{array}\end{eqnarray}$Next, multiplying (53) by ${\phi }^{{\prime} }$, then integrating once with the zero constant of integration, we obtain$\begin{eqnarray}\begin{array}{l}-\displaystyle \frac{1}{2{\beta }_{2}{v}^{2}}{\phi }^{2}-\displaystyle \frac{1}{4}\left(\displaystyle \frac{2{\alpha }_{1}}{{\beta }_{2}v}+2{\gamma }_{1}\right){\phi }^{4}\\ +\,\displaystyle \frac{1}{6{\beta }_{2}}\left(\displaystyle \frac{{\alpha }_{1}}{4}(4{\alpha }_{2}-3{\alpha }_{1})+{\alpha }_{2}^{2}\right){\phi }^{6}-\displaystyle \frac{1}{2}{\beta }_{2}{v}^{2}{{\phi }^{{\prime} }}^{2}=0.\end{array}\end{eqnarray}$To obtain a suitable and malleable form of (54), we surmise $\phi (\xi )=\sqrt{F(\xi )}$. Thence,$\begin{eqnarray}\begin{array}{l}-\displaystyle \frac{1}{2{\beta }_{2}{v}^{2}}{F}^{2}(\xi )-\displaystyle \frac{1}{4}\left(\displaystyle \frac{2{\alpha }_{1}}{{\beta }_{2}v}+2{\gamma }_{1}\right){F}^{3}(\xi )\\ +\,\displaystyle \frac{1}{6{\beta }_{2}}\left(\displaystyle \frac{{\alpha }_{1}}{4}(4{\alpha }_{2}-3{\alpha }_{1})+{\alpha }_{2}^{2}\right){F}^{4}(\xi )-\displaystyle \frac{1}{8}{\beta }_{2}{v}^{2}{{F}^{{\prime} }}^{2}(\xi )=0.\end{array}\end{eqnarray}$

4. Application of the new extended direct algebraic method to (55)

This section will apply the two methods described above to construct diverse exact traveling-wave solutions to the CNLSE describing a sub-picosecond pulse propagation in a nonlinear optic fiber.

Using the balance principle between F4 and ${{F}^{{\prime} }}^{2}(\xi )$, N=1 is gained. Thereafter, (5) can be expressed as follows$\begin{eqnarray}F(\xi )={h}_{0}+{h}_{1}Q(\xi ).\end{eqnarray}$Next, substituting (56) and (6) into (55) a system of algebraic equations in terms of ${(Q(\xi ))}^{j}$are recovered. Then, collecting all the coefficients of the obtained algebraic equations and setting to zero gives the set of results.

For ${\mu }^{2}-4\lambda \sigma \lt 0$ and $\sigma \ne 0$.$\begin{eqnarray*}{h}_{0}={h}_{0},{h}_{1}=\displaystyle \frac{1}{12\mu \lambda }({{\ell }}_{1}-{{\ell }}_{2}-{{\ell }}_{3}+{{\ell }}_{4}-{{\ell }}_{5}+{{\ell }}_{6}),\end{eqnarray*}$$\begin{eqnarray*}v=\displaystyle \frac{\sqrt{6\,\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}-12\,\lambda \,\sigma +6\,{\mu }^{2}}}{\left(3\,{\alpha }_{1}^{2}{\mu }^{2}-12\,{\alpha }_{1}^{2}\lambda \,\sigma +16\,{\alpha }_{1}{\alpha }_{2}\lambda \,\sigma -4\,{\alpha }_{1}{\alpha }_{2}{\mu }^{2}-4\,{\alpha }_{2}^{2}{\mu }^{2}+16\,{\alpha }_{2}^{2}\lambda \,\sigma \right){h}_{0}},\end{eqnarray*}$$\begin{eqnarray*}{\beta }_{2}=\displaystyle \frac{\sqrt{-2\,{\mu }^{6}+16\,{\mu }^{4}\lambda \,\sigma +2\,{\mu }^{4}\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}-36{\mu }^{2}{\lambda }^{2}{\sigma }^{2}-12\,\lambda \,\sigma \,{\mu }^{2}\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}+16{\lambda }^{3}{\sigma }^{3}+16\,{\lambda }^{2}{\sigma }^{2}\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}}\left({\alpha }_{1}-2{\alpha }_{2}\right)\left(3\,{\alpha }_{1}+2{\alpha }_{2}\right){h}_{0}^{2}}{12{\text{}}\mathrm{ln}\left(A\right){\sigma }^{2}{\lambda }^{2}},\end{eqnarray*}$$\begin{eqnarray*}{\gamma }_{1}=\displaystyle \frac{1}{3}\displaystyle \frac{({{\ell }}_{7}-{{\ell }}_{8}-{{\ell }}_{9}+{{\ell }}_{10}-{{\ell }}_{11}+{{\ell }}_{12}-{{\ell }}_{13}-{{\ell }}_{14}){{\ell }}_{15}}{{{\ell }}_{16}},{\alpha }_{1}={\alpha }_{1},{\alpha }_{2}={\alpha }_{2},\end{eqnarray*}$where$\begin{eqnarray*}\begin{array}{l}{{\ell }}_{1}=72\lambda \,\sigma \,{\alpha }_{1}^{2}{\rm{\Gamma }},\\ {{\ell }}_{2}=18{\alpha }_{1}^{2}{\mu }^{2}{\rm{\Gamma }},\\ {{\ell }}_{3}=96{\alpha }_{2}\lambda \,\sigma \,{\alpha }_{1}{\rm{\Gamma }},\\ {{\ell }}_{4}=24{\alpha }_{1}{\alpha }_{2}{\mu }^{2}{\rm{\Gamma }},\\ {{\ell }}_{5}=96{\alpha }_{2}^{2}\lambda \,\sigma {\rm{\Gamma }},\\ {{\ell }}_{6}=24{\alpha }_{2}^{2}{\mu }^{2}{\rm{\Gamma }},\\ {{\ell }}_{7}-72\lambda \,\sigma \,{\alpha }_{1}^{2}{\rm{\Gamma }},\\ {{\ell }}_{8}=18{\alpha }_{1}^{2}{\mu }^{2}{\rm{\Gamma }},\\ {{\ell }}_{9}=96{\alpha }_{2}\lambda \,\sigma \,{\alpha }_{1}{\rm{\Gamma }},\\ {{\ell }}_{10}=24{\alpha }_{1}{\alpha }_{2}{\mu }^{2}{\rm{\Gamma }},\\ {{\ell }}_{11}=96{\alpha }_{2}^{2}\lambda \,\sigma {\rm{\Gamma }},\\ {{\ell }}_{12}=24{\alpha }_{2}^{2}{\mu }^{2}{\rm{\Gamma }},\\ {{\ell }}_{13}=\displaystyle \frac{{m}_{1}\times {m}_{2}}{3\,{\alpha }_{1}^{2}{\mu }^{2}-12\,{\alpha }_{1}^{2}\lambda \,\sigma +16\,{\alpha }_{1}{\alpha }_{2}\lambda \,\sigma -4\,{\alpha }_{1}{\alpha }_{2}{\mu }^{2}-4\,{\alpha }_{2}^{2}{\mu }^{2}+16\,{\alpha }_{2}^{2}\lambda \,\sigma },\\ {{\ell }}_{14}=\displaystyle \frac{24{\alpha }_{1}\sqrt{6}{m}_{1}{m}_{2}}{3\,{\alpha }_{1}^{2}{\mu }^{2}-12\,{\alpha }_{1}^{2}\lambda \,\sigma +16\,{\alpha }_{1}{\alpha }_{2}\lambda \,\sigma -4\,{\alpha }_{1}{\alpha }_{2}{\mu }^{2}-4\,{\alpha }_{2}^{2}{\mu }^{2}+16\,{\alpha }_{2}^{2}\lambda \,\sigma }-12\lambda \sigma ,\\ {m}_{1}=(3\,{\alpha }_{1}^{2}{\mu }^{2}-12\,{\alpha }_{1}^{2}\lambda \,\sigma +16\,{\alpha }_{1}{\alpha }_{2}\lambda \,\sigma \\ \qquad -\,4\,{\alpha }_{1}{\alpha }_{2}{\mu }^{2}-4\,{\alpha }_{2}^{2}{\mu }^{2}+16\,{\alpha }_{2}^{2}\lambda \,\sigma ),\\ {m}_{2}=(\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}-2\,\lambda \,\sigma +{\mu }^{2}),\\ {{\ell }}_{15}=\left(3\,{\alpha }_{1}^{2}{\mu }^{2}-12\,{\alpha }_{1}^{2}\lambda \,\sigma +16\,{\alpha }_{1}{\alpha }_{2}\lambda \,\sigma \right.\\ \left.-\,4\,{\alpha }_{1}{\alpha }_{2}{\mu }^{2}-4\,{\alpha }_{2}^{2}{\mu }^{2}+16\,{\alpha }_{2}^{2}\lambda \,\sigma \right){\text{}}\mathrm{ln}\left(A\right){\sigma }^{2}{\lambda }^{2},\\ {\rm{\Gamma }}=\displaystyle \frac{\left(\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}-2\lambda \,\sigma +{\mu }^{2}\right)}{3\,{\alpha }_{1}^{2}{\mu }^{2}-12\,{\alpha }_{1}^{2}\lambda \,\sigma +16\,{\alpha }_{1}{\alpha }_{2}\lambda \,\sigma -4\,{\alpha }_{1}{\alpha }_{2}{\mu }^{2}-4\,{\alpha }_{2}^{2}{\mu }^{2}+16\,{\alpha }_{2}^{2}\lambda \,\sigma },\\ {{\ell }}_{16}=\left({\mu }^{2}-4\,\lambda \,\sigma \right){h}_{0}\left(\sqrt{-4\lambda \sigma \,{\mu }^{2}+{\mu }^{4}}-2\,\lambda \,\sigma +{\mu }^{2}\right)\\ \qquad \times \,\left({\alpha }_{1}-2\,{\alpha }_{2}\right)\left(3{\alpha }_{1}+2{\alpha }_{2}\right)\sqrt{{{\ell }}_{17}-{{\ell }}_{18}},\\ {{\ell }}_{17}=-2{\mu }^{6}+16{\mu }^{4}\lambda \sigma +2\,{\mu }^{4}\sqrt{-4\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}-36{\mu }^{2}{\lambda }^{2}{\sigma }^{2},\\ {{\ell }}_{18}=4\left(3\lambda \,\sigma \,{\mu }^{2}+4\,{\lambda }^{2}{\sigma }^{2}\right)\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}+16\,{\lambda }^{3}{\sigma }^{3}.\end{array}\end{eqnarray*}$However, we reveal new traveling waves and chirped optical solitons to (1)$\begin{eqnarray}\begin{array}{l}{q}_{1}(x,t)\,=\,\sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right)\right]}\\ \,\times \,{{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$and the corresponding chirped$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{1}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \qquad \times \,\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{q}_{2}(x,t)\\ =\,\sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right)\right]}\\ \qquad \times \,{{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$and the chirped optical solitons gives$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{2}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \qquad \times \,\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{3}(x,t) & = & \sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\pm \displaystyle \frac{\sqrt{-{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\sec }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\right]}\\ & & \times \ {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$and the chirped$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{3} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\right.\\ & & \left.\pm \displaystyle \frac{\sqrt{-{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\sec }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}{q}_{4}(x,t)=\sqrt{{h}_{0}+{h}_{1}[-\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\pm \displaystyle \frac{\sqrt{-{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\csc }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)]}\end{eqnarray}$$\begin{eqnarray}\times \,{{\rm{e}}}^{{\rm{i}}[f(\xi )]},\,\,\,\end{eqnarray}$and the chirped gives$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{4}(x,t)=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \left[-\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\right.\\ \left.\pm \,\displaystyle \frac{\sqrt{-{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\csc }_{A}\left(\sqrt{-({\mu }^{2}-4\lambda \sigma )}\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{5}(x,t) & = & \sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)\right]}\\ & & \times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$and the corresponding chirped optical solitons to (1) are recovered$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{5}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \qquad \times \,\left[-\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tan }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)\right.\\ \left.\qquad -\,\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\cot }_{A}\left(\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)\right].\end{array}\end{eqnarray}$

For ${\mu }^{2}-4\lambda \sigma \gt 0$ and $\sigma \ne 0,{h}_{0}$, ${h}_{1}=\tfrac{1}{12\mu \lambda }({{\ell }}_{1}-{{\ell }}_{2}-{{\ell }}_{3}+{{\ell }}_{4}-{{\ell }}_{5}+{{\ell }}_{6})$,$\begin{eqnarray*}\begin{array}{rcl}v & = & \displaystyle \frac{\sqrt{6\,\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}-12\,\lambda \,\sigma +6\,{\mu }^{2}}}{\left(3\,{\alpha }_{1}^{2}{\mu }^{2}-12\,{\alpha }_{1}^{2}\lambda \,\sigma +16\,{\alpha }_{1}{\alpha }_{2}\lambda \,\sigma -4\,{\alpha }_{1}{\alpha }_{2}{\mu }^{2}-4\,{\alpha }_{2}^{2}{\mu }^{2}+16\,{\alpha }_{2}^{2}\lambda \,\sigma \right){h}_{0}},\\ {\beta }_{2} & = & \displaystyle \frac{\sqrt{-2\,{\mu }^{6}+16\,{\mu }^{4}\lambda \,\sigma +2\,{\mu }^{4}\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}-36{\mu }^{2}{\lambda }^{2}{\sigma }^{2}-12\,\lambda \,\sigma \,{\mu }^{2}\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}+16\,{\lambda }^{3}{\sigma }^{3}+16\,{\lambda }^{2}{\sigma }^{2}\sqrt{-4\,\lambda \,\sigma \,{\mu }^{2}+{\mu }^{4}}}\left({\alpha }_{1}-2\,{\alpha }_{2}\right)\left(3\,{\alpha }_{1}+2\,{\alpha }_{2}\right){h}_{0}^{2}}{12{\text{}}\mathrm{ln}\left(A\right){\sigma }^{2}{\lambda }^{2}},\\ {\gamma }_{1} & = & \displaystyle \frac{1}{3}\displaystyle \frac{({{\ell }}_{7}-{{\ell }}_{8}-{{\ell }}_{9}+{{\ell }}_{10}-{{\ell }}_{11}+{{\ell }}_{12}-{{\ell }}_{13}-{{\ell }}_{14}){{\ell }}_{15}}{{{\rm{\Omega }}}_{1}},{\alpha }_{1}={\alpha }_{1},{\alpha }_{2}={\alpha }_{2};\end{array}\end{eqnarray*}$Therefore, the following is recovered$\begin{eqnarray}\begin{array}{l}{q}_{6}(x,t)\\ \,=\,\sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tanh }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right)\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the corresponding chirped optical solitons give$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{6}(x,t)=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \,\times \,\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tanh }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{7}(x,t) & = & -\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }\\ & & \times \,{\coth }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2}\xi \right)\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{8}(x,t) & = & \sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tanh }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\pm {\rm{i}}\displaystyle \frac{\sqrt{{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{{\rm{sech}} }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\right]}\\ & & \times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$and the chirped optical solitons give$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{8} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[-\displaystyle \frac{\mu }{2\sigma }+\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\tanh }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\right.\\ & & \left.\pm {\rm{i}}\displaystyle \frac{\sqrt{{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{{\rm{sech}} }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray*}{q}_{9}(x,t)=\sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\coth }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\pm \displaystyle \frac{\sqrt{{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\mathrm{csch}}_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray*}$the chirp gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{9} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[-\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\coth }_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\right.\\ & & \left.\pm \displaystyle \frac{\sqrt{{pq}({\mu }^{2}-4\lambda \sigma )}}{2\sigma }{\mathrm{csch}}_{A}\left(\sqrt{({\mu }^{2}-4\lambda \sigma )}\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{10}(x,t) & = & {h}_{0}+{h}_{1}\left[-\displaystyle \frac{\mu }{2\sigma }-\displaystyle \frac{\sqrt{-({\mu }^{2}-4\lambda \sigma )}}{4\sigma }\right.\\ & & \times {\tanh }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)\\ & & \left.-\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{4\sigma }{\coth }_{A}\left(\displaystyle \frac{\sqrt{({\mu }^{2}-4\lambda \sigma )}}{4}\xi \right)\right]\\ & & \times {e}^{{\rm{i}}[f(\xi )]}.\end{array}\end{eqnarray}$

For $\lambda \sigma \gt 0$ and μ=0, we obtain ${h}_{0}=\sqrt{\tfrac{-3\lambda \sqrt{{\theta }_{1}}}{\sigma }},{h}_{1}={\left(9{\theta }_{1}\right)}^{\tfrac{1}{4}}$, $v=\tfrac{\sqrt{-\sqrt{{\theta }_{1}}\left(3{\alpha }_{1}+2{\alpha }_{2}\right)\left({\alpha }_{1}-2{\alpha }_{2}\right)}}{\mathrm{ln}(A)\sigma {\beta }_{2}}$, ${\gamma }_{1}=-\tfrac{1}{3}\mathrm{ln}(A)\sigma \left[{h}_{0}(-4{\alpha }_{2}^{2}{\alpha }_{1}^{2}-4{\alpha }_{1}{\alpha }_{2})+\tfrac{3{\alpha }_{1}}{v}\right]$, ${\alpha }_{1}={\alpha }_{1},{\alpha }_{2}={\alpha }_{2},{\beta }_{2}={\beta }_{2}$, ${\theta }_{1}=\tfrac{{\beta }_{2}^{2}{\left({\text{}}\mathrm{ln}\left(A\right)\right)}^{2}{\sigma }^{3}}{\lambda {\left(3{\alpha }_{1}+2{\alpha }_{2}\right)}^{2}{\left({\alpha }_{1}-2{\alpha }_{2}\right)}^{2}}$.$\begin{eqnarray}{q}_{11}(x,t)=\sqrt{{h}_{0}+{h}_{1}\left[\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\tan }_{A}\left(\sqrt{\lambda \sigma }\xi \right)\right]}\times {e}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped gives$\begin{eqnarray}\delta {\omega }_{11}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\left[\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\tan }_{A}\left(\sqrt{\lambda \sigma }\xi \right)\right],\end{eqnarray}$$\begin{eqnarray}{q}_{12}(x,t)=\sqrt{{h}_{0}+{h}_{1}\left[-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\sqrt{\lambda \sigma }\xi \right)\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the corresponding gives$\begin{eqnarray}\delta {\omega }_{12}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\left[-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\sqrt{\lambda \sigma }\xi \right)\right],\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{q}_{13}(x,t)\\ =\,\sqrt{{h}_{0}+{h}_{1}\left[\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\tan }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm \sqrt{{pq}\displaystyle \frac{\lambda }{\sigma }}{\sec }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\right]}\\ \qquad \times \,{{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the corresponding chirped gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{13} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\tan }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm \sqrt{{pq}\displaystyle \frac{\lambda }{\sigma }}{\sec }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{q}_{14}(x,t)\\ =\,\sqrt{{h}_{0}+{h}_{1}\left[-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm \sqrt{{pq}\displaystyle \frac{\lambda }{\sigma }}{\csc }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\right]}\\ \qquad \times \,{e}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the chirped optical solitons give$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{14}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \left[-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm \sqrt{{pq}\displaystyle \frac{\lambda }{\sigma }}{\csc }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{q}_{15}(\xi )\\ =\,\sqrt{{h}_{0}+{h}_{1}\left[\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\lambda }{\sigma }}\left({\tan }_{A}\left(\displaystyle \frac{\sqrt{\lambda \sigma }}{2}\xi \right)-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\displaystyle \frac{\sqrt{\lambda \sigma }}{2}\xi \right)\right)\right]}\\ \qquad \times \,{{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the corresponding chirped gives$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{15}(\xi )=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \ \ \times \ \left[\displaystyle \frac{1}{2}\sqrt{\displaystyle \frac{\lambda }{\sigma }}\left({\tan }_{A}\left(\displaystyle \frac{\sqrt{\lambda \sigma }}{2}\xi \right)-\sqrt{\displaystyle \frac{\lambda }{\sigma }}{\cot }_{A}\left(\displaystyle \frac{\sqrt{\lambda \sigma }}{2}\xi \right)\right)\right].\end{array}\end{eqnarray}$

For λσ<0 and μ=0, we gain ${h}_{0}\,=\sqrt{\tfrac{-3\lambda \sqrt{{\theta }_{1}}}{\sigma }},{h}_{1}={\left(9{\theta }_{1}\right)}^{\tfrac{1}{4}}$, $v=\tfrac{\sqrt{-\sqrt{{\theta }_{1}}\left(3{\alpha }_{1}+2{\alpha }_{2}\right)\left({\alpha }_{1}-2{\alpha }_{2}\right)}}{\mathrm{ln}(A)\sigma {\beta }_{2}}$, ${\gamma }_{1}\,=-\tfrac{1}{3}\mathrm{ln}(A)\sigma \left[{h}_{0}(-4{\alpha }_{2}^{2}{\alpha }_{1}^{2}-4{\alpha }_{1}{\alpha }_{2})+\tfrac{3{\alpha }_{1}}{v}\right]$, ${\alpha }_{1}={\alpha }_{1},{\alpha }_{2}\,={\alpha }_{2},{\beta }_{2}={\beta }_{2}$, ${\theta }_{1}=\tfrac{{\beta }_{2}^{2}{\left({\text{}}\mathrm{ln}\left(A\right)\right)}^{2}{\sigma }^{3}}{\lambda {\left(3{\alpha }_{1}+2{\alpha }_{2}\right)}^{2}{\left({\alpha }_{1}-2{\alpha }_{2}\right)}^{2}}$.$\begin{eqnarray}{q}_{16}(x,t)=\sqrt{{h}_{0}+{h}_{1}\left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\sqrt{-\lambda \sigma }\xi \right)\right]}\times {e}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{16} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\sqrt{-\lambda \sigma }\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}{q}_{17}(x,t)=\sqrt{{h}_{0}+{h}_{1}\left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(\sqrt{-\lambda \sigma }\xi \right)\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the corresponding chirped gives$\begin{eqnarray}\begin{array}{rclrcl}\delta {\omega }_{17} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}) & & & \times \left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(\sqrt{-\lambda \sigma }\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}{q}_{18}(x,t)=\sqrt{{h}_{0}+{h}_{1}\left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm {\rm{i}}\sqrt{{pq}\displaystyle \frac{-{pq}\lambda }{\sigma }}{{\rm{sech}} }_{A}\left(2\sqrt{-\lambda \sigma }\xi \right)\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the corresponding chirped is obtained$\begin{eqnarray}\delta {\omega }_{18}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\end{eqnarray}$$\begin{eqnarray}\times \left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\sqrt{2\lambda \sigma }\xi \right)\pm {\rm{i}}\sqrt{{pq}\displaystyle \frac{-{pq}\lambda }{\sigma }}{{\rm{sech}} }_{A}\left(2\sqrt{-\lambda \sigma }\xi \right)\right],\end{eqnarray}$$\begin{eqnarray}{q}_{19}(x,t)=\sqrt{{h}_{0}+{h}_{1}\left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(2\sqrt{-\lambda \sigma }\xi \right)\pm \sqrt{-{pq}\displaystyle \frac{\lambda }{\sigma }}{\mathrm{csch}}_{A}\left(2\sqrt{-\lambda \sigma }\xi \right)\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped optical solitons give$\begin{eqnarray}\begin{array}{ll}\delta {\omega }_{19}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}) & \times \,\left[-\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(2\sqrt{-\lambda \sigma }\xi \right)\pm \sqrt{-{pq}\displaystyle \frac{\lambda }{\sigma }}{\mathrm{csch}}_{A}\left(2\sqrt{-\lambda \sigma }\xi \right)\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{ll}{q}_{20}(x,t) & =\,\sqrt{{h}_{0}+{h}_{1}\left[-\displaystyle \frac{1}{2}\left(\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\displaystyle \frac{\sqrt{-\lambda \sigma }}{2}\xi \right)+\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(\displaystyle \frac{\sqrt{-\lambda \sigma }}{2}\xi \right)\right)\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the chirped is$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{20}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \,\times \,\left[-\displaystyle \frac{1}{2}\left(\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\tanh }_{A}\left(\displaystyle \frac{\sqrt{-\lambda \sigma }}{2}\xi \right)+\sqrt{\displaystyle \frac{-\lambda }{\sigma }}{\coth }_{A}\left(\displaystyle \frac{\sqrt{-\lambda \sigma }}{2}\xi \right)\right)\right].\end{array}\end{eqnarray}$

For μ=0 and λ=σ, we obtain new complex optical soliton solutions to (1) ${h}_{0}={\rm{i}}{h}_{1},{h}_{1}={h}_{1}$, $v=\tfrac{{\theta }_{2}}{{h}_{1}},{\alpha }_{1}={\alpha }_{1},{\alpha }_{2}={\alpha }_{2}$, ${\beta }_{2}=-\tfrac{{h}_{1}^{2}}{3{\theta }_{2}^{2}\sigma \mathrm{ln}(A)]}$, ${\gamma }_{1}=\tfrac{{\imath }\sigma \mathrm{ln}(A){\theta }_{2}\left[-3{\imath }{\alpha }_{1}+{\alpha }_{1}^{2}{\theta }_{2}-4{\alpha }_{2}{\theta }_{2}({\alpha }_{2}-{\alpha }_{1})\right]}{-3{h}_{1}}$, ${\theta }_{2}=\sqrt{\tfrac{3}{\left(3\,{\alpha }_{1}+2\,{\alpha }_{2}\right)\left({\alpha }_{1}-2{\alpha }_{2}\right)}}$$\begin{eqnarray}{q}_{21}(\xi )=\sqrt{{h}_{1}\left[{\rm{i}}+{\tan }_{A}(\lambda \xi )\right]}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the complex chirped soliton is obtained$\begin{eqnarray}\delta {\omega }_{21}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}){\tan }_{A}(\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{q}_{22}(x,t)=\sqrt{{h}_{1}\left({\rm{i}}-{\cot }_{A}(\lambda \xi \right)}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the corresponding complex chirped is given$\begin{eqnarray}\delta {\omega }_{22}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}){\cot }_{A}(\lambda \xi )),\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{23}(x,t) & = & \sqrt{{h}_{1}({\rm{i}}+1)\left[{\tan }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\sec }_{A}(2\lambda \xi )\right]}\\ & & \times {e}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the complex chirped gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{23} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[{\tan }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\sec }_{A}(2\lambda \xi )\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{24}(x,t) & = & \sqrt{{h}_{1}({\rm{i}}+1)\left[-{\cot }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\csc }_{A}(2\lambda \xi )\right]}\\ & & \times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the complex chirped gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{24} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[-{\cot }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\csc }_{A}(2\lambda \xi )\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{25}(x,t) & = & \sqrt{{h}_{1}({\rm{i}}+1)\left[\displaystyle \frac{1}{2}\left({\tan }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)-{\cot }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)\right)\right]}\\ & & \times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the complex chirped optical solitons give$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{25} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[\displaystyle \frac{1}{2}\left({\tan }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)-{\cot }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)\right)\right].\end{array}\end{eqnarray}$

For μ=0 and λ=−σ, we gain ${h}_{0}={h}_{1}\,={\left(-\tfrac{27{\beta }_{2}^{2}\mathrm{ln}{\left(A\right)}^{2}{\sigma }^{2})}{{\theta }_{2}}\right)}^{\tfrac{1}{4}}$, $v=-\tfrac{1}{\sqrt{{\beta }_{2}\sigma \mathrm{ln}(A)}}$, ${\alpha }_{1}={\alpha }_{1},{\alpha }_{2}={\alpha }_{2},{\beta }_{2}\,={\beta }_{2}$, ${\gamma }_{1}=-\tfrac{1}{{\beta }_{2}}{\beta }_{2}\sigma \mathrm{ln}(A)(3{\alpha }_{1}+{\theta }_{2}(3{\alpha }_{1}-4{\alpha }_{2}^{2}))$,$\begin{eqnarray}{q}_{26}(x,t)=\sqrt{{h}_{1}(1-{\tanh }_{A}(\lambda \xi ))}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped gives$\begin{eqnarray}\delta {\omega }_{26}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}){\tanh }_{A}(\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{q}_{27}(x,t)={h}_{1}(1-{\coth }_{A}(\lambda \xi ))\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped optical soliton gives$\begin{eqnarray}\delta {\omega }_{27}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}){\coth }_{A}(\lambda \xi ),\end{eqnarray}$$\begin{eqnarray}{q}_{28}(x,t)=\sqrt{{h}_{1}(1-{\tanh }_{A}(2\lambda \xi )\pm {\rm{i}}\sqrt{{pq}}{{\rm{sech}} }_{A}(2\lambda \xi ))}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{28} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[{\tanh }_{A}(2\lambda \xi )\pm {\rm{i}}\sqrt{{pq}}{{\rm{sech}} }_{A}(2\lambda \xi )\right],\end{array}\end{eqnarray}$$\begin{eqnarray}{q}_{29}(\xi )=\sqrt{{h}_{1}(1-{\coth }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\mathrm{csch}}_{A}(2\lambda \xi ))}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped is obtained$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{29}(\xi ) & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[{\coth }_{A}(2\lambda \xi )\pm \sqrt{{pq}}{\mathrm{csch}}_{A}(2\lambda \xi )\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{30}(x,t) & = & \sqrt{{h}_{1}\left(1-\displaystyle \frac{1}{2}\left({\tanh }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)+{\coth }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)\right)\right)}\\ & & \times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the chirped optical soliton is obtained$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{30} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left(\displaystyle \frac{1}{2}\left({\tanh }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)+{\coth }_{A}\left(\displaystyle \frac{\lambda }{2}\xi \right)\right)\right).\end{array}\end{eqnarray}$

$\mu =k,\lambda ={mk}(m\ne 0),{and}\sigma =0$, the following is recovered: ${h}_{0}={{mh}}_{1},{h}_{1}={h}_{1}$, $v\,={\left(-\tfrac{4}{{\beta }^{2}\mathrm{ln}{\left(A\right)}^{2}{k}^{2}}\right)}^{\tfrac{1}{4}},{\alpha }_{1}\,=-{\gamma }_{1}v{\beta }_{2}$, ${\alpha }_{2}=\tfrac{3}{2}{\gamma }_{1}v,{\beta }_{2}={\beta }_{2},{\gamma }_{1}={\gamma }_{1}$,$\begin{eqnarray}{q}_{32}(x,t)=\sqrt{\left({h}_{1}{A}^{\xi k}-m(1-{h}_{1}\right)}\times {e}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$the chirped optical corresponds to$\begin{eqnarray}\delta {\omega }_{32}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2}){A}^{\xi k}-m.\end{eqnarray}$

For $\mu \ne 0$ and $\lambda =0$ we obtain ${h}_{0}\,={\left(12{\theta }_{2}^{2}{\beta }_{2}^{2}\mathrm{ln}{\left(A\right)}^{2}\right)}^{\tfrac{1}{4}}$, ${h}_{1}=\sigma {h}_{0}$, $v=\tfrac{\sqrt{-\tfrac{2{\theta }_{2}}{\sqrt{3}}(3{\alpha }_{1}+{\alpha }_{2})({\alpha }_{1}-2{\alpha }_{2})}}{{\beta }_{2}\mathrm{ln}(A)}$, ${\alpha }_{1}\,={\alpha }_{1},{\alpha }_{2}={\alpha }_{2},{\beta }_{2}={\beta }_{2}$, ${\gamma }_{1}=\tfrac{3\left[2{\beta }_{2}\mathrm{ln}(A)+v\mathrm{ln}(A){\left(-12{\alpha }_{1}{\theta }_{2}^{2}\mathrm{ln}{\left(A\right)}^{2}{\sigma }^{2}\right)}^{\tfrac{1}{4}}\right]}{-12{\theta }_{2}^{2}{\sigma }^{2}{\beta }_{2}^{2}\mathrm{ln}{\left(A\right)}^{2}(3{\alpha }_{1}+2{\alpha }_{2})({\alpha }_{1}-2{\alpha }_{2})}$,$\begin{eqnarray}\begin{array}{rcl}{q}_{33}(x,t) & = & \sqrt{{h}_{0}\left(1+\sigma \displaystyle \frac{p\mu }{\sigma ({\cosh }_{A}(\mu \xi )-{\sinh }_{A}(\mu \xi )-p)}\right)}\\ & & \times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the corresponding chirped$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{33} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[\displaystyle \frac{p\mu }{\sigma ({\cosh }_{A}(\mu \xi )-{\sinh }_{A}(\mu \xi )-p)}\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{q}_{34}(x,t) & = & {h}_{0}\left(1-\displaystyle \frac{\mu ({\sinh }_{A}(\mu \xi )+{\cosh }_{A}(\mu \xi ))}{({\cosh }_{A}(\mu \xi )-{\sinh }_{A}(\mu \xi )+q)}\right)\\ & & \times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{array}\end{eqnarray}$the chirped gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{34} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left(\displaystyle \frac{\mu ({\sinh }_{A}(\mu \xi )+{\cosh }_{A}(\mu \xi ))}{\sigma ({\cosh }_{A}(\mu \xi )-{\sinh }_{A}(\mu \xi )+q)}\right).\end{array}\end{eqnarray}$

For μ=k and $\sigma ={mk}(m\ne 0)$ and λ=0, we obtain ${h}_{0}={\left(12{\theta }_{2}^{2}{\beta }_{2}^{2}\mathrm{ln}{\left(A\right)}^{2}\right)}^{\tfrac{1}{4}}$, ${h}_{1}={{mh}}_{0},v=\tfrac{\sqrt{-\tfrac{2{\theta }_{2}}{\sqrt{3}}(3{\alpha }_{1}+{\alpha }_{2})({\alpha }_{1}-2{\alpha }_{2})}}{{\beta }_{2}\mathrm{ln}(A)}$, α1=α1, α2=α2, β2=β2, ${\gamma }_{1}=\tfrac{3\left[2{\beta }_{2}\mathrm{ln}(A)+v\mathrm{ln}(A){\left(-12{\alpha }_{1}{\theta }_{2}^{2}\mathrm{ln}{\left(A\right)}^{2}{\sigma }^{2}\right)}^{\tfrac{1}{4}}\right]}{-12{\theta }_{2}^{2}{\sigma }^{2}{\beta }_{2}^{2}\mathrm{ln}{\left(A\right)}^{2}(3{\alpha }_{1}+2{\alpha }_{2})({\alpha }_{1}-2{\alpha }_{2})}$,$\begin{eqnarray}{q}_{35}(\xi )=\sqrt{{h}_{0}\left(-\displaystyle \frac{{{mpA}}^{k\xi }}{q-{{mpA}}^{k\xi }}\right)}\times {{\rm{e}}}^{{\rm{i}}[f(\xi )]},\end{eqnarray}$and lastly the chirped optical soliton to (1) is given$\begin{eqnarray}{\delta }_{35}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\displaystyle \frac{{{pA}}^{k\xi }}{q-{{mpA}}^{k\xi }}.\end{eqnarray}$Here, in this paper, we omit the generalized hyperbolic and triangular function which are given by [18, 19].

5. Application of the extended auxiliary equation method to (55)

To obtain the optical soliton solution, (55) can to be transformed as follows [12]:$\begin{eqnarray}{\left(\displaystyle \frac{\partial F}{\partial \xi }\right)}^{2}={h}_{0}{F}^{2}(\xi )+{h}_{1}{F}^{3}(\xi )+{h}_{2}{F}^{4}(\xi ).\end{eqnarray}$Where ${h}_{0}=-\tfrac{4}{{v}^{4}{\beta }_{2}^{2}}$, ${h}_{1}=\tfrac{4\left({\alpha }_{1}+{\gamma }_{1}{\beta }_{2}v\right)}{{\beta }_{2}^{2}{v}^{3}}$, ${h}_{2}=\tfrac{{\alpha }_{1}\left(4{\alpha }_{2}-3{\alpha }_{1}\right)+4{\alpha }_{1}^{2}}{3{v}^{2}{\beta }_{2}^{2}}$.

Consequently,

S1:h0>0, Δ>0, where ${\rm{\Delta }}={h}_{1}^{2}-4{h}_{0}{h}_{2}$.$\begin{eqnarray}{q}_{35}(x,t)={e}^{{\rm{i}}[f(\xi )]}\times \sqrt{\displaystyle \frac{2{h}_{0}{\rm{sech}} (\sqrt{{{\rm{h}}}_{0}}\xi )}{\sqrt{{\rm{\Delta }}}-{h}_{1}{\rm{sech}} (\sqrt{{{\rm{h}}}_{0}}\xi )}},\end{eqnarray}$and the chirped bright optical soliton is obtained$\begin{eqnarray}\delta {\omega }_{3}5=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}+\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\left[\displaystyle \frac{2{h}_{0}{\rm{sech}} (\sqrt{{h}_{0}}\xi )}{\sqrt{{\rm{\Delta }}}-{h}_{1}{\rm{sech}} (\sqrt{{h}_{0}}\xi )}\right].\end{eqnarray}$

S2:h0>0, Δ<0,$\begin{eqnarray}{q}_{36}(\xi )={e}^{{\rm{i}}[f(\xi )]}\times \sqrt{-\displaystyle \frac{2{h}_{0}\mathrm{csch}(\sqrt{{h}_{0}}\xi )}{\sqrt{-{\rm{\Delta }}}-{h}_{1}{\rm{sech}} (\sqrt{{h}_{0}}\xi )}},\end{eqnarray}$the combined chirped optical soliton gives$\begin{eqnarray}\begin{array}{rcl}\delta {\omega }_{36} & = & \displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ & & \times \left[\displaystyle \frac{2{h}_{0}\mathrm{csch}(\sqrt{{h}_{0}}\xi )}{\sqrt{-{\rm{\Delta }}}-{h}_{1}{\rm{sech}} (\sqrt{{h}_{0}}\xi )}\right].\end{array}\end{eqnarray}$

Case 3:h0>0, Δ1<0, where ${{\rm{\Delta }}}_{1}={h}_{1}^{2}-4{h}_{0}{h}_{2}-4{h}_{0}^{2}$,$\begin{eqnarray}\begin{array}{l}{q}_{37}(\xi )={e}^{{\rm{i}}[f(\xi )]}\\ \times \,\sqrt{-\displaystyle \frac{2{h}_{0}{\rm{sech}} (\sqrt{{h}_{0}}\xi )}{{h}_{1}{\rm{sech}} (\sqrt{{h}_{0}}\xi )+\sqrt{-{{\rm{\Delta }}}_{1}}\tanh (\sqrt{{h}_{0}}\xi )-2{h}_{0}}},\end{array}\end{eqnarray}$the corresponding chirped gives$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{37}=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \ \ \times \,\left[\displaystyle \frac{2{h}_{0}{\rm{sech}} (\sqrt{{{\rm{h}}}_{0}}\xi )}{{h}_{1}{\rm{sech}} (\sqrt{{{\rm{h}}}_{0}}\xi )+\sqrt{-{{\rm{\Delta }}}_{1}}\tanh (\sqrt{{h}_{0}}\xi )-2{h}_{0}}\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{q}_{38}(\xi )={e}^{{\rm{i}}[f(\xi )]}\\ \ \ \times \ \sqrt{-\displaystyle \frac{2{h}_{0}\mathrm{csch}(\sqrt{{h}_{0}}\xi )}{{h}_{1}\mathrm{csch}(\sqrt{{h}_{1}}\xi )-\sqrt{{{\rm{\Delta }}}_{1}}\coth (\sqrt{{{\rm{h}}}_{0}}\xi )+2{{\rm{h}}}_{0}}},\end{array}\end{eqnarray}$and the chirped gives$\begin{eqnarray}\begin{array}{l}\delta {\omega }_{38}(\xi )=\displaystyle \frac{1}{{\beta }_{2}{v}^{2}}-\displaystyle \frac{1}{2{\beta }_{2}v}(3{\alpha }_{1}+2{\alpha }_{2})\\ \ \ \times \ \left[\displaystyle \frac{2{h}_{0}\mathrm{csch}(\sqrt{{h}_{0}}\xi )}{{h}_{1}\mathrm{csch}(\sqrt{{h}_{1}}\xi )-\sqrt{{{\rm{\Delta }}}_{1}}\coth (\sqrt{{{\rm{h}}}_{0}}\xi )+2{h}_{0}}\right].\end{array}\end{eqnarray}$

5.1. Graphical representation

Figures 12 plot the spatiotemporal evolution of the dipole bright optical solitons and the corresponding chirped of $| {q}_{35}(x,t){| }^{2}$. Moreover, by using the extended algebraic method, for certain values of the parameters β2, α1 & α2, the dipole solitary waves are obtained (see figures 1, 2, 4). However, figure 3 depicts the bright optical soliton evolution, which corresponds to the spatiotemporal shift. Figure 5 depicts the dipole optical solitons which corresponds to the spatiotemporal shift. Three dimensional plots of these chirped optical solitons may be observed in figures 15. The results obtained are very important in optical fibre context. Therefore, the dark optical soliton can help to carry out the communication transmission shipped to where the renewal can be collected by the dark–bright soliton conversion.

Figure 1.

New window|Download| PPT slide
Figure 1.Spatiotemporal plots of the combined bright optical solitons $| {q}_{35}(x,t){| }^{2}$ for β2=1, α1=−0.074, α2=0.0084, at (a) v=25.255 and (b) v=15.25 respectively.


Figure 2.

New window|Download| PPT slide
Figure 2.Spatiotemporal plots of the chirped bright soliton $| \delta {\omega }_{35}{| }^{2}$ for β2=1, α1=−0.74, α2=0.25, γ1=−0.025 at (a) v=25.25, (b) v=15.25, (c) v=10.25, and (d) v=10.25, respectively.


Figure 3.

New window|Download| PPT slide
Figure 3.Spatiotemporal plots of the combined bright optical solitons $| {q}_{36}(x,t){| }^{2}$ for β2=1, α1=−0.74, α2=0.25, γ1=−0.025 and (a) t = 0, (b) t = 5, (c) t = 10, (d) t = 15, (e) t = 20 at v = 5.25.


Figure 4.

New window|Download| PPT slide
Figure 4.Spatiotemporal plots of dipole bright optical solitons $| {q}_{37}(x,t){| }^{2}$ for β2=1, α1=−0.0084, α2=0.0084, γ1=−0.025 at (a) v=10.25, (b) v=15.25, (c) v=20.25 and (d) v=25.25, respectively.


Figure 5.

New window|Download| PPT slide
Figure 5.Spatiotemporal plots (2D) of dipole optical solitons $| {\delta }_{37}{| }^{2}$ for β2=1, α1=−0.0084, α2=0.0084, γ1=−0.025 at (a) v=5.25, (b) v=15.25, (c) v=25.25 and (d) v=30.25, respectively.


6. Conclusion

In this present work, through the governing equation, we describe a propagation of sub-picosecond pulses with cubic nonlinearity and SPM in optical fibers. We investigate the behavior of the new optical soliton solutions. To target the main objective of this paper, the traveling-wave transformation was adopted to obtain the chirped component and the resulting ordinary differential equation. To solve the obtained ODE, the new extended direct algebraic scheme and the extended algebraic equation have been used. In our results, chirped dark–bright soliton solutions, trigonometric function solutions, new complex traveling-wave solutions, some rational function solutions and optical dipole solitons also emerge. Also, cases (8), (9) and (10) of the new extended direct algebraic method did not satisfy the conditions set on nonlinear ordinary differential equation (NODE) parameters, therefore, no solution was obtained. We think that the obtained one-soliton solutions should be useful in the field of solitary-wave theory. The reader should look at [21, 22] for the nonlocal Schrödinger equation.

Reference By original order
By published year
By cited within times
By Impact factor

Yang Z J Zhang S M Li X L Pang Z G 2018 Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation
Appl. Math. Lett. 82 6470

DOI:10.1016/j.aml.2018.02.018 [Cited within: 1]

Rezazadeh H Mirhosseini-Alizamini S M Eslami M Rezazadeh M Mirzazadeh M Abbagari S 2018 New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation
Optik 172 545553

DOI:10.1016/j.ijleo.2018.06.111

Shalaev V M 2007 Optical negative-index metamaterials
Nat. Photonics 1 4148

DOI:10.1038/nphoton.2006.49 [Cited within: 1]

Zhou Q Zhu Q Liu Y Biswas A Bhrawy A H Khan K R Mahmood M F Belic M 2014 Solitons in optical metamaterials with parabolic law nonlinearity and spatio-temporal dispersion
J. Optoelectron. Adv. Mater. 16 12211225



Xu Y Suarez P Milovic D Khan K R Mahmood M F Biswas A Belic M 2016 Raman solitons in nanoscale optical waveguides, with metamaterials, having polynomial law non-linearity
J. Mod. Opt. 63 3237

DOI:10.1080/09500340.2016.1193240 [Cited within: 1]

Limin S Zhenjun Y Shumin Z Xingliang L 2019 Spiraling anomalous vortex beam arrays in strongly nonlocal nonlinear media
Phys. Rev. A 99063817

DOI:10.1103/PhysRevA.99.063817

Triki H Biswas A Moshokoa S P Belic M 2017 Dipole solitons in optical metamaterials with Kerr law nonlinearity
Optik 128 7176

DOI:10.1016/j.ijleo.2016.10.017

Song L M Yang Z J Pang Z G Li X L Zhang S M 2018 Interaction theory of mirror-symmetry soliton pairs in nonlocal nonlinear Schrödinger equation
Appl. Math. Lett. 90 4248

DOI:10.1016/j.aml.2018.10.008 [Cited within: 1]

Song L M Yang Z J Li X L Zhang S M 2018 Controllable Gaussian-shaped soliton clusters in strongly nonlocal media
Opt. Express 26 1918219198

DOI:10.1364/OE.26.019182

Ma W X 1993 Travelling wave solutions to a seventh order generalized KdV equation
Phys. Lett. A 180 221224



Qin Z Mehmet E Abdullah S 2019 Exact chirped singular soliton solutions of Triki-Biswas equation
Optik 181 338342

DOI:10.1016/j.ijleo.2018.11.054

Houwe A et al. 2019 Optical solitons for higher-order nonlinear Schrödingers equation with three exotic integration architectures
Optik 179 861866

DOI:10.1016/j.ijleo.2018.11.027 [Cited within: 4]

Xuemin M Rongcao Y Jinping T Wenrui X Christian J M 2016 Exact dipole solitary wave solution in metamaterials with higher-order dispersion
J. Mod. Opt. 63 S44S50

DOI:10.1080/09500340.2016.1185178 [Cited within: 4]

Michael S Maxim S S Neset A Evgeni Y P Giuseppe D Nadia M Mark J B Aleksei M Z 2005 Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials
Phys. Rev. Lett. 95013902

DOI:10.1103/PhysRevLett.95.013902 [Cited within: 1]

Korkmaz A Hepson E Hosseini K O Rezazadeh H Eslami M 2018 Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class
J. King Saud Univ. Sci. 32 567574

DOI:10.1016/j.jksus.2018.08.013 [Cited within: 2]

Houwe A Jamilu S Zakia H Serge Y D 2019 Solitary pulses of the conformable derivative nonlinear di? Erential equation governing wave propagation in low-pass electrical transmission line
Phys. Scr. 95045203

DOI:10.1088/1402-4896/ab5055 [Cited within: 1]

Penggang L Rongcao Y Zhiyong X 2010 Gray solitary-wave solutions in nonlinear negative-index materials
Phys. Rev. E 82046603

DOI:10.1103/PhysRevE.82.046603 [Cited within: 1]

Hadi R Mirhosseini-Alizamini S M Eslami M Rezazadeh M Mirzazadeh M Abbagari S 2018 New optical solitons of nonlinear conformable fractional Schrodinger-Hirota equation
Optik 172 545553

DOI:10.1016/j.ijleo.2018.06.111 [Cited within: 5]

Yakada S Depelair B Gambo B Serge Y D 2019 Miscellaneous new traveling waves in metamaterials by means of the new extended direct algebraic method
Optik 197163108

DOI:10.1016/j.ijleo.2019.163108 [Cited within: 3]

Abbagari S Alper K Hadi R Serge Paulin T M Ahmet B 2019 Soliton solutions in different classes for the Kaup-Newell model equation
Mod. Phys. Lett. B 342050038

DOI:10.1142/S0217984920500384 [Cited within: 1]

Song L M Yang Z J Pang Z G Li X L Zhang S M 2019 Interaction theory of mirror-symmetry soliton pairs in nonlocal Schrodinger equation
Appl. Math. Lett. 90 4248

DOI:10.1016/j.aml.2018.10.008 [Cited within: 1]

Song L Yang Z J Zhang S Li X L 2019 Spiraling anomalous vortex beam arrays in strongly nonlocal nonlinear media
Phys. Rev. A 99063817

DOI:10.1103/PhysRevA.99.063817 [Cited within: 1]

相关话题/Diverse chirped optical