删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

New lump, lump-kink, breather waves and other interaction solutions to the (3【-逻*辑*与-】plus;1)-dimens

本站小编 Free考研考试/2022-01-02

Tukur Abdulkadir Sulaiman1,2, Abdullahi Yusuf,1,2,4, Abdon Atangana31Department of Computer Engineering, Biruni University, Istanbul, Turkey
2Department of Mathematics, Federal University Dutse, Jigawa, Nigeria
3Institute for Groundwater Studies, University of the Free State, Bloemfontein, South Africa

First author contact: 4Author to whom any correspondence should be addressed.
Received:2020-01-29Revised:2020-03-26Accepted:2020-03-27Online:2020-07-24


Abstract
This study investigates the (3+1)-dimensional soliton equation via the Hirota bilinear approach and symbolic computations. We successfully construct some new lump, lump-kink, breather wave, lump periodic, and some other new interaction solutions. All the reported solutions are verified by inserting them into the original equation with the help of the Wolfram Mathematica package. The solution's visual characteristics are graphically represented in order to shed more light on the results obtained. The findings obtained are useful in understanding the basic nonlinear fluid dynamic scenarios as well as the dynamics of computational physics and engineering sciences in the related nonlinear higher dimensional wave fields.
Keywords: (3+1)-dimensional soliton equation;Hirota method;lump solution;breather waves


PDF (567KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Tukur Abdulkadir Sulaiman, Abdullahi Yusuf, Abdon Atangana. New lump, lump-kink, breather waves and other interaction solutions to the (3+1)-dimensional soliton equation. Communications in Theoretical Physics, 2020, 72(8): 085004- doi:10.1088/1572-9494/ab8a21

1. Introduction

The lump soliton solutions have been commonly used in many natural sciences such as chemistry, biology, etc. In particular, in almost all branches of physics, engineering such as fluid dynamics, plasma physics, optics, etc [13] the lump soliton solutions play an important role. While some researchers used numerical simulation or analytical methods to investigate the performance of such structures, further study of the theoretical analysis of such systems is required [46]. Rogue waves (RW) are expansive and instinctive ocean waves that have drawn growing focus on both theoretical and experimental observations [7]. The RW for nonlinear Schrödinger equation in its simplest form has been proposed in [8]. It can be seen that there are huge wave phenomena in different fields such as plasmas, nonlinear optics, Bose–Einstein condensates, biophysics and even finance. [911]. In terms of a new combination of variable functions using the Hirota bilinear model, some researchers are working out some new solutions from the lump solution family and some groups of interaction solutions. We are reviewing some literature on the phenomena of lump solutions and their interaction. To this aim, there have been series of presentation of lump solutions from different perspectives, for instant, Zakharov [12], pump wave solution [13], lump solution through Hirota bilinear method [3, 1416]. Through important properties of lump solutions it can be understood that amplitudes, shapes, speeds of solitons will be preserved after collision with another soliton and this is the elastic property of collision. Moreover, interaction between rouge wave and kink solitary wave solution have been established in [17]. Several other types of solution can also be found in [1822].

Figure 1.

New window|Download| PPT slide
Figure 1.The 3D profiles of (a) imaginary part of equation (11) at $\sigma =2.95,z=t=-10$ (b) real part of equation (11) at $\sigma =-0.95,z=t=-10$ (c) imaginary part of equation (14) at $\sigma =-2.45,z=t=0.1$ (d) real part of equation (14) at $\sigma =-10,z=0.1,t=-5.2$.


In this study, we utilise the Hirota bilinear approach to construct some novel lump-type and interaction solutions for the (3+1)-dimensional soliton equation [18] given by$ \begin{eqnarray}3{\chi }_{{xz}}-{\left(2{\chi }_{t}+{\chi }_{{xxx}}-2\chi {\chi }_{x}\right)}_{y}+2{\left({\chi }_{x}{\partial }_{x}^{-1}{\chi }_{y}\right)}_{x}=0.\end{eqnarray}$The (3+1)-dimensional integrable equation (1) was first introduced in [23] in the study of the algebraic-geometrical solutions. The physical behaviour of the obtained solutions are also depicted in figures 15 in order to shed more light on the presented solutions.

2. Lump and its interaction solutions

In part, we present the new lump and its interaction solutions to the (3+1)-dimensional soliton equation given in equation (1).

Figure 2.

New window|Download| PPT slide
Figure 2.The 3D and density profiles of the real part of equation (24) (a), (b) at $\sigma =-4.88,z=t=0$ (c), (d) at $\sigma =8.04,z=-10,t=1$.


We first transform equation (1) into its bilinear form.

Set$ \begin{eqnarray}\chi ={{\rm{\Theta }}}_{x}.\end{eqnarray}$Substituting equation (2) into (1), yields$ \begin{eqnarray}\begin{array}{l}2{{\rm{\Theta }}}_{{xyt}}+{{\rm{\Theta }}}_{{xxxxy}}-4{{\rm{\Theta }}}_{{xy}}{{\rm{\Theta }}}_{{xx}}-3{{\rm{\Theta }}}_{{xxz}}\\ \quad -\,2{{\rm{\Theta }}}_{x}{{\rm{\Theta }}}_{{xxy}}-2{{\rm{\Theta }}}_{y}{{\rm{\Theta }}}_{{xxx}}=0.\end{array}\end{eqnarray}$Setting$ \begin{eqnarray}{\rm{\Theta }}(x,y,z,t)={\rm{\Theta }}(\xi ),\ \ \ \xi =x+\sigma y,\end{eqnarray}$reduces equation (4) to the following (2+1)-dimensional soliton equation:$ \begin{eqnarray}2\sigma {{\rm{\Theta }}}_{\xi \xi t}+\sigma {{\rm{\Theta }}}_{\xi \xi \xi \xi \xi }-4\sigma {{\rm{\Theta }}}_{\xi \xi }^{2}-3{{\rm{\Theta }}}_{\xi \xi z}-4\sigma {{\rm{\Theta }}}_{\xi }{{\rm{\Theta }}}_{\xi \xi \xi }=0.\end{eqnarray}$Consider the Cole–Hopf transformation$ \begin{eqnarray}{\rm{\Theta }}(\xi ,z,t)=-3\displaystyle \frac{\partial \left(\mathrm{ln}f(\xi ,z,t\right)}{\partial \xi }.\end{eqnarray}$Substituting equation (6) into (5), gives the following bilinear form:$ \begin{eqnarray}\begin{array}{l}3\sigma {f}_{\xi \xi }^{2}-2\sigma {f}_{t}{f}_{\xi }+f\left(2\sigma {f}_{\xi t}-3{f}_{\xi z}\right)\\ \quad +\,{f}_{\xi }\left(3{f}_{z}-4\sigma {f}_{\xi \xi \xi }\right)+\sigma {{ff}}_{\xi \xi \xi \xi }=0.\end{array}\end{eqnarray}$

2.1. Lump solution

In this section, we report the lump solutions to equation (1).

Consider the positive quadratic solutions to the bilinear equation (7)$ \begin{eqnarray}\begin{array}{l}g={b}_{1}\xi +{b}_{2}z+{b}_{3}t+{b}_{4},\ \ h={b}_{5}\xi +{b}_{6}z\\ \qquad +\,{b}_{7}t+{b}_{8},\ \ f={g}^{2}+{h}^{2}+{b}_{9}.\end{array}\end{eqnarray}$Substituting equation (8) into (7) gives a polynomial in powers of ξ, z and t. Collecting the coefficients of the same power, and equating each summation to zero, produces an algebraic system of equations. We solve the system of equations to obtained the values of the parameters involved. Substituting the values of the parameters into equation (6) and then into equation (2), gives the following lump solutions to equation (1):

Figure 3.

New window|Download| PPT slide
Figure 3.The 3D and density profiles of the (a), (b) real part of equation (31) at $\sigma =1.82,z=0.15,t=1$ (c), (d) imaginary part of equation (31) at $\sigma =-2,z=-10,t=2.52$.


Case-1: When$ \begin{eqnarray*}{b}_{1}=-{\rm{i}}{b}_{5},\ {b}_{2}=\displaystyle \frac{2{b}_{3}\sigma }{3},\ {b}_{6}=\displaystyle \frac{2{b}_{7}\sigma }{3},\end{eqnarray*}$we have$ \begin{eqnarray}\begin{array}{rcl}f & = & {\left(-{\rm{i}}{b}_{5}\xi +{b}_{3}t+\displaystyle \frac{2}{3}{b}_{3}\sigma z+{b}_{4}\right)}^{2}\\ & & +{\left({b}_{5}\xi +{b}_{7}t+\displaystyle \frac{2}{3}{b}_{7}\sigma z+{b}_{8}\right)}^{2}+{b}_{9},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left(2{b}_{5}\left({b}_{5}\xi +{b}_{7}t+\tfrac{2}{3}{b}_{7}\sigma z+{b}_{8}\right)-2{\rm{i}}{b}_{5}\left(-{\rm{i}}{b}_{5}\xi +{b}_{3}t+\tfrac{2}{3}{b}_{3}\sigma z+{b}_{4}\right)\right)}{\left(-{\rm{i}}{b}_{5}\xi +{b}_{3}t+\tfrac{2}{3}{b}_{3}\sigma z+{b}_{4}\right){}^{2}+\left({b}_{5}\xi +{b}_{7}t+\tfrac{2}{3}{b}_{7}\sigma z+{b}_{8}\right){}^{2}+{b}_{9}},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)\\ =\,\displaystyle \frac{3{\left({\varphi }_{1}-2{\rm{i}}{b}_{5}\left({b}_{3}t-{\rm{i}}{b}_{5}(x+\sigma y)+\tfrac{2}{3}{b}_{3}\sigma z+{b}_{4}\right)\right)}^{2}}{{\left({\varphi }_{2}+\left({b}_{3}t-{\rm{i}}{b}_{5}(x+\sigma y)+\tfrac{2}{3}{b}_{3}\sigma z+{b}_{4}\right){}^{2}\right)}^{2}},\end{array}\end{eqnarray}$where ${\varphi }_{1}=2{b}_{5}\left({b}_{7}t+{b}_{5}(x+\sigma y)+\tfrac{2}{3}{b}_{7}\sigma z+{b}_{8}\right)$, ${\varphi }_{2}=\left({b}_{7}t+{b}_{5}(x+\sigma y)+\tfrac{2}{3}{b}_{7}\sigma z+{b}_{8}\right){}^{2}+{b}_{9}$.

Case-2: When$ \begin{eqnarray*}{b}_{5}=-{\rm{i}}{b}_{1},\ {b}_{6}=-{\rm{i}}{b}_{2},\ {b}_{7}=\displaystyle \frac{{\rm{i}}\left({b}_{3}\sigma -3{b}_{2}\right)}{\sigma },\ {b}_{9}=0,\end{eqnarray*}$we have$ \begin{eqnarray}\begin{array}{rcl}f(\xi ,z,t) & = & {\left({b}_{1}\xi +{b}_{3}t+{b}_{2}z+{b}_{4}\right)}^{2}\\ & & +{\left(-{\rm{i}}{b}_{1}\xi +\displaystyle \frac{{\rm{i}}t\left({b}_{3}\sigma -3{b}_{2}\right)}{\sigma }-{\rm{i}}{b}_{2}z+{b}_{8}\right)}^{2},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left(2{b}_{1}\left({b}_{1}\xi +{b}_{3}t+{b}_{2}z+{b}_{4}\right)-2{\rm{i}}{b}_{1}\left(-{\rm{i}}{b}_{1}\xi +\tfrac{{\rm{i}}t\left({b}_{3}\sigma -3{b}_{2}\right)}{\sigma }-{\rm{i}}{b}_{2}z+{b}_{8}\right)\right)}{{\left({b}_{1}\xi +{b}_{3}t+{b}_{2}z+{b}_{4}\right)}^{2}+{\left(-{\rm{i}}{b}_{1}\xi +\tfrac{{\rm{i}}t\left({b}_{3}\sigma -3{b}_{2}\right)}{\sigma }-{\rm{i}}{b}_{2}z+{b}_{8}\right)}^{2}},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)\\ =\,\displaystyle \frac{3{\left(2{b}_{1}\left({b}_{3}t+{b}_{1}(x+\sigma y)+{b}_{2}z+{b}_{4}\right)-{\varphi }_{3}\right)}^{2}}{{\left({\left({b}_{3}t+{b}_{1}(x+\sigma y)+{b}_{2}z+{b}_{4}\right)}^{2}+{\varphi }_{4}\right)}^{2}},\end{array}\end{eqnarray}$where ${\varphi }_{3}=2{b}_{1}\left(-\tfrac{t\left({b}_{3}\sigma -3{b}_{2}\right)}{\sigma }+{b}_{1}(x+\sigma y)+{b}_{2}z+{\rm{i}}{b}_{8}\right)$, ${\varphi }_{4}={\left(\tfrac{{\rm{i}}t\left({b}_{3}\sigma -3{b}_{2}\right)}{\sigma }-{\rm{i}}{b}_{1}(x+\sigma y)-{\rm{i}}{b}_{2}z+{b}_{8}\right)}^{2}$.

2.2. Lump-kink solutions

In this section, we reveal the lump-kink solution to equation (1).

Figure 4.

New window|Download| PPT slide
Figure 4.The (a) 3D and (b) density profiles of real part of equation (35) at $\sigma =0.65,z=0.4,t=1.25$ (c) 3D and (d) density profiles of imaginary part of equation (35) at $\sigma =0.5,z=0.3,t=0.5$.


Consider the exponential test function as a solution to the bilinear equation (7)$ \begin{eqnarray}\begin{array}{l}f(\xi ,z,t)={\left({b}_{1}\xi +{b}_{3}z+{b}_{2}t+{b}_{4}\right)}^{2}\\ \quad +\,{\left({b}_{5}\xi +{b}_{6}z+{b}_{7}t+{b}_{8}\right)}^{2}\\ \quad +\,{{\rm{e}}}^{{b}_{9}\xi +{b}_{1}0z+{b}_{1}1t+{b}_{1}2}+{a}_{13}.\end{array}\end{eqnarray}$Substituting equation (15) into (7), gives a polynomial in the powers of ξ, z, t and an exponential function. Collecting the coefficients of the same power, and equating each summations to zero, yields an algebraic system of equations. We solve the system of equations to obtained the values of the parameters involved. Substituting the values of the parameters into equation (6) and then into equation (2), yields the following lump-kink solution to equation (1):

Case-1: When$ \begin{eqnarray*}\begin{array}{rcl}{b}_{1} & = & -{\rm{i}}{b}_{5},\ {b}_{2}=-{\rm{i}}{b}_{6},\ {b}_{3}=\displaystyle \frac{3{\rm{i}}\left({b}_{5}{b}_{9}^{2}\sigma -{b}_{6}\right)}{2\sigma },\\ {b}_{7} & = & -\displaystyle \frac{3\left({b}_{5}{b}_{9}^{2}\sigma -{b}_{6}\right)}{2\sigma },\ {b}_{8}={\rm{i}}{b}_{4},\end{array}\end{eqnarray*}$${b}_{10}=\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma ,$ we have$ \begin{eqnarray}f(\xi ,z,t)={{\rm{e}}}^{{b}_{9}\xi +{b}_{11}t+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}}+{b}_{13}+{\varphi }_{5}^{2}+{\varphi }_{6}^{2},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}{\rm{\Theta }}(\xi ,z,t)\\ =\,-\displaystyle \frac{3\left({b}_{9}{{\rm{e}}}^{{b}_{9}\xi +{b}_{11}t+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}}+2{b}_{5}{\varphi }_{5}-2{\rm{i}}{b}_{5}{\varphi }_{6}\right)}{{{\rm{e}}}^{{b}_{9}\xi +{b}_{11}t+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}}+{b}_{13}+{\varphi }_{5}^{2}+{\varphi }_{6}^{2}},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)\\ =\,\displaystyle \frac{3{\left({b}_{9}{{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)}+2{b}_{5}{\varphi }_{7}-2{\rm{i}}{b}_{5}{\varphi }_{8}\right)}^{2}}{{\left({{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)}+{b}_{13}+{\varphi }_{7}^{2}+{\varphi }_{8}^{2}\right)}^{2}}\\ \ \ -\,\displaystyle \frac{3{b}_{9}^{2}{{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)}}{{{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)+{b}_{13}+{\varphi }_{7}^{2}+{\varphi }_{8}^{2}}},\end{array}\end{eqnarray}$where ${\varphi }_{5}={b}_{5}\xi -\tfrac{3t\left({b}_{5}{b}_{9}^{2}\sigma -{b}_{6}\right)}{2\sigma }+{b}_{6}z+{\rm{i}}{b}_{4}$, ${\varphi }_{6}=-{\rm{i}}{b}_{5}\xi \,+\tfrac{3{\rm{i}}t\left({b}_{5}{b}_{9}^{2}\sigma -{b}_{6}\right)}{2\sigma }-{b}_{6}z{\rm{i}}+{b}_{4}$, ${\varphi }_{7}=-\tfrac{3t\left({b}_{5}{b}_{9}^{2}\sigma -{b}_{6}\right)}{2\sigma }+{b}_{5}(x+\sigma y)\,+{b}_{6}z+{b}_{4}{\rm{i}}$, ${\varphi }_{8}=\tfrac{3{\rm{i}}t\left({b}_{5}{b}_{9}^{2}\sigma -{b}_{6}\right)}{2\sigma }-{b}_{5}(x+\sigma y){\rm{i}}-{b}_{6}{\rm{i}}z+{b}_{4}$.

Case-2: When$ \begin{eqnarray*}\begin{array}{rcl}{b}_{2} & = & \displaystyle \frac{1}{3}(-2){\rm{i}}{b}_{7}\sigma ,\ {b}_{3}=-{\rm{i}}{b}_{7},\ {b}_{5}={\rm{i}}{b}_{1},\\ {b}_{6} & = & \displaystyle \frac{2{b}_{7}\sigma }{3},\ {b}_{8}={\rm{i}}{b}_{4},\ {b}_{10}=\displaystyle \frac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma ,\end{array}\end{eqnarray*}$we have$ \begin{eqnarray}f(\xi ,z,t)={{\rm{e}}}^{{b}_{9}\xi +{b}_{11}t+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}}+{b}_{13}+{\varphi }_{9}^{2}+{\varphi }_{10}^{2},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}{\rm{\Theta }}(\xi ,z,t)\\ =\,-\displaystyle \frac{3\left({b}_{9}{{\rm{e}}}^{{b}_{9}\xi +{b}_{11}t+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}}+2{b}_{1}{\varphi }_{9}+2{\rm{i}}{b}_{1}{\varphi }_{10}\right)}{{{\rm{e}}}^{{b}_{9}\xi +{b}_{11}t+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}}+{b}_{13}+{\varphi }_{9}^{2}+{\varphi }_{10}^{2}},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)\\ =\,\displaystyle \frac{3{\left({b}_{9}{{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)}+2{b}_{1}{\varphi }_{11}+2{\rm{i}}{b}_{1}{\varphi }_{12}\right)}^{2}}{{\left({{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)}+{b}_{13}+{\varphi }_{11}^{2}+{\varphi }_{12}^{2}\right)}^{2}}\\ \ \ -\,\displaystyle \frac{3{b}_{9}^{2}{{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)}}{{{\rm{e}}}^{\left({b}_{11}t+{b}_{9}(x+\sigma y)+\tfrac{1}{3}\left({b}_{9}^{3}+2{b}_{11}\right)\sigma z+{b}_{12}\right)+{b}_{13}+{\varphi }_{11}^{2}+{\varphi }_{12}^{2}}},\end{array}\end{eqnarray}$where ${\varphi }_{9}={b}_{1}\xi -{\rm{i}}{b}_{7}t-\tfrac{2}{3}{\rm{i}}{b}_{7}\sigma z+{b}_{4}$, ${\varphi }_{10}={\rm{i}}{b}_{1}\xi +{b}_{7}t\,+\tfrac{2}{3}{b}_{7}\sigma z+{\rm{i}}{b}_{4}$, ${\varphi }_{11}=-{\rm{i}}{b}_{7}t+{b}_{1}(x+\sigma y)-\tfrac{2}{3}{\rm{i}}{b}_{7}\sigma z+{b}_{4}$, ${\varphi }_{12}\,={b}_{7}t+{\rm{i}}{b}_{1}(x+\sigma y)+\tfrac{2}{3}{b}_{7}\sigma z+{\rm{i}}{b}_{4}.$

Case-3: When$ \begin{eqnarray*}\begin{array}{rcl}{b}_{2} & = & \displaystyle \frac{1}{3}\left(3{b}_{1}{b}_{9}^{2}+2{b}_{3}\right)\sigma ,\ {b}_{4}={\rm{i}}{b}_{8},\ {b}_{5}=-{\rm{i}}{b}_{1},\\ {b}_{6} & = & -\displaystyle \frac{1}{3}{\rm{i}}\left(3{b}_{1}{b}_{9}^{2}+2{b}_{3}\right)\sigma ,\ {b}_{7}=-{\rm{i}}{b}_{3},\end{array}\end{eqnarray*}$${b}_{11}=\tfrac{3{b}_{10}-{b}_{9}^{3}\sigma }{2\sigma },$ we have$ \begin{eqnarray}\begin{array}{l}f(\xi ,z,t)\\ =\,{{\rm{e}}}^{\left({b}_{9}\xi +\tfrac{t\left(3{b}_{10}-{b}_{9}^{3}\sigma \right)}{2\sigma }+{b}_{10}z+{b}_{12}\right)}+{b}_{13}+{\varphi }_{13}^{2}+{\varphi }_{14}^{2},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}{\rm{\Theta }}(\xi ,z,t)\\ =\,-\displaystyle \frac{3\left({b}_{9}{{\rm{e}}}^{\left({b}_{9}\xi +\tfrac{t\left(3{b}_{10}-{b}_{9}^{3}\sigma \right)}{2\sigma }+{b}_{10}z+{b}_{12}\right)}-2{\rm{i}}{b}_{1}{\varphi }_{13}+2{b}_{1}{\varphi }_{14}\right)}{{{\rm{e}}}^{\left({b}_{9}\xi +\tfrac{t\left(3{b}_{10}-{b}_{9}^{3}\sigma \right)}{2\sigma }+{b}_{10}z+{b}_{12}\right)}+{b}_{13}+{\varphi }_{13}^{2}+{\varphi }_{14}^{2}},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)\\ =\,\displaystyle \frac{3\left({b}_{9}{{\rm{e}}}^{\left(\tfrac{t\left(3{b}_{10}-{b}_{9}^{3}\sigma \right)}{2\sigma }+{b}_{9}(x+\sigma y)+{b}_{10}z+{b}_{12}\right)}-2{\rm{i}}{b}_{1}{\varphi }_{15}+2{b}_{1}{\varphi }_{16}\right){}^{2}}{\left({{\rm{e}}}^{\left(\tfrac{t\left(3{b}_{10}-{b}_{9}^{3}\sigma \right)}{2\sigma }+{b}_{9}(x+\sigma y)+{b}_{10}z+{b}_{12}\right)}+{b}_{13}+{\varphi }_{15}^{2}+{\varphi }_{16}^{2}\right){}^{2}}\\ \ \ -\,\displaystyle \frac{3{b}_{9}^{2}{{\rm{e}}}^{\left(\tfrac{t\left(3{b}_{10}-{b}_{9}^{3}\sigma \right)}{2\sigma }+{b}_{9}(x+\sigma y)+{b}_{10}z+{b}_{12}\right)}}{{{\rm{e}}}^{\left(\tfrac{t\left(3{b}_{10}-{b}_{9}^{3}\sigma \right)}{2\sigma }+{b}_{9}(x+\sigma y)+{b}_{10}z+{b}_{12}\right)}+{b}_{13}+{\varphi }_{15}^{2}+{\varphi }_{16}^{2}},\end{array}\end{eqnarray}$where ${\varphi }_{13}=-{\rm{i}}{b}_{1}\xi -{\rm{i}}{b}_{3}t-\tfrac{1}{3}{\rm{i}}\left(3{b}_{1}{b}_{9}^{2}+2{b}_{3}\right)\sigma z+{b}_{8}$, ${\varphi }_{14}\,={b}_{1}\xi +{b}_{3}t+\tfrac{1}{3}\left(3{b}_{1}{b}_{9}^{2}+2{b}_{3}\right)\sigma z+{\rm{i}}{b}_{8}$, ${\varphi }_{15}=-{\rm{i}}{b}_{3}t-{\rm{i}}{b}_{1}(x+\sigma y)-\tfrac{1}{3}{\rm{i}}\left(3{b}_{1}{b}_{9}^{2}+2{b}_{3}\right)\sigma z+{b}_{8}$, ${\varphi }_{16}={b}_{3}t+{b}_{1}(x\,+\sigma y)+\tfrac{1}{3}\left(3{b}_{1}{b}_{9}^{2}+2{b}_{3}\right)\sigma z+{\rm{i}}{b}_{8}.$

Figure 5.

New window|Download| PPT slide
Figure 5.The 3D and density profiles of equations (42) and (45) at $\sigma =5,z=t=0$.


2.3. Breather wave solutions

In this section, we construct the breather wave solutions to equation (1).

Consider the following test function as a solution to the bilinear equation (7):$ \begin{eqnarray}\begin{array}{rcl}f(\xi ,z,t) & = & {{\rm{e}}}^{-{q}_{1}\left({a}_{0}z+{b}_{0}t+\xi \right)}\\ & & +{n}_{1}\cos ({q}_{0}\left({c}_{0}z+{d}_{0}t+\xi \right))+{n}_{2}{{\rm{e}}}^{{q}_{1}\left({a}_{0}z+{b}_{0}t+\xi \right)}.\end{array}\end{eqnarray}$Substituting equation (25) into (7), yields a polynomial in the powers of trigonometric and exponential functions. Collecting the coefficients of the same power, and equating each summations to zero, produces an algebraic system of equations. We solve the system of equations to obtained the values of the parameters involved. Substituting the values of the parameters into equation (6) and then into equation (2), yields the following breather wave solutions to equation (1):

Case-1: When$ \begin{eqnarray*}\begin{array}{rcl}{n}_{2} & = & -\displaystyle \frac{{n}_{1}^{2}{q}_{0}^{2}}{4{q}_{1}^{2}},\ {a}_{0}=\displaystyle \frac{1}{3}\sigma \left(-2{d}_{0}+{q}_{0}^{2}-3{q}_{1}^{2}\right),\\ {b}_{0} & = & -{d}_{0}+2{q}_{0}^{2}-2{q}_{1}^{2},\end{array}\end{eqnarray*}$${c}_{0}=\tfrac{1}{3}\left(2{d}_{0}\sigma +{q}_{0}^{2}(-\sigma )+3{q}_{1}^{2}\sigma \right),$ we have$ \begin{eqnarray}f(\xi ,z,t)=-\displaystyle \frac{{n}_{1}^{2}{q}_{0}^{2}{{\rm{e}}}^{{\varphi }_{17}}}{4{q}_{1}^{2}}+{n}_{1}\cos \left({\varphi }_{18}\right)+{{\rm{e}}}^{-{\varphi }_{17}},\end{eqnarray}$$ \begin{eqnarray}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left(-\tfrac{{n}_{1}^{2}{q}_{0}^{2}{{\rm{e}}}^{{\varphi }_{17}}}{4{q}_{1}}-{n}_{1}{q}_{0}\sin \left({\varphi }_{18}\right)-{q}_{1}{{\rm{e}}}^{-{\varphi }_{17}}\right)}{-\tfrac{{n}_{1}^{2}{q}_{0}^{2}{{\rm{e}}}^{{\varphi }_{17}}}{4{q}_{1}^{2}}+{n}_{1}\cos \left({\varphi }_{18}\right)+{{\rm{e}}}^{-{\varphi }_{17}}},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)=\displaystyle \frac{3{\left(-\tfrac{{n}_{1}^{2}{q}_{0}^{2}{{\rm{e}}}^{{\varphi }_{20}}}{4{q}_{1}}-{n}_{1}{q}_{0}\sin \left({\varphi }_{19}\right)-{q}_{1}{{\rm{e}}}^{-{\varphi }_{20}}\right)}^{2}}{{\left(-\tfrac{{n}_{1}^{2}{q}_{0}^{2}{{\rm{e}}}^{{\varphi }_{20}}}{4{q}_{1}^{2}}+{n}_{1}\cos \left({\varphi }_{19}\right)+{{\rm{e}}}^{-{\varphi }_{20}}\right)}^{2}}\\ -\,\displaystyle \frac{3\left(-{n}_{1}{q}_{0}^{2}\cos \left({\varphi }_{19}\right)-\tfrac{1}{4}{n}_{1}^{2}{q}_{0}^{2}{{\rm{e}}}^{\left.{\varphi }_{20}\right)}+{q}_{1}^{2}{{\rm{e}}}^{-{\varphi }_{20}}\right)}{-\tfrac{{n}_{1}^{2}{q}_{0}^{2}{{\rm{e}}}^{{\varphi }_{20}}}{4{q}_{1}^{2}}+{n}_{1}\cos \left({\varphi }_{19}\right)+{{\rm{e}}}^{-{\varphi }_{20}}},\end{array}\end{eqnarray}$where ${\varphi }_{17}={q}_{1}\left(t\left(-{d}_{0}+2{q}_{0}^{2}-2{q}_{1}^{2}\right)+\tfrac{1}{3}\sigma z\left(-2{d}_{0}+{q}_{0}^{2}-3{q}_{1}^{2}\right)+\xi \right),$${\varphi }_{18}={q}_{0}\left(\tfrac{1}{3}z\left(2{d}_{0}\sigma +{q}_{0}^{2}(-\sigma )+3{q}_{1}^{2}\sigma \right)+{d}_{0}t+\xi \right)$, ${\varphi }_{19}\,={q}_{0}\left(\tfrac{1}{3}z\left(2{d}_{0}\sigma +{q}_{0}^{2}(-\sigma )+3{q}_{1}^{2}\sigma \right)+{d}_{0}t+x+\sigma y\right)$, ${\varphi }_{20}={q}_{1}$$\left(t\left(-{d}_{0}+2{q}_{0}^{2}-2{q}_{1}^{2}\right)+\tfrac{1}{3}\sigma z\left(-2{d}_{0}+{q}_{0}^{2}-3{q}_{1}^{2}\right)+x+\sigma y\right).$

Case-2: When$ \begin{eqnarray*}\begin{array}{rcl}{a}_{0} & = & \displaystyle \frac{2}{3}\left(2{q}_{0}^{2}\sigma -{d}_{0}\sigma \right),\ {b}_{0}=4{q}_{0}^{2}-{d}_{0},\\ {c}_{0} & = & \displaystyle \frac{1}{3}(-2)\sigma \left(2{q}_{0}^{2}-{d}_{0}\right),\ {q}_{1}=-{\rm{i}}{q}_{0},\end{array}\end{eqnarray*}$we have$ \begin{eqnarray}f(\xi ,z,t)={n}_{2}{{\rm{e}}}^{-{\varphi }_{21}}+{n}_{1}\cos \left({\varphi }_{22}\right)+{{\rm{e}}}^{{\varphi }_{21}},\end{eqnarray}$$ \begin{eqnarray}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left(-{\rm{i}}{n}_{2}{q}_{0}{{\rm{e}}}^{-{\varphi }_{21}}-{n}_{1}{q}_{0}\sin \left({\varphi }_{22}\right)+{\rm{i}}{q}_{0}{{\rm{e}}}^{{\varphi }_{21}}\right)}{{n}_{2}{{\rm{e}}}^{-{\varphi }_{21}}+{n}_{1}\cos \left({\varphi }_{22}\right)+{{\rm{e}}}^{{\varphi }_{21}}},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)=\displaystyle \frac{3\left(-{\rm{i}}{n}_{2}{q}_{0}{{\rm{e}}}^{-{\varphi }_{23}}-{n}_{1}{q}_{0}\sin \left({\varphi }_{24}\right)+{\rm{i}}{q}_{0}{{\rm{e}}}^{{\varphi }_{23}}\right){}^{2}}{\left({n}_{2}{{\rm{e}}}^{-{\varphi }_{23}}+{n}_{1}\cos \left({\varphi }_{24}\right)+{{\rm{e}}}^{{\varphi }_{23}}\right){}^{2}}\\ -\,\displaystyle \frac{3\left(-{n}_{2}{q}_{0}^{2}{{\rm{e}}}^{-{\varphi }_{23}}-{n}_{1}{q}_{0}^{2}\cos \left({\varphi }_{24}\right)+{q}_{0}^{2}\left(-{{\rm{e}}}^{{\varphi }_{23}}\right)\right)}{{n}_{2}{{\rm{e}}}^{-{\varphi }_{23}}+{n}_{1}\cos \left({\varphi }_{24}\right)+{{\rm{e}}}^{{\varphi }_{23}}},\end{array}\end{eqnarray}$where ${\varphi }_{21}={\rm{i}}{q}_{0}\left(t\left(4{q}_{0}^{2}-{d}_{0}\right)+\tfrac{2}{3}z\left(2{q}_{0}^{2}\sigma -{d}_{0}\sigma \right)+\xi \right)$, ${\varphi }_{22}\,={q}_{0}\left(-\tfrac{2}{3}\sigma z\left(2{q}_{0}^{2}-{d}_{0}\right)+{d}_{0}t+\xi \right)$, ${\varphi }_{23}={\rm{i}}{q}_{0}(t\left(4{q}_{0}^{2}-{d}_{0}\right)\,+\tfrac{2}{3}z\left(2{q}_{0}^{2}\sigma -{d}_{0}\sigma \right)+x+\sigma y)$, ${\varphi }_{24}={q}_{0}(-\tfrac{2}{3}\sigma z\left(2{q}_{0}^{2}-{d}_{0}\right)\,+{d}_{0}t+x+\sigma y).$

2.4. Lump-periodic solutions

In this section, we report the lump-periodic solutions to equation (1).

Consider the test function as a solution to the bilinear equation (7)$ \begin{eqnarray}\begin{array}{l}f(\xi ,z,t)={q}_{1}\cosh \left({b}_{1}\xi +{b}_{3}t+{b}_{2}z\right)\\ +\,{q}_{2}\cos \left({b}_{4}\xi +{b}_{6}t+{b}_{5}z\right)+{q}_{3}\cosh \left({b}_{7}\xi +{b}_{9}t+{b}_{8}z\right).\end{array}\end{eqnarray}$Substituting equation (32) into (7), yields a polynomial in the powers of hyperbolic and trigonometric functions. Collecting the coefficients of the same power, and equating each summations to zero, produces an algebraic system of equations. We solve the system of equations to obtained the values of the parameters involved. Substituting the values of the parameters into equation (6) and then into equation (2), yields the following lump-periodic solution to equation (1):

Case-1: When$ \begin{eqnarray*}\begin{array}{rcl}{b}_{2} & = & \displaystyle \frac{1}{3}\left({b}_{1}^{3}\sigma -3{b}_{4}^{2}{b}_{1}\sigma +2{b}_{3}\sigma \right),\\ {b}_{5} & = & \displaystyle \frac{1}{3}\left(-{b}_{4}^{3}+3{b}_{1}^{2}{b}_{4}+2{b}_{6}\right)\sigma ,\ {q}_{1}=\displaystyle \frac{{\rm{i}}{b}_{4}{q}_{2}}{{b}_{1}},\ {q}_{3}=0,\end{array}\end{eqnarray*}$we have$ \begin{eqnarray}f(\xi ,z,t)={q}_{2}\cos \left({\varphi }_{25}\right)+\displaystyle \frac{{\rm{i}}{b}_{4}{q}_{2}\cosh \left({\varphi }_{26}\right)}{{b}_{1}},\end{eqnarray}$$ \begin{eqnarray}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left(-{b}_{4}{q}_{2}\sin \left({\varphi }_{25}\right)+{\rm{i}}{b}_{4}{q}_{2}\sinh \left({\varphi }_{26}\right)\right)}{{q}_{2}\cos \left({\varphi }_{25}\right)+\tfrac{{\rm{i}}{b}_{4}{q}_{2}\cosh \left({\varphi }_{26}\right)}{{b}_{1}}},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}\chi (x,y,z,t) & = & \displaystyle \frac{3\left(-{b}_{4}{q}_{2}\sin \left({\varphi }_{27}\right)+{\rm{i}}{b}_{4}{q}_{2}\sinh \left({\varphi }_{28}\right)\right){}^{2}}{\left({q}_{2}\cos \left({\varphi }_{27}\right)+\tfrac{{\rm{i}}{b}_{4}{q}_{2}\cosh \left({\varphi }_{28}\right)}{{b}_{1}}\right){}^{2}}\\ & & -\displaystyle \frac{3\left(-{b}_{4}^{2}{q}_{2}\cos \left({\varphi }_{27}\right)+{\rm{i}}{b}_{1}{b}_{4}{q}_{2}\cosh \left({\varphi }_{28}\right)\right)}{{q}_{2}\cos \left({\varphi }_{27}\right)+\tfrac{{\rm{i}}{b}_{4}{q}_{2}\cosh \left({\varphi }_{28}\right)}{{b}_{1}}},\end{array}\end{eqnarray}$where ${\varphi }_{25}={b}_{4}\xi +{b}_{6}t+\tfrac{1}{3}\left(-{b}_{4}^{3}+3{b}_{1}^{2}{b}_{4}+2{b}_{6}\right)\sigma z$, ${\varphi }_{26}\,={b}_{1}\xi +{b}_{3}t+\tfrac{1}{3}z\left({b}_{1}^{3}\sigma -3{b}_{4}^{2}{b}_{1}\sigma +2{b}_{3}\sigma \right)$, ${\varphi }_{27}={b}_{6}t+{b}_{4}(x\,+\sigma y)+\tfrac{1}{3}\left(-{b}_{4}^{3}+3{b}_{1}^{2}{b}_{4}+2{b}_{6}\right)\sigma z$, ${\varphi }_{28}={b}_{3}t+{b}_{1}(x+\sigma y)\,+\tfrac{1}{3}z\left({b}_{1}^{3}\sigma -3{b}_{4}^{2}{b}_{1}\sigma +2{b}_{3}\sigma \right).$

Case-2: When$ \begin{eqnarray*}\begin{array}{rcl}{b}_{5} & = & \displaystyle \frac{1}{3}\left(-{b}_{4}^{3}+3{b}_{7}^{2}{b}_{4}+2{b}_{6}\right)\sigma ,\\ {b}_{8} & = & \displaystyle \frac{1}{3}\left({b}_{7}^{3}-3{b}_{4}^{2}{b}_{7}+2{b}_{9}\right)\sigma ,\ {q}_{1}=0,\ {q}_{2}=-\displaystyle \frac{{\rm{i}}{b}_{7}{q}_{3}}{{b}_{4}},\end{array}\end{eqnarray*}$we have$ \begin{eqnarray}f(\xi ,z,t)={q}_{3}\cosh \left({\varphi }_{29}\right)-\displaystyle \frac{{\rm{i}}{b}_{7}{q}_{3}\cos \left({\varphi }_{30}\right)}{{b}_{4}},\end{eqnarray}$$ \begin{eqnarray}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left({b}_{7}{q}_{3}\sinh \left({\varphi }_{29}\right)+{\rm{i}}{b}_{7}{q}_{3}\sin \left({\varphi }_{30}\right)\right)}{{q}_{3}\cosh \left({\varphi }_{29}\right)-\tfrac{{{ib}}_{7}{q}_{3}\cos \left({\varphi }_{30}\right)}{{b}_{4}}},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}\chi (\xi ,z,t) & = & \displaystyle \frac{3\left({b}_{7}{q}_{3}\sinh \left({\varphi }_{32}\right)+{\rm{i}}{b}_{7}{q}_{3}\sin \left({\varphi }_{31}\right)\right){}^{2}}{\left({q}_{3}\cosh \left({\varphi }_{32}\right)-\tfrac{{\rm{i}}{b}_{7}{q}_{3}\cos \left({\varphi }_{31}\right)}{{b}_{4}}\right){}^{2}}\\ & & -\displaystyle \frac{3\left({b}_{7}^{2}{q}_{3}\cosh \left({\varphi }_{32}\right)+{\rm{i}}{b}_{4}{b}_{7}{q}_{3}\cos \left({\varphi }_{31}\right)\right)}{{q}_{3}\cosh \left({\varphi }_{32}\right)-\tfrac{{\rm{i}}{b}_{7}{q}_{3}\cos \left({\varphi }_{31}\right)}{{b}_{4}}},\end{array}\end{eqnarray}$where ${\varphi }_{29}={b}_{7}\xi +{b}_{9}t+\tfrac{1}{3}\left({b}_{7}^{3}-3{b}_{4}^{2}{b}_{7}+2{b}_{9}\right)\sigma z$, ${\varphi }_{30}\,={b}_{4}\xi +{b}_{6}t+\tfrac{1}{3}\left(-{b}_{4}^{3}+3{b}_{7}^{2}{b}_{4}+2{b}_{6}\right)\sigma z$, ${\varphi }_{31}={b}_{6}t+{b}_{4}(x\,+\sigma y)+\tfrac{1}{3}\left(-{b}_{4}^{3}+3{b}_{7}^{2}{b}_{4}+2{b}_{6}\right)\sigma z$, ${\varphi }_{32}={b}_{9}t+{b}_{7}(x+\sigma y)\,+\tfrac{1}{3}\left({b}_{7}^{3}-3{b}_{4}^{2}{b}_{7}+2{b}_{9}\right)\sigma z.$

2.5. Some new interaction solutions

In this section, some new interaction solutions to equation (1) are reported.

Consider the following test function as a solution to the bilinear equation (7):$ \begin{eqnarray}\begin{array}{rcl}f(\xi ,z,t) & = & {c}_{1}{{\rm{e}}}^{({b}_{1}\xi +{b}_{2}z+{b}_{3}t)}+{c}_{2}{{\rm{e}}}^{-({b}_{1}\xi +{b}_{2}z+{b}_{3}t)}\\ & & +{c}_{3}\sin \left({b}_{4}\xi +{b}_{5}z+{b}_{6}t\right)\\ & & +{c}_{4}\sinh \left({b}_{7}\xi +{b}_{8}z+{b}_{9}t\right).\end{array}\end{eqnarray}$Substituting equation (39) into equation (7), yields a polynomial in the powers of trigonometric, hyperbolic and exponential functions. Collecting the coefficients of the same power, and equating each summations to zero, produces an algebraic system of equations. We solve the system of equations to obtained the values of the parameters involved. Substituting the values of the parameters into equation (6) and then into equation (2), yields the following interaction solutions to equation (1):

Case-1: When$ \begin{eqnarray*}\begin{array}{rcl}{b}_{2} & = & \displaystyle \frac{1}{3}\left({b}_{1}^{3}+3{b}_{7}^{2}{b}_{1}+2{b}_{3}\right)\sigma ,\\ {b}_{8} & = & \displaystyle \frac{1}{3}\left({b}_{7}^{3}+3{b}_{1}^{2}{b}_{7}+2{b}_{9}\right)\sigma ,\ {c}_{2}=-\displaystyle \frac{{b}_{7}^{2}{c}_{4}^{2}}{4{b}_{1}^{2}{c}_{1}},\ {c}_{3}=0,\end{array}\end{eqnarray*}$we have$ \begin{eqnarray}f(\xi ,z,t)=-\displaystyle \frac{{b}_{7}^{2}{c}_{4}^{2}{{\rm{e}}}^{{\varphi }_{34}}}{4{b}_{1}^{2}{c}_{1}}+{c}_{1}{{\rm{e}}}^{{\varphi }_{33}}+{c}_{4}\sinh \left({\varphi }_{35}\right),\end{eqnarray}$$ \begin{eqnarray}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left(\tfrac{{b}_{7}^{2}{c}_{4}^{2}{{\rm{e}}}^{{\varphi }_{34}}}{4{b}_{1}{c}_{1}}+{b}_{1}{c}_{1}{{\rm{e}}}^{{\varphi }_{33}}+{b}_{7}{c}_{4}\cosh \left({\varphi }_{35}\right)\right)}{-\tfrac{{b}_{7}^{2}{c}_{4}^{2}{{\rm{e}}}^{{\varphi }_{34}}}{4{b}_{1}^{2}{c}_{1}}+{c}_{1}{{\rm{e}}}^{{\varphi }_{33}}+{c}_{4}\sinh \left({\varphi }_{35}\right)},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\chi (x,y,z,t)=-\displaystyle \frac{3\left({b}_{1}^{2}{c}_{1}{{\rm{e}}}^{{\varphi }_{36}}-\tfrac{{b}_{7}^{2}{c}_{4}^{2}{{\rm{e}}}^{{\varphi }_{37}}}{4{c}_{1}}+{b}_{7}^{2}{c}_{4}\sinh \left({\varphi }_{38}\right)\right)}{-\tfrac{{b}_{7}^{2}{c}_{4}^{2}{{\rm{e}}}^{{\varphi }_{37}}}{4{b}_{1}^{2}{c}_{1}}+{c}_{1}{{\rm{e}}}^{{\varphi }_{36}}+{c}_{4}\sinh \left({\varphi }_{38}\right)}\\ +\,\displaystyle \frac{3\left(\tfrac{{b}_{7}^{2}{c}_{4}^{2}{{\rm{e}}}^{{\varphi }_{37}}}{4{b}_{1}{c}_{1}}+{b}_{1}{c}_{1}{{\rm{e}}}^{{\varphi }_{36}}+{b}_{7}{c}_{4}\cosh \left({\varphi }_{38}\right)\right){}^{2}}{\left(-\tfrac{{b}_{7}^{2}{c}_{4}^{2}{{\rm{e}}}^{{\varphi }_{37}}}{4{b}_{1}^{2}{c}_{1}}+{c}_{1}{{\rm{e}}}^{{\varphi }_{36}}+{c}_{4}\sinh \left({\varphi }_{38}\right)\right){}^{2}},\end{array}\end{eqnarray}$where ${\varphi }_{33}={b}_{1}\xi +{b}_{3}t+\tfrac{1}{3}\left({b}_{1}^{3}+3{b}_{7}^{2}{b}_{1}+2{b}_{3}\right)\sigma z$, ${\varphi }_{34}\,={b}_{1}(-\xi )-{b}_{3}t-\tfrac{1}{3}\left({b}_{1}^{3}\,+\,3{b}_{7}^{2}{b}_{1}\,+\,2{b}_{3}\right)\sigma z$, ${\varphi }_{35}\,=\,{b}_{7}\xi \,+$${b}_{9}t\,+$$\tfrac{1}{3}\left({b}_{7}^{3}+3{b}_{1}^{2}{b}_{7}+2{b}_{9}\right)\sigma z,$${\varphi }_{36}={b}_{3}t+{b}_{1}(x+\sigma y)\,+\tfrac{1}{3}\left({b}_{1}^{3}\,+\,3{b}_{7}^{2}{b}_{1}\,+\,2{b}_{3}\right)\sigma z$, ${\varphi }_{37}=-{b}_{3}t+{b}_{1}(-x-\sigma y)\,-\tfrac{1}{3}\left({b}_{1}^{3}\,+\,3{b}_{7}^{2}{b}_{1}\,+\,2{b}_{3}\right)\sigma z$, ${\varphi }_{38}={b}_{9}t\,+\,{b}_{7}(x\,+\sigma y)\,+\,\tfrac{1}{3}\left({b}_{7}^{3}+3{b}_{1}^{2}{b}_{7}+2{b}_{9}\right)\sigma z.$

Case-2: When$ \begin{eqnarray*}\begin{array}{rcl}{b}_{5} & = & \displaystyle \frac{1}{3}\left(-{b}_{4}^{3}+3{b}_{7}^{2}{b}_{4}+2{b}_{6}\right)\sigma ,\\ {b}_{8} & = & \displaystyle \frac{1}{3}\left({b}_{7}^{3}-3{b}_{4}^{2}{b}_{7}+2{b}_{9}\right)\sigma ,\ {c}_{1}=0,\ {c}_{2}=0,\ {c}_{3}=\displaystyle \frac{{b}_{7}{c}_{4}}{{b}_{4}},\end{array}\end{eqnarray*}$we have$ \begin{eqnarray}f(\xi ,z,t)=\displaystyle \frac{{b}_{7}{c}_{4}\sin \left({\varphi }_{40}\right)}{{b}_{4}}+{c}_{4}\sinh \left({\varphi }_{39}\right),\end{eqnarray}$$ \begin{eqnarray}{\rm{\Theta }}(\xi ,z,t)=-\displaystyle \frac{3\left({b}_{7}{c}_{4}\cos \left({\varphi }_{40}\right)+{b}_{7}{c}_{4}\cosh \left({\varphi }_{39}\right)\right)}{\tfrac{{b}_{7}{c}_{4}\sin \left({\varphi }_{40}\right)}{{b}_{4}}+{c}_{4}\sinh \left({\varphi }_{39}\right)},\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}\chi (x,y,z,t) & = & \displaystyle \frac{3\left({b}_{7}{c}_{4}\cos \left({\varphi }_{41}\right)+{b}_{7}{c}_{4}\cosh \left({\varphi }_{42}\right)\right){}^{2}}{\left(\tfrac{{b}_{7}{c}_{4}\sin \left({\varphi }_{41}\right)}{{b}_{4}}+{c}_{4}\sinh \left({\varphi }_{42}\right)\right){}^{2}}\\ & & -\displaystyle \frac{3\left({b}_{7}^{2}{c}_{4}\sinh \left({\varphi }_{42}\right)-{b}_{4}{b}_{7}{c}_{4}\sin \left({\varphi }_{41}\right)\right)}{\tfrac{{b}_{7}{c}_{4}\sin \left({\varphi }_{41}\right)}{{b}_{4}}+{c}_{4}\sinh \left({\varphi }_{42}\right)},\end{array}\end{eqnarray}$where ${\varphi }_{39}={b}_{7}\xi +{b}_{9}t+\tfrac{1}{3}\left({b}_{7}^{3}-3{b}_{4}^{2}{b}_{7}+2{b}_{9}\right)\sigma z$, ${\varphi }_{40}\,={b}_{4}\xi +{b}_{6}t+\tfrac{1}{3}\left(-{b}_{4}^{3}+3{b}_{7}^{2}{b}_{4}+2{b}_{6}\right)\sigma z$, ${\varphi }_{41}={b}_{6}t+{b}_{4}(x\,+\sigma y)+\tfrac{1}{3}\left(-{b}_{4}^{3}+3{b}_{7}^{2}{b}_{4}+2{b}_{6}\right)\sigma z$, ${\varphi }_{42}={b}_{9}t+{b}_{7}(x+\sigma y)\,+\tfrac{1}{3}\left({b}_{7}^{3}-3{b}_{4}^{2}{b}_{7}+2{b}_{9}\right)\sigma z.$

The symbol ${\rm{i}}=\sqrt{-1}$.

3. Conclusion

Via the Hirota bilinear approach and symbolic computation, the (3+1)-dimensional soliton equation is investigated in this study. Various new lump, lump-kink, breather wave, lump periodic, and some other new interaction solutions are successfully constructed. Using the Mathematica 12 package, all the acquired solutions are verified by inserting them into the original equation. The physical characteristics of the solution were graphically depicted to shed more light on the obtained results under the choice of suitable values of the parameters. The results obtained may be useful in understanding the basic nonlinear scenarios in fluid dynamics as well as the dynamics of computational physics and engineering sciences in nonlinear fields of higher dimensional motion.

Reference By original order
By published year
By cited within times
By Impact factor

Wang M Li X Zhang J 2018 Appl. Math. Lett. 76 21
DOI:10.1016/j.aml.2017.07.011 [Cited within: 1]

Ma W X Zhu Z 2012 Appl. Math. Comput. 218 11871
DOI:10.1016/j.amc.2012.05.049

Ma W X 2015 Phys. Lett. A379 1975
DOI:10.1016/j.physleta.2015.06.061 [Cited within: 2]

Mohyud-Din S T Irshad A Ahmed N Khan U 2017 Results Phys. 7 3901
DOI:10.1016/j.rinp.2017.10.007 [Cited within: 1]

Chakravarty S McDowell T Osborne M 2017 Commun. Nonlinear Sci. Numer. Simul. 44 37
DOI:10.1016/j.cnsns.2016.07.026

Zhao H Q Ma W X 2017 Comput. Math. Appl. 74 1399
DOI:10.1016/j.camwa.2017.06.034 [Cited within: 1]

Kharif C Pelinovsky E Slunyaey A 2009 Rogue Waves in the Ocean, Observation, Theories and Modeling New York Springer
[Cited within: 1]

Peregrine D H 1983 J. Aust. Math. Soc. B 25 1643
DOI:10.1017/S0334270000003891 [Cited within: 1]

Akhmediev N Ankiewicz A Soto-Crespo J M R 2009 Phys. Rev. E 80 026601
DOI:10.1103/PhysRevE.80.026601 [Cited within: 1]

Solli D R Ropers C Koonath P Jalali B 2007 Nature 450 1054
DOI:10.1038/nature06402

Montina A Bortolozzo U Residori S Arecchi F T 2013 Phys. Rep. 528 47
DOI:10.1016/j.physrep.2013.03.001 [Cited within: 1]

Zakharov V E 1976 Dokl. Acad. Nauk SSSR 228 1314
[Cited within: 1]

Craik A D D Adam J A 1978 Proc. R. Soc. A 363 243
DOI:10.1098/rspa.1978.0166 [Cited within: 1]

Yang J Y Ma W X 2016 Int. J. Mod. Phys. B 30 1640028
DOI:10.1142/S0217979216400282 [Cited within: 1]

Ma W X Qin Z Y Lv X 2016 Nonlinear Dyn. 84 923
DOI:10.1007/s11071-015-2539-6

Wang C J 2016 Nonlinear Dyn. 84 697
DOI:10.1007/s11071-015-2519-x [Cited within: 1]

Wang C J Dai Z D Liu C F 2016 Mediterr. J. Math. 13 1087
DOI:10.1007/s00009-015-0528-0 [Cited within: 1]

Abdul-Majid W 2014 Cent. Eur. J. Eng. 4 352
[Cited within: 2]

Lu X Ma W X Chen S T Khalique C M 2016 Appl. Math. Lett. 58 13
DOI:10.1016/j.aml.2015.12.019

Lin F H Chen S T Qu Q X Wang J P Zhou X W Lu X 2018 Appl. Math. Lett. 78 112
DOI:10.1016/j.aml.2017.10.013

Lu X Wang J P Lin F H Zhou X W 2018 Nonlinear Dyn. 91 1249
DOI:10.1007/s11071-017-3942-y

Lu X Chen S T Ma W X 2016 Nonlinear Dyn. 86 523
DOI:10.1007/s11071-016-2905-z [Cited within: 1]

Geng X 2003 J. Phys. A: Math. Gen. 36 2289
DOI:10.1088/0305-4470/36/9/307 [Cited within: 1]

闂傚倸鍊烽懗鍓佸垝椤栫偛绀夋俊銈呮噹缁犵娀鏌熼幑鎰靛殭闁告俺顫夐妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡ゅ懏鏅查幖瀛樼箘閻╁海绱撴担椋庤窗闁革綇缍佸濠氭偄閻撳海顦ч梺鍏肩ゴ閺呮繈鎮¢崒鐐粹拺缂佸娉曢悞鍧楁煙閸戙倖瀚�2濠电姷鏁搁崑鐐哄垂閸洖绠扮紒瀣紩濞差亜惟闁冲搫顑囩粙蹇涙⒑閸︻厼鍔嬫い銊ユ瀹曠敻鍩€椤掑嫭鈷戦柛娑橈工婵箑霉濠婂懎浠辩€规洘妞介弫鎾绘偐瀹曞洤骞楅梻渚€娼х换鍫ュ磹閺嵮€妲堢憸鏃堝蓟閿濆鐒洪柛鎰典簼閸d即姊虹拠鈥虫殭闁搞儜鍥ф暪闂備焦瀵х换鍌毭洪姀銈呯;闁圭儤顨嗛埛鎴︽煕濠靛棗顏╅柍褜鍓欑紞濠囧箖闁垮缍囬柍鍝勫亞濞肩喖姊虹捄銊ユ珢闁瑰嚖鎷�
濠电姷鏁告慨浼村垂瑜版帗鍋夐柕蹇嬪€曢悙濠勬喐瀹ュ棙鍙忛柕鍫濐槹閳锋垿鏌涘☉姗堝伐缂佹甯楁穱濠囶敃閿濆洦鍒涘銈冨灪濡啯鎱ㄩ埀顒勬煏閸繃锛嶆俊顐㈠閺岋絾鎯旈婊呅i梺鍝ュУ閻楃姴鐣烽姀銈呯妞ゆ梻鏅崢鎼佹⒑閸涘﹥绀嬫繛浣冲洦鍊堕柨婵嗘娴滄粓鏌熺€涙ḿ绠栧璺哄缁辨帞鈧綆浜跺Ο鈧梺绯曟杹閸嬫挸顪冮妶鍡楀潑闁稿鎹囬弻宥囨嫚閺屻儱寮板┑锟犵畺娴滃爼寮诲鍫闂佸憡鎸婚悷鈺佺暦椤栨稑顕遍悗娑櫭禍顖氣攽閻愬弶鈻曞ù婊勭箞瀵煡顢楅崟顒€鈧爼鏌i幇顔芥毄闁硅棄鍊块弻娑㈠Χ閸ヮ灝銏ゆ婢跺绡€濠电姴鍊搁弳锝嗐亜鎼淬埄娈曢柕鍥у閸╃偤顢橀悙宸痪婵犳鍨遍幐鎶藉蓟閿熺姴鐐婇柍杞扮劍閻忎線姊洪崨濠勬喛闁稿鎹囧缁樻媴閸濄儳楔濠电偘鍖犻崱鎰睏闂佺粯鍔楅弫鍝ョ不閺冨牊鐓欓柟顖嗗苯娈堕梺宕囩帛濮婂綊骞堥妸銉庣喓鎷犻幓鎺濇浇闂備焦鎮堕崐褏绮婚幘璇茶摕闁绘棁娅i惌娆撴煙缁嬪灝顒㈤柟顔界懇濮婄儤瀵煎▎鎴犘滅紓浣哄У閻楁洟顢氶敐澶樻晝闁冲灈鏅滈悗濠氭⒑瑜版帒浜伴柛妯哄⒔缁瑩宕熼娑掓嫼闂佸湱枪濞寸兘鍩ユ径鎰厸闁割偒鍋勬晶瀵糕偓瑙勬礀缂嶅﹥淇婂宀婃Ъ婵犳鍨伴妶鎼佸蓟濞戞ǚ妲堟慨妤€鐗婇弫鍓х磽娴e搫校閻㈩垳鍋ら崺鈧い鎺嗗亾闁诲繑鑹鹃…鍨潨閳ь剟骞冭瀹曞崬霉閺夋寧鍠樼€规洜枪铻栧ù锝夋櫜閻ヮ亪姊绘担渚敯闁规椿浜浠嬪礋椤栨稒娅栭梺鍝勭▉閸樹粙鎮¤箛娑欑厱闁斥晛鍟粈鈧銈忕岛閺嗘竼e濠电姷鏁告慨浼村垂閸︻厾绀婂┑鐘叉搐閻掑灚銇勯幒宥堝厡闁愁垱娲熼弻鏇㈠幢濡も偓閺嗭綁鏌$仦鍓ф创妤犵偞甯¢獮瀣倻閸℃﹩妫у┑锛勫亼閸婃牜鏁悙鍝勭獥闁归偊鍠氶惌娆忊攽閻樺弶澶勯柛瀣姍閺岋綁濮€閵忊剝姣勯柡浣哥墦濮婄粯鎷呯粙鎸庡€┑鐘灪閿曘垹鐣烽娑橆嚤閻庢稒锚娴滎垶姊洪崨濠勭畵濠殿垵椴搁幆鏃堝閿涘嫮肖婵$偑鍊栭崝妤呭窗鎼淬垻顩插Δ锝呭暞閻撴盯鏌涢妷锝呭闁汇劍鍨块弻锝夋偄閸欏鐝旈梺瀹犳椤︾敻鐛Ο鑲╃闁绘ê宕銏′繆閻愵亜鈧牕煤濠靛棌鏋嶉柡鍥╁亶缂傛岸鐓崶銊р槈鐎瑰憡绻冮妵鍕箻濡も偓閸燁垶顢欓敓锟�20婵犲痉鏉库偓妤佹叏閻戣棄纾婚柣妯款嚙缁犲灚銇勮箛鎾搭棡妞ゎ偅娲樼换婵嬫濞戝崬鍓扮紓浣哄У閸ㄥ潡寮婚妶鍡樺弿闁归偊鍏橀崑鎾澄旈埀顒勫煝閺冨牆顫呴柣妯烘閹虫捇銈导鏉戠闁冲搫锕ラ敍鍛磽閸屾瑧顦︽い锔诲灦椤㈡岸顢橀姀鐘靛姦濡炪倖宸婚崑鎾寸節閳ь剟鏌嗗鍛紱闂佺粯姊婚崢褔寮告笟鈧弻鏇㈠醇濠垫劖效闂佺ǹ楠哥粔褰掑蓟濞戙垹鍗抽柕濞垮劚椤晠姊烘导娆戠暠缂傚秴锕獮鍐ㄎ旈崘鈺佹瀭闂佸憡娲﹂崣搴ㄥ汲閿熺姵鈷戦柛婵嗗椤ユ垿鏌涚€n偅宕屾慨濠冩そ瀹曨偊宕熼崹顐嵮囨⒑閸涘﹥鈷愰柣妤冨█楠炲啴鏁撻悩铏珫闂佸憡娲﹂崜娆撴偟娴煎瓨鈷戦梻鍫熺〒缁犳岸鏌涢幘瀵哥疄闁诡喒鈧枼鏋庨柟閭﹀枤椤旀洘绻濋姀锝嗙【妞ゆ垵妫涚划鍫ュ焵椤掑嫭鍊垫繛鍫濈仢濞呭秹鏌¢埀顒勫础閻戝棗娈梺鍛婃处閸嬫帡宕ョ€n喗鐓曢柡鍥ュ妼楠炴ɑ淇婇崣澶婄伌婵﹥妞藉畷顐﹀礋椤愮喎浜惧ù鐘差儜缂嶆牕顭跨捄鐑樻拱闁稿繑绮撻弻娑㈩敃閿濆棛顦ㄩ梺鍝勬媼閸撶喖骞冨鈧幃娆撴濞戞顥氱紓鍌欒兌婵數鏁垾鎰佹綎濠电姵鑹鹃悙濠囨煥濠靛棙鍣稿瑙勬礋濮婃椽鎳¢妶鍛€惧┑鐐插级閸ㄥ潡骞婂Δ鍐╁磯閻炴稈鍓濋悘渚€姊虹涵鍛涧闂傚嫬瀚板畷鏇㈠箣閿旇棄鈧敻鏌ㄥ┑鍡涱€楁鐐瘁缚缁辨帡鎮╁畷鍥р拰闂佸搫澶囬崜婵嗩嚗閸曨偀妲堟繛鍡楁禋娴硷拷
相关话题/ breather waves other