删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Quadratic, Higgs and hilltop potentials in Palatini gravity

本站小编 Free考研考试/2022-01-02

闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀缁犵娀鏌熼崜褏甯涢柛瀣ㄥ€濋弻鏇熺箾閻愵剚鐝旂紓浣插亾濠㈣埖鍔栭悡娆撴煟閹寸倖鎴﹀煕閹扮増鍊垫慨姗嗗墻閻撳ジ鏌″畝瀣М鐎殿噮鍣e畷鎺戭潩椤掆偓椤棝姊虹拠鎻掝劉缁炬澘绉撮悾婵嬪箹娴f瓕鎽曞┑鐐村灦鑿ら柡瀣捣閳ь剙绠嶉崕閬嶅箠鎼淬垺鍙忛幖娣妽閳锋垿寮堕悙鏉戭€滄い鏂款樀閺岋繝宕ㄩ姘f瀰濡ょ姷鍋涢崯浼村箲閸曨厽鍋橀柍鈺佸枤濞兼棃姊洪崫鍕垫Ц闁绘鍟村鎻掆槈濮橆厽娈伴梺闈浤涢崨顖ょ闯濠电偠鎻徊鑲╁垝濞嗘挸浼犻柧蹇撴贡绾惧ジ鎮归崶顏勭毢濠⒀勬礋閺岋綁鏁愰崨顓熜╁銈庡亝缁诲嫰骞戦崟顖氫紶闁告洦鍠掗崑鎾诲锤濡や讲鎷洪梺鍛婄箓鐎氼參宕掗妸鈺傜厱闁靛ǹ鍎洪悡鑲┾偓瑙勬穿缂嶄線鐛崶顒佸亱闁割偁鍨归獮妤呮⒒娴h櫣甯涢柨姘扁偓娈垮枛閻栧ジ鐛弽顓炵疀妞ゆ帒顦遍崬鐢告偡濠婂啰鐏遍柛鎺撳笒閳诲酣骞橀搹顐P氶梻渚€娼х换鍫ュ磹閺嶎厼鍚归柛鎰靛枟閻撳啴鏌涘┑鍡楊仼闁逞屽墯閹倿骞嗛崘顕呮晝闁挎棁袙閹锋椽姊洪崨濠勨槈闁挎洏鍎插鍕礋椤栨稓鍘遍梺鍦亾濞兼瑩宕ú顏呯厵妞ゆ梹鏋婚懓鎸庮殽閻愬弶鍠橀柟顔ㄥ洤閱囨慨姗嗗幖椤忓綊姊婚崒娆戭槮闁硅绻濋獮鎰板幢濞戞ḿ顦ㄩ悷婊冪Ч钘熸慨妯垮煐閳锋垶鎱ㄩ悷鐗堟悙闁绘帗妞介弻娑㈠Ω閵堝懎绁銈冨灪瀹€鎼併€佸鈧幃銏$瑹椤栨盯鏁滈梻鍌欑閹诧紕绮欓幋锔芥櫇闁靛/鍛槸闂佹悶鍎崝濠冪濠婂牊鐓欓柟浣冩珪濞呭懘鏌h箛濠冩珕妞ゃ劊鍎甸幃娆忣啅椤旂厧澹庢繝娈垮枛閿曘儱顪冮挊澶屾殾婵°倕鎳忛崑鍌炲箹缁厜鍋撻幍鎸庡灴濮婄粯鎷呯憴鍕哗闂佹悶鍔忛崑鎰閹间緡鏁傞柛顐f儕閿曞倹鐓欓柟娈垮枛椤eジ鏌¢崨顔藉€愰柡灞诲姂閹倝宕掑☉姗嗕紦40%闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡寮堕崼姘珔闁搞劍绻冮妵鍕冀椤愵澀绮剁紓浣插亾濠㈣埖鍔栭悡娑氣偓骞垮劚妤犳悂鐛弽顓熺厱闁靛ǹ鍎遍埀顒€缍婇獮鍫ュΩ閵夊海鍠栧畷绋课旈埀顒勫箺閻㈠憡鐓熼煫鍥ㄦ尵缁犱即鎮楀☉鎺撴珚妤犵偛鐗撴俊鎼佸Ψ鎼达絽鏋涚€规洖缍婇、娆撳箚瑜嶇紓姘舵⒒娴g瓔鍤欑紒缁樺姇闇夋慨姗嗗幘椤╁弶銇勮箛鎾跺闁藉啰鍠栭弻鏇熺箾閸喖濮夊┑鈩冨絻閻楁捇寮昏缁犳盯鏁愰崨顒傜泿婵$偑鍊曟蹇涘箯閿燂拷
闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊椤掑﹦绋忔繝銏f硾椤戝洭銆呴幓鎹楀綊鎮╁顔煎壈缂備讲鍋撳璺哄閸嬫捇宕楁径濠佸闂備線鈧偛鑻晶浼存煕閹烘挸绗ч柟椋庡Т椤斿繘顢欓崗鐓庘偓顖炴⒒娴h鍋犻柛搴灦瀹曟繂鐣濋崟顒€鍓銈嗗姀閹冲洭寮ㄩ懞銉d簻闁哄啫娴傚ḿ锛勬喐閻楀牆绗掗柡鍕╁劦閺屸€愁吋鎼粹€茬暗闂佺粯甯掗敃銉╁Φ閸曨喚鐤€闁规崘娉涢·鈧梻浣虹帛閹歌崵绮欓幋锔光偓锔炬崉閵婏箑纾梺缁樼濞兼瑦瀵奸幇鐗堚拺闁告繂瀚ˉ鐘绘煕閻樺啿濮夐柟骞垮灩閳藉鈻庤箛鏇犵嵁婵犵妲呴崹浼村箹椤愩倗灏电€广儱妫涚弧鈧紒鍓у閿氬褎鐓¢弻鐔虹矙閸喗姣愰梺浼欑悼閸忔﹢鐛幒妤€绠i柡鍐e亾闁哄倵鍋撻梻鍌欑缂嶅﹪宕戞繝鍥х婵﹢顤傞弫濠囨煛閸モ晛浜归柡鈧禒瀣厽闁归偊鍓氶埢鏇㈡煕閵堝洤鏋庨柍瑙勫灴椤㈡稑顫濋悡搴㈩啀缂傚倷娴囨禍顒勫磻閵堝鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺缁樻尭缁绘﹢寮诲☉銏犵労闁告劗鍋撻悾鍫曟⒑閸濆嫭锛旂紒鎻掓健閸┾偓妞ゆ帒鍠氬ḿ鎰箾濞村娅囩紒杈╁仦缁楃喖鍩€椤掑嫬违濞达絿纭跺Σ鍫ユ煏韫囧ň鍋撻弬銉ヤ壕闁绘垼濮ら悡鍐级閻愰潧顣兼い锕€鍢查…璺ㄦ喆閸曨剛顦ラ梺瀹狀潐閸ㄥ潡銆佸▎鎾村剹妞ゆ劦鍋傜花钘夘熆鐟欏嫭绀嬫い銏★耿閹晠宕楅崫銉ф喒闂傚倷绀侀幖顐ょ矙娓氣偓閹﹢骞囬悧鍫濅画闂佸綊娼ч崯鍧楁偋濮樿埖鈷戦柛娑橈攻婢跺嫰鏌涚€n亝顥㈡い銏$墵瀹曠喖顢楅崒婊庡晭闂佽娴烽弫鍛婄仚閻庢稒绻堝铏圭磼濮楀棙鐣剁紓浣虹帛鐢帒宓勯梺鍦濠㈡ḿ鐚惧澶嬬厱妞ゆ劧绲跨粻妯汇亜閹惧瓨銇濇慨濠呮缁辨帒螣韫囷絼閭柟顔矫~婵堟崉閾忓湱鏆伴梻浣瑰缁诲倿藝娴兼潙鐓曢柟鐑樺灟閳ь剚甯掗~婵嬵敆娴h鍊峰┑鐐茬摠缁秶鎹㈤崼銉ヨ摕闁挎稑瀚▽顏堟偣閸ャ劌绲绘い顒€顑呴埞鎴︽倷閸欏妫戦梺鎼炲妺缁瑩鐛崘銊㈡瀻闁瑰瓨鏌ㄦ禍楣冩煟閵忋垺鏆╅柕鍡楋躬閺岋紕鈧綆鍋嗘晶鍨叏婵犲懏顏犵紒杈ㄥ笒铻i柧蹇涒偓娑欘敇闂備浇妫勯崯瀛樼閸洖钃熼柣鏂垮悑閸嬵亝銇勯弽銊ф噧闁诡垰鐗忕槐鎾存媴娴犲鎽甸柣銏╁灙閳ь剚鍓氶崵鏇熴亜閺囨浜鹃梺绯曟杹閸嬫挸顪冮妶鍡楃瑨閻庢凹鍙冨畷鎴︽晸閻樺磭鍙嗛梺鍝勫暙閸婂憡绂嶆ィ鍐╃厸闁糕剝岣块惌宀勬煙閸欏鍊愰柟顔ㄥ洤閱囨繝闈涚墱閸庡矂鏌f惔銈庢綈闁规悂顥撳▎銏狀潩鐠洪缚鎽曞┑鐐村灍閹冲洭鍩€椤掑﹦鐣垫鐐差儏閳规垿宕堕埡浣芥嫬闂傚倸鍊风粈渚€骞夐敓鐘冲殞濡わ絽鍟粻鐘诲箹濞n剙濡界紒鐘冲浮濮婄粯鎷呯粙鎸庡€紓浣风劍閹稿啿顕i幓鎺嗘婵犙勫劤瑜版椽姊婚崒姘偓椋庢濮樿泛鐒垫い鎺戝€告禒婊堟煠濞茶鐏¢柡鍛埣椤㈡盯鎮欑划瑙勫闂備礁鍚嬫禍浠嬪磿闁秴鐓曞┑鍌涚箓閳规垿鎮╅崹顐f瘎闂佺ǹ顑囬崑娑樼幓閸喒鏋庨柟鎯х枃琚濋梺璇插嚱缂嶅棝宕板Δ鍛惞閻忕偠濞囬弮鍫熸櫜闁告侗鍘藉▓顓犵磽娴e搫啸闁哥姵鐗犲濠氭偄閻撳海鐣鹃梺缁橆殔閻楁粌螞閸曨垱鈷戦悹鍥皺缁犵儤绻涢崨顔界闁瑰箍鍨归埞鎴犫偓锝庝簻閻庮厼顪冮妶鍡楀Ё缂佽弓绮欏鍐参旈崘顏嗭紳婵炶揪绲捐ぐ鍐╃閻愵剛绡€闁靛骏绲介悡鎰版煕閺冣偓閻楃娀骞冮敓鐘冲亜闁稿繗鍋愰崢鎾绘偡濠婂嫮鐭掔€规洘绮岄埢搴ㄥ箛椤忓棛鐣惧┑鐐差嚟婵挳顢栭崱娑欏亗闁哄洢鍨洪悡鍐煕濠靛棗顏╅柍褜鍓濋褏鍙呴梺鍦檸閸犳鎮″☉銏″€堕柣鎰硾琚氶梺闈╃秬椤濡甸崟顖f晝闁挎繂娲ㄩ悾鐢告⒑娴兼瑧鎮奸柛蹇斆悾鐑藉醇閺囩偟鍘搁梺鍛婂姀閺呮粓鎯侀幒妤佲拻闁稿本鐟︾粊鎵偓瑙勬礀閻忔岸骞堥妸鈺佺骇闁圭偨鍔嶅鑺ヤ繆閸洖閱囨繛鎴烆殕閻繘姊绘担铏瑰笡闁告梹娲熼獮鏍敃閿旇棄娈濋柣鐔哥懃鐎氥劍绂嶅⿰鍫熺厵闁绘垶锚閻忋儵鏌嶈閸撴瑧绱炴繝鍌滄殾闁瑰瓨绻嶅ḿ銊╂煃瑜滈崜鐔奉嚕婵犳艾鍗抽柣鏃囨椤旀洟鎮峰⿰鍐ら柍褜鍓氶崙褰掑闯閿濆拋鍤曢柟鎯板Г閸嬫劗绱撴担楠ㄦ岸骞忓ú顏呪拺闁告稑锕﹂埥澶愭煥閺囨ê鈧鍒掗銏犵闁规崘灏欑粻姘渻閵堝棗濮х紒鏌ョ畺钘熼柛顐ゅ枍缁诲棙銇勯幇鈺佺仾闁搞倕娲弻娑㈠煛鐎n剛鐦堥悗瑙勬磸閸旀垿銆佸▎鎾崇畾鐟滃秹宕f繝鍥ㄢ拻闁稿本鐟ㄩ崗宀€绱掗鍛仸鐎规洘绻堥弫鍐磼濮橀硸妲舵繝鐢靛仜濡瑩宕濋弴鐘愁偨闁绘劗顣介崑鎾荤嵁閸喖濮庡銈忕細閸楁娊骞冮垾鏂ユ瀻闁圭偓娼欓埀顒€鐏氱换娑㈠箣閻愬灚鍠楃紓鍌氬€归懝楣冣€﹂懗顖f闂佸憡鎸鹃崰鏍ь嚕婵犳碍鍋勯柛蹇曞帶閸擃剟姊洪崨濠勭細闁稿骸鐤囬埅闈涒攽鎺抽崐妤佹叏閻戣棄纾绘繛鎴欏灪閻撯偓闂佹寧绻傚Λ鏃傛崲閸℃稒鐓熼柟杈剧稻椤ュ骞嗛悢鍏尖拺闂傚牊渚楀褍鈹戦垾铏缂佸倸绉撮悾锟犲箥閾忣偅鏉搁梻浣虹帛閸旀牕岣垮▎鎾村€堕柨鏃囧Г閸欏繐鈹戦悩鎻掝仾闁搞倐鍋撴俊鐐€ら崢濂告倶濠靛缍栨繝濠傜墕閻掑灚銇勯幒鎴濐伀鐎规挷绶氶弻娑㈠箛閳轰礁顥嬮梺鍝勫暙閻楀棗顔忓┑鍥ヤ簻闁哄啫娲よ闂佺粯绻嶉崑濠囧蓟閿濆棙鍎熼柍銉ュ暱鏉堝懘姊虹粙娆惧剱闁圭懓娲璇测槈閵忕姷鐤€濡炪倖鎸鹃崑娑欐叏閵忕姭鏀介柣鎰皺婢с垽鏌涚€n偅灏甸柟骞垮灩閳藉顫濋敐鍛闂佹眹鍨诲▍銉ㄣ亹閹烘繃鏅涢梺瑙勫劤婢у海澹曢悾灞稿亾楠炲灝鍔欑紒鈧担鍦洸濡わ絽鍟埛鎺戙€掑锝呬壕濠电偘鍖犻崗鐐☉铻栭柛娑卞幘閺屽牓姊洪崷顓℃闁哥姵鐗滅划濠氭偐缂佹ḿ鍘棅顐㈡处濞叉牕鏆╅梻浣告惈濡顢栨径鎰摕闁斥晛鍟欢鐐哄箹濞n剙鐏柕鍡楋躬濮婅櫣鎷犻垾铏彲闂佺懓鍤栭幏锟�40%闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡寮堕崼姘珔闁搞劍绻冮妵鍕冀椤愵澀绮剁紓浣插亾濠㈣埖鍔栭悡娑氣偓骞垮劚妤犳悂鐛弽顓熺厱闁靛ǹ鍎遍埀顒€缍婇獮鍫ュΩ閵夊海鍠栭獮鎰償閿濆啠鍋撻幇鏉跨骇闁冲搫鍊荤粻鐐存叏婵犲懏顏犵紒顔界懇楠炴劖鎯旈姀鈥愁伆缂傚倸鍊峰ù鍥敋瑜忕划鏃堟偡閹殿喗娈鹃梺姹囧灩閹诧繝寮插┑瀣厓鐟滄粓宕滈悢鍑よ€垮〒姘e亾婵﹨娅g槐鎺懳熼崗鐓庢珣闂備胶顢婂▍鏇㈠礉濡ゅ啫鍨濋柡鍐ㄧ墱閺佸棝鏌涢弴銊ュ闁告﹩浜铏瑰寲閺囩偛鈷夊銈冨妼閹虫ê顕i幎鑺ュ亜闁稿繗鍋愰崢鐢告倵閻熸澘顏鐟版缁棃鎮滃Ο闀愮盎闂侀潧绻嗛崺妤咁敂閸繄鍘撮梺纭呮彧缁犳垿鎮欐繝鍕枑婵犲﹤瀚閬嶆煕閳╁啰鈯曢柍閿嬪笒闇夐柨婵嗘噺閸熺偤鏌熼姘卞ⅵ闁哄矉绲借灃濞达綀娅i悡澶愭倵鐟欏嫭绀冪紒顔肩焸閸┿儲寰勯幇顒夋綂闂佺偨鍎遍崢鏍箣闁垮绻嗛柣鎰典簻閳ь剚鐗犻幃褍螖閸愵亞鐓撻梺鍦亾閻綊鍩€椤掆偓閹虫﹢骞冨⿰鍫熷殟闁靛鍎伴崠鏍р攽閻愯埖褰х紒韫矙楠炴饪伴崼鐔告珫閻庡箍鍎卞ú銊у閻撳寒鐔嗛悹铏瑰皑閸旂喎霉閻橆喖鐏叉俊顐$劍瀵板嫮鈧綆鍓涢惁鍫ユ偡濠婂啰绠查柟渚垮姂楠炴﹢顢欓懖鈺傜劸婵$偑鍊栭悧婊堝磻濞戞氨涓嶆慨妯垮煐閻撴洜鈧厜鍋撻柍褜鍓熷畷鎴︽倷閻戞ê浜楅梺闈涱檧婵″洨绮绘ィ鍐╃厵閻庣數枪閳ь剚鍨垮畷鐑筋敇濞戞ü澹曞┑顔矫畷顒勩€傞懖鈺冪<缂備焦岣垮ú鎾煙椤旂懓澧查柟顖涙閸┿儵宕卞Δ鈧敮缂傚倸鍊搁崐椋庣矆娓氣偓瀹曟劙宕妷褏鐓嬮悷婊呭鐢洭鍩€椤戣法绐旂€殿喗鎸虫慨鈧柣娆屽亾婵炵厧锕铏圭磼濡墎绱伴梺杞扮劍閻℃洟鍩呴敓锟�9闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f磸閳ь兛鐒︾换婵嬪炊瑜庡Σ顒勬⒑閸濆嫮鈻夐柛鎾寸懅缁辩偛顫滈埀顒€顫忕紒妯肩懝闁逞屽墴閸┾偓妞ゆ帒鍊告禒婊堟煠濞茶鐏¢柡鍛埣椤㈡岸鍩€椤掑嫬钃熸繛鎴炵懅缁♀偓闂佸憡鍔忛弲娑㈠焵椤掍礁濮嶉柡宀€鍠栭、娑橆潩椤掍焦顔掑┑鐘愁問閸犳帡宕戦幘缁樷拺闂傚牊绋撴晶鏇㈡煙閾忣偄濮嶉挊婵囥亜閹板爼妾柍閿嬪灩缁辨帡顢涘☉娆戭槬婵犫拃鍐ㄧ骇缂佺粯鐩幊鐘活敆閳ь剟寮稿☉銏$厵妞ゆ洖妫涚弧鈧梺绯曟櫔缁绘繂鐣烽妸鈺婃晩閻熸瑥瀚褰掓⒒閸屾瑧顦﹂柟璇х節楠炴劙宕卞☉妯碱槰閻熸粌绉硅棢婵ǹ鍩栭埛鎴炴叏閻熺増鎼愰柣鎺撴そ閺屾盯濡搁埡鈧幉鐐殽閻愭潙濮嶉柟鐓庣秺椤㈡洟鏁嶉崟顓犳毎闂備浇顕х€涒晝绮欓幒鏇熸噷濠电姵顔栭崹閬嶅箰閹惰棄绠栫€瑰嫭澹嬮弸搴ㄧ叓閸ャ劍鎯勫ù鐘层偢濮婂宕掑顑跨敖闂佹悶鍔忓▔娑綖韫囨稒鎯為悷娆忓閸樺綊姊洪崨濠佺繁闁搞劋鍗抽幃褍顫濋懜纰樻嫼缂備礁顑呭ḿ锟狀敁濡ゅ啠鍋撶憴鍕闁告挾鍠庨敃銏℃媴缁洘鏂€濡炪倖鏌ㄩ~鏇熺濠婂牊鐓曢悗锝庡亝瀹曞矂鏌″畝鈧崰鏍€佸▎鎾澄╅柕澶涢檮閹瑩姊虹紒妯哄闁挎洦浜璇差吋婢跺﹣绱堕梺鍛婃处閸嬪懎鈻撻弻銉︹拺閻犲洠鈧磭浼堢紓鍌氱С缁€渚€锝炶箛鎾佹椽顢旈崟顓у敹闂佺澹堥幓顏嗗緤閸濆嫀锝夊醇閵夛腹鎷洪梺绋跨箰閸氬濡甸悢鍏肩厱闁靛ě鍕瘓婵犵绱曢弫濠氱嵁閸ヮ剙绾ч悹渚厜缁辨煡姊绘担铏瑰笡闁告梹岣挎禍绋库枎閹惧秴娲、鏇㈡晜鐟欙絾瀚奸梻浣告啞缁诲倻鈧艾鍢插嵄閻熸瑥瀚ㄦ禍婊堟煙鐎电ǹ浠ч柟鍐叉川閳ь剝顫夊ú妯兼崲閸繄鏆﹂柕濞р偓閸嬫挸鈽夊▎瀣窗闂佸憡蓱閹倿骞冨Δ鍐╁枂闁告洦鍓欓棄宥夋⒑閸涘﹦绠撻梺甯到閻g兘骞囬弶璇狙冾熆鐠虹尨鍔熼柡灞界墦濮婃椽宕滈幓鎺嶇按闂佺ǹ瀛╅悡锟犲箖閿熺姴鍗抽柣妯哄暱閺嬫垿鏌熼懝鐗堝涧缂佹彃娼¢幆灞解枎閹捐泛褰勯梺鎼炲劘閸斿酣鍩ユ径鎰厽闁圭儤鍨规禒娑㈡煏閸パ冾伃妤犵偛顑夐弫鎰板川椤撶倫銉╂⒒娴e懙鍦崲閹版澘瀚夋い鎺戝€瑰畷鍙夌箾閹存瑥鐏╃€瑰憡绻冮妵鍕箛閳轰胶浠煎銈庡墮椤﹂潧顫忛搹瑙勫珰闁炽儱纾禒顓炩攽閳藉棗浜滈柛鐔告綑椤曪綁顢曢敃鈧粈鍐煃閸濆嫬鈧悂顢撻幘鍓佺=濞达絽澹婇崕鎾寸箾婢跺绀冪紒鍌涘浮椤㈡﹢濮€閳锯偓閹风粯绻涙潏鍓у埌闁硅绻濆畷顖炴倷閻戞ḿ鍘介梺闈涒康婵″洭鎯岀€n喗鐓欑€瑰嫮澧楅崵鍥殽閻愬瓨宕屾鐐村笒椤撳ジ宕担璇℃%婵犵數濮烽弫鎼佸磻閻樿绠垫い蹇撴缁€濠傘€掑锝呬壕閻庢鍠楅悡锟犲箠閻樻椿鏁嗛柛鎰╁壉閿熺姵鈷戦悷娆忓閸旇泛鈹戦鍝勨偓婵嬪箖閿熺姴鍗抽柣鏂垮缁犳岸姊洪棃娑氬閻庢凹鍣h棟闁挎洖鍊归悡娆撴煕韫囨挸鎮戦柛濠冨姍閺岋紕浠﹂悾灞濄儲銇勮缁舵岸寮诲☉婊呯杸闁哄啫鍊堕埀顒佸笧缁辨帡顢欓懖鈺侇杸闂佺懓鍢查幊妯虹暦閻戠瓔鏁囩憸搴ㄦ煥閵堝鈷掑ù锝呮啞閹牊绻涚仦鍌氬鐎规洑鍗抽獮妯兼嫚閼碱剙骞嬮柣搴$畭閸庨亶藝椤栨粎涓嶉柟鎯板Г閻撴瑩鏌熼婊冾暭妞ゃ儱顦甸弻锝夊箳閹寸姳绮甸梺闈涙搐鐎氫即鐛€n亖鏀介柛顐g矎濡炬悂姊绘担鍛靛綊鏁冮妷銉庯絿鈧綆鍓涚壕浠嬫煕鐏炴崘澹橀柍褜鍓熼ˉ鎾跺垝閸喓鐟归柍褜鍓欓锝夋偨閸撳弶鏅㈤梺閫炲苯澧撮柍銉︽瀹曟﹢顢欓挊澶屾濠电姰鍨归崢婊堝疾濠婂牊鍎庢い鏍ㄦ皑閺嗭妇绱掔€n収鍤﹂柡鍐ㄧ墕閻掑灚銇勯幒鎴濇殶缂佺姾濮ょ换婵嬫偨闂堟稐鍝楅梺瑙勬た娴滅偟妲愰悙鍝勭劦妞ゆ帊鑳剁粻楣冩煕濠婂啫鏆熺紒澶樺枤閳ь剝顫夊ú鈺冪礊娓氣偓瀹曟椽鍩€椤掍降浜滈柟鍝勭Х閸忓瞼绱掗悩鑽ょ暫闁哄瞼鍠撻埀顒傛暩鏋ù鐙呯畵閺岋綁骞橀崡鐐插Б缂備浇椴哥敮鈩冧繆閹间焦鏅滃┑顔藉姃閾忓酣姊绘担铏广€婇柡鍌欑窔瀹曟垿骞橀幇浣瑰瘜闂侀潧鐗嗗Λ妤呮倶閿曞倹鍊电紒妤佺☉閹虫劙鎯岄崼婢濆綊鎮℃惔锝嗘喖闂佺粯鎸鹃崰鎰板Φ閸曨喚鐤€闁圭偓娼欏▍銈夋煟韫囨捇鐛滅紒鐘虫崌瀵鎮㈢喊杈ㄦ櫓闂佸吋浜介崕顖涚閵忋倖鈷戦弶鐐村閸斿秹鏌涢弮鈧悷銉╂偩閻戣棄閱囬柡鍥╁仧閸樻悂姊虹粙鎸庢拱缂佸鍨垮畷婵嗩潨閳ь剙顫忔繝姘<婵炲棙鍩堝Σ顕€姊虹涵鍜佸殝缂佺粯绻堥獮濠傗攽鐎n亞顦悷婊冾樀瀹曟垿骞橀幇浣瑰兊闂佺粯鎸告鎼佸煕鐎n偆绡€缁炬澘顦辩壕鍧楁煛娴g瓔鍤欓柣锝囧厴瀹曞ジ寮撮妸锔芥珜闂備胶枪閺堫剙顫濋妸鈺佄ч柨鏇炲€归埛鎺懨归敐鍛暈闁哥喓鍋ら弻娑㈠籍閳ь剟鎮ч悙鍝勎﹂柟鐗堟緲缁€鍐┿亜閺冨倹娅曢柛妯诲姍濮婄粯绗熼崶褍顫╃紓浣割槺閺佸骞冮檱缁犳稑鈽夊▎鎴濆箞闂備礁鐤囧Λ鍕涘Δ鍛祦婵°倕鎳忛崐鍨叏濡厧浜鹃悗姘炬嫹
Nilay Bostan,Department of Physics and Astronomy, University of Iowa, 52242, Iowa City, IA, United States of America

Received:2019-11-26Revised:2020-02-15Accepted:2020-03-10Online:2020-07-15


Abstract
In this work, we study the theory of inflation with the non-minimally coupled quadratic, standard model Higgs, and hilltop potentials, through ξφ2R term in Palatini gravity. We first analyze observational parameters of the Palatini quadratic potential as functions of ξ for the high-N scenario. In addition to this, taking into account that the inflaton field φ has a non-zero vacuum expectation value v after inflation, we display observational parameters of well-known symmetry-breaking potentials. The types of potentials considered are the Higgs potential and its generalizations, namely hilltop potentials in the Palatini formalism for the high-N scenario and the low-N scenario. We calculate inflationary parameters for the Palatini Higgs potential as functions of v for different ξ values, where inflaton values are both φ>v and φ<v during inflation, as well as calculating observational parameters of the Palatini Higgs potential in the induced gravity limit for high-N scenario. We illustrate differences between the Higgs potential's effect on ξ versus hilltop potentials, which agree with the observations for the inflaton values for φ<v and ξ, in which v≪1 for both these high and low N scenarios. For each considered potential, we also display nsr values fitted to the current data given by the Keck Array/BICEP2 and Planck collaborations.
Keywords: non-minimal inflation;Palatini gravity;Keck Array/BICEP2 and Planck results


PDF (1296KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Nilay Bostan. Quadratic, Higgs and hilltop potentials in Palatini gravity. Communications in Theoretical Physics, 2020, 72(8): 085401- doi:10.1088/1572-9494/ab7ecb

1. Introduction

Inflation [14] is the current accepted model for explaining large scale observations of the universe by positing that there was a period of rapid expansion in the primordial universe. The inflationary big bang model is a solution to main problems in cosmology: isotropy and homogeneity, the spatial flatness, horizon, and unobserved magnetic monopoles. This inflationary era can also produce and extend the small inhomogeneities which have appeared in the large scale structures and the anisotropy in the cosmic microwave background radiation temperature (CMBR). The most recent measurements of the CMBR [5, 6] made by the Planck satellite give some parameters that are related to the inflationary perturbations. Two of these parameters have been measured even more precisely in recent years; the amplitude of the curvature perturbation, ${{\rm{\Delta }}}_{{ \mathcal R }}^{2}\approx 2.4\times {10}^{-9}$ and the corresponding spectral index, ns=0.9625±0.0048. Another important parameter is the running of the spectral index, α=0.002± 0.010. Even though the constraints on α are not currently sufficient to test the inflationary models, observations of the 21 cm line [79] are predicted to improve the measurement of $\alpha ={ \mathcal O }({10}^{-3})$. In addition to this, the recent data from the Keck Array/BICEP2 and Planck collaborations [10] constrains strongly the tensor-to-scalar ratio r<0.06, which gives a successful explanation to the amplitude of primordial gravitational waves and the scale of inflation. Some ongoing CMB B-mode polarization experiments [1113] have pushed the limit of r to ≲0.001, or have approached this limit. Each of the parameters above are constrained at the pivot scale of k*=0.002 Mpc−1.

The observational parameters, in particular the spectral index ns and the tensor-to-scalar ratio r, have been calculated for various inflationary potentials [14]. However, the most minimal realization scenario for the theory of inflation is that the standard model (SM) Higgs boson behaves as the inflaton field with minimal coupling (ξ=0). On the other hand, a renormalizable scalar field theory in curved space-time needs the non-minimal coupling ξφ2R between the inflaton and the Ricci scalar [1517]. Furthermore, even if the non-minimal coupling ξ equals to zero at the classical level, it will be created by quantum corrections [15] and in particular, non-minimal coupling to gravity is necessary to sufficiently flatten the Higgs potential at large field values, so that it is in agreement with observations. In this paper we aim to extend the previous studies of how the inflaton field is coupled non-minimally to gravity. We present how the value of the non-minimal coupling parameter ξ affects the observational parameters for the inflationary potentials in the Palatini formalism, in the case of the quadratic potential and symmetry-breaking type inflation potentials where the inflaton field has a non-zero vacuum expectation value v after the period of inflation. A non-zero v after inflation is such that potentials can be related with symmetry-breaking in the very early universe. Examples of such models for symmetry-breaking, which we investigate in this work, are the well-known Higgs inflation [18, 19] models, which are based on the SM of particle physics and especially the Higgs field of the SM behaving as the inflaton field, a scenario first proposed by [19].

In addition to this, [20] has proposed the Lee–Wick SM as an extension of the SM of particle physics supplying an alternative to supersymmetry in terms of addressing the hierarchy problems. They have indicated the cosmology of the Higgs sector of the Lee–Wick SM in order to solve the hierarchy problem. They obtained that homogeneous and isotropic solutions are non-singular, so the Lee–Wick model supplies a possible solution of the cosmological singularity problem. Also, using the Higgs field, many models are taken into account to explain early universe physics, such as bounce inflation. According to this scenario, it is possible to avoid the standard big-bang singularity by adding a non-singular bounce before the inflation period. For instance, [21] has suggested to construct a bounce inflation model with the SM Higgs boson, where the one-loop correction is considered in the effective potential of the Higgs field. According to this model, a Galileon term has been introduced to get rid of the ghost mode when the bounce happens. Finally, we discuss hilltop potentials which are simple generalizations of the Higgs potential.

In this paper, we use dynamics of the Palatini gravity to be able to calculate inflationary parameters. Although the Metric and Palatini formalisms are equivalent in the theory of general relativity, if matter fields are coupled non-minimally to gravity, these two formalisms correspond to two different theories of gravity, as investigated in these [2227]. In particular, inflationary models with non-minimal couplings to gravity can not be explained with potentials only, gravitational degrees of freedom are required to define such models [22]. The Palatini formalism differs from the Metric formalism in that both the metric gμν and the connection Γ are independent variables. Even though the two formalisms have the same equations of motion, and as a result they correspond to equivalent physical theories, the presence of the non-minimal coupling between gravity and matter causes the physical equivalence to disappear for these two formalisms. In particular the ξ-attractor models which are known as attractor behavior that occurs in the Starobinsky model for larger ξ values in Metric formulation, is lost in the Palatini approach [28] and r can be taken to be much smaller values compared to the Metric formulation for larger ξ values [26, 2931]. Another important difference between the Metric and Palatini formalism, the inflaton field stays in the sub-Planckian regime to supply a natural inflationary era in the Palatini formalism [22]. In the literature, inflationary potentials in Palatini gravity are taken into account in papers such as these [22, 24, 25, 3234]. In [24] the quadratic potential is discussed in Palatini gravity taking N*=50 and N*=60, they found that the strength of the non-minimal coupling, $\xi ={ \mathcal O }({10}^{-3})$ agrees with the current data just for N*=60. In addition to this, Higgs inflation in the Palatini formulation has been studied in [22, 25, 3234]. According to these papers, predictions of r are very tiny for ξ≳1 values and so r is suppressed further leading to well-known attractor behavior in the Starobinsky model of the Metric formulation for large ξ values, whereas the attractor behavior vanishes in the Palatini approach.

This paper is organized as follows, we first describe inflation with a non-minimal coupling and how inflationary parameters are calculated (section 2) in the Palatini formulation. Next, we analyze the Palatini quadratic potential in the large-field limit for the high N scenario (section 3). We then calculate inflationary predictions in detail for two different symmetry-breaking inflation type potentials (Higgs potentials) (section 4) for inflaton values φ>v and φ<v. We then illustrate that hilltop potentials can be compatible with the current measurements for cases of φ<v and ξ, v≪1 (section 5). Furthermore, (in section 4) we calculate inflationary parameters in the induced gravity limit for Palatini Higgs inflation. Finally, we discuss our results and summarize them (section 6).

2. Palatini inflation with a non-minimal coupling

We describe a non-minimally coupled scalar field φ with a canonical kinetic term and a potential VJ(φ). Then the inflation action in the Jordan frame becomes$ \begin{eqnarray}\begin{array}{rcl}{S}_{J} & = & \int {{\rm{d}}}^{4}x\sqrt{-g}\Space{0ex}{0.25ex}{0ex}\displaystyle \frac{1}{2}F\left(\phi \right){g}^{\mu \nu }{R}_{\mu \nu }\left({\rm{\Gamma }}\right)\\ & & -\ \displaystyle \frac{1}{2}{g}^{\mu \nu }{\partial }_{\mu }\phi {\partial }_{\nu }\phi -{V}_{J}\left(\phi \right)\Space{0ex}{0.25ex}{0ex}),\end{array}\end{eqnarray}$here, the subscript J indicates that the action is defined in a Jordan frame. Rμν is the Ricci tensor and it is defined in the form$ \begin{eqnarray}{R}_{\mu \nu }={\partial }_{\sigma }{{\rm{\Gamma }}}_{\mu \nu }^{\sigma }-{\partial }_{\mu }{{\rm{\Gamma }}}_{\sigma \nu }^{\sigma }+{{\rm{\Gamma }}}_{\mu \nu }^{\rho }{{\rm{\Gamma }}}_{\sigma \rho }^{\sigma }-{{\rm{\Gamma }}}_{\sigma \nu }^{\rho }{{\rm{\Gamma }}}_{\mu \rho }^{\sigma }.\end{eqnarray}$In the metric formulation, the connection is taken as a function of the metric tensor. It is called the Levi-Civita connection $\bar{{\rm{\Gamma }}}=\bar{{\rm{\Gamma }}}({g}^{\mu \nu })$$ \begin{eqnarray}{\bar{{\rm{\Gamma }}}}_{\mu \nu }^{\lambda }=\displaystyle \frac{1}{2}{g}^{\lambda \rho }({\partial }_{\mu }{g}_{\nu \rho }+{\partial }_{\nu }{g}_{\rho \mu }-{\partial }_{\rho }{g}_{\mu \nu }).\end{eqnarray}$On the other hand, in the Palatini formalism both gμν and Γare independent variables, and the only assumption here is that the connection is torsion-free, i.e. ${{\rm{\Gamma }}}_{\mu \nu }^{\lambda }={{\rm{\Gamma }}}_{\nu \mu }^{\lambda }$. By solving equations of motion, one can obtain the following [22]$ \begin{eqnarray*}{{\rm{\Gamma }}}_{\mu \nu }^{\lambda }={\overline{{\rm{\Gamma }}}}_{\mu \nu }^{\lambda }+{\delta }_{\mu }^{\lambda }{\partial }_{\nu }\omega (\phi )+{\delta }_{\nu }^{\lambda }{\partial }_{\mu }\omega (\phi )-{g}_{\mu \nu }{\partial }^{\lambda }\omega (\phi ),\end{eqnarray*}$where$ \begin{eqnarray}\omega \left(\phi \right)=\mathrm{ln}\sqrt{F(\phi )},\end{eqnarray}$in the Palatini formulation. In this work, in order to calculate inflationary parameters of symmetry-breaking type inflation potentials, we choose the F(φ) to include a constant m2 term and a non-minimal coupling ξφ2R, which is necessary for a renormalizable scalar field theory in curved space-time [1517] as we mentioned above. We are using units, where the reduced Planck scale ${m}_{{\rm{P}}}=1/\sqrt{8\pi G}\approx 2.4\times {10}^{18}\ \mathrm{GeV}$ is set equal to unity. Thus, either F(φ)→1 or φ→0 is required after inflation. In that case, by taking m2=1−ξv2 into consideration, we obtain F(φ) = m2 + ξφ2=1+ ξ(φ2v2) [35]. Furthermore, we take Palatini quadratic potential in the large-field limit into account. So, to be able to compute observational parameters, we take F(φ)=1+ξφ2.

2.1. Calculating the inflationary parameters

The difference between Metric and Palatini formulations are more easily figured out in the Einstein frame. By applying a Weyl rescaling gE,μν=gμν/F(φ), we can show the Einstein frame action in the form$ \begin{eqnarray}\begin{array}{rcl}{S}_{E} & = & \displaystyle \int {{\rm{d}}}^{4}x\sqrt{-{g}_{E}}\left(\displaystyle \frac{1}{2}{g}_{E}^{\mu \nu }{R}_{E,\mu \nu }({\rm{\Gamma }})\right.\\ & & -\ \left.\displaystyle \frac{1}{2Z(\phi )}\,{g}_{E}^{\mu \nu }{\partial }_{\mu }\phi {\partial }_{\nu }\phi -\displaystyle \frac{{V}_{E}(\phi )}{F{\left(\phi \right)}^{2}}\right),\end{array}\end{eqnarray}$where$ \begin{eqnarray}{Z}^{-1}(\phi )=\displaystyle \frac{1}{F(\phi )},\end{eqnarray}$in the Palatini formulation. If we make a field redefinition$ \begin{eqnarray}{\rm{d}}\chi =\displaystyle \frac{{\rm{d}}\phi }{\sqrt{Z(\phi )}},\end{eqnarray}$we obtain the action for a minimally coupled scalar field χ with a canonical kinetic term. Using equation (2.7), Einstein frame action in terms of χ can be obtained in the form$ \begin{eqnarray}{S}_{E}=\int {{\rm{d}}}^{4}x\sqrt{-{g}_{E}}\left(\displaystyle \frac{1}{2}{g}_{E}^{\mu \nu }{R}_{E}({\rm{\Gamma }})-\displaystyle \frac{1}{2}\,{g}_{E}^{\mu \nu }{\partial }_{\mu }\chi {\partial }_{\nu }\chi -{V}_{E}\left(\chi \right)\right).\end{eqnarray}$

For F(φ)=1+ξ(φ2v2), different limit cases for equation (2.6) can be obtained:1.Electroweak regime
If $| \xi ({\phi }^{2}-{v}^{2})| \ll 1$, φχ and VJ(φ)≈VE(χ). Thus, in this limit, the inflationary predictions for the non-minimal coupling case are approximately the same with the ones for the minimal coupling case.
2.Induced gravity limit [36]
In this limit (ξv2=1, F(φ)=ξφ2), Z(φ)=ξφ2 and using equation (2.7), we obtain $ \begin{eqnarray}\phi =v\exp \left(\chi \sqrt{\xi }\right),\end{eqnarray}$here we set χ(v)=0.
3.Large-field limit
If φ2v2 during inflation, we have $ \begin{eqnarray}\phi \simeq \displaystyle \frac{1}{\sqrt{\xi }}\sinh \left(\chi \sqrt{\xi }\right),\end{eqnarray}$in the Palatini formulation. Using equation (2.10), inflationary potential can be taken into account in terms of canonical scalar field χ, therefore slow-roll parameters are written for Palatini formulation in the large-field limit according to χ.


On the condition that Einstein frame potential is written in terms of the canonical scalar field χ, inflationary parameters can be found using the slow-roll parameters [37]$ \begin{eqnarray}\epsilon =\displaystyle \frac{1}{2}{\left(\displaystyle \frac{{V}_{\chi }}{V}\right)}^{2},\quad \eta =\displaystyle \frac{{V}_{\chi \chi }}{V},\quad {\xi }^{2}=\displaystyle \frac{{V}_{\chi }{V}_{\chi \chi \chi }}{{V}^{2}},\end{eqnarray}$where χ's in the subscript represent derivatives. Inflationary parameters can be defined in the slow-roll approximation by$ \begin{eqnarray}\begin{array}{rcl}{n}_{s} & = & 1-6\epsilon +2\eta ,\quad r=16\epsilon ,\\ \alpha & = & \displaystyle \frac{{\rm{d}}{n}_{s}}{\mathrm{dln}k}=16\epsilon \eta -24{\epsilon }^{2}-2{\xi }^{2}.\end{array}\end{eqnarray}$In the slow-roll approximation, the number of e-folds is obtained by$ \begin{eqnarray}{N}_{* }={\int }_{{\chi }_{e}}^{{\chi }_{* }}\displaystyle \frac{V{\rm{d}}\chi }{{V}_{\chi }},\end{eqnarray}$where the subscript ‘*' indicates quantities when the scale corresponding to k* exited the horizon, and χe is the inflaton value at the end of inflation, which we obtain by ε(χe)=1.

The amplitude of the curvature perturbation in terms of canonical scalar field χ is written the form$ \begin{eqnarray}{{\rm{\Delta }}}_{{ \mathcal R }}=\displaystyle \frac{1}{2\sqrt{3}\pi }\displaystyle \frac{{V}^{3/2}}{| {V}_{\chi }| }.\end{eqnarray}$

The best fit value for the pivot scale k*=0.002 Mpc−1 is ${{\rm{\Delta }}}_{{ \mathcal R }}^{2}\approx 2.4\times {10}^{-9}$ [5] from the Planck results. Furthermore, we redefine the slow-roll parameters in terms of the scalar field φ for numerical calculations, because for all general ξ and v values, it is not possible to compute the inflationary potential in terms of χ. Using equations (2.7) and (2.11) together, slow-roll parameters can be found in terms of φ [38]$ \begin{eqnarray}\begin{array}{rcl}\epsilon & = & Z{\epsilon }_{\phi },\quad \eta =Z{\eta }_{\phi }+\mathrm{sgn}(V^{\prime} )Z^{\prime} \sqrt{\displaystyle \frac{{\epsilon }_{\phi }}{2}},\\ {\xi }^{2} & = & Z\left(Z{\xi }_{\phi }^{2}+3\mathrm{sgn}(V^{\prime} )Z^{\prime} {\eta }_{\phi }\sqrt{\displaystyle \frac{{\epsilon }_{\phi }}{2}}+Z^{\prime\prime} {\epsilon }_{\phi }\right),\end{array}\end{eqnarray}$where we described$ \begin{eqnarray}{\epsilon }_{\phi }=\displaystyle \frac{1}{2}{\left(\displaystyle \frac{{V}^{{\prime} }}{V}\right)}^{2},\quad {\eta }_{\phi }=\displaystyle \frac{{V}^{{\prime\prime} }}{V},\quad {\xi }_{\phi }^{2}=\displaystyle \frac{{V}^{{\prime} }{V}^{\prime\prime\prime }}{{V}^{2}}.\end{eqnarray}$In addition to this, equations (2.13) and (2.14) can be obtained in terms of φ in the form$ \begin{eqnarray}{N}_{* }=\mathrm{sgn}(V^{\prime} ){\int }_{{\phi }_{e}}^{{\phi }_{* }}\displaystyle \frac{{\rm{d}}\phi }{Z(\phi )\sqrt{2{\epsilon }_{\phi }}},\end{eqnarray}$$ \begin{eqnarray}{{\rm{\Delta }}}_{{ \mathcal R }}=\displaystyle \frac{1}{2\sqrt{3}\pi }\displaystyle \frac{{V}^{3/2}}{\sqrt{Z}| {V}^{{\prime} }| }.\end{eqnarray}$

To compute the values of inflationary parameters, we should obtain a value for N* numerically. Under the assumption of a standard thermal history after inflation, N* is given as follows [39]$ \begin{eqnarray}\begin{array}{rcl}{N}_{* } & \approx & 64.7+\displaystyle \frac{1}{2}\mathrm{ln}\displaystyle \frac{{\rho }_{* }}{{m}_{{\rm{P}}}^{4}}-\displaystyle \frac{1}{3(1+{\omega }_{r})}\mathrm{ln}\displaystyle \frac{{\rho }_{e}}{{m}_{{\rm{P}}}^{4}}\\ & & +\ \left(\displaystyle \frac{1}{3(1+{\omega }_{r})}-\displaystyle \frac{1}{4}\right)\mathrm{ln}\displaystyle \frac{{\rho }_{r}}{{m}_{{\rm{P}}}^{4}},\end{array}\end{eqnarray}$here, ρe=(3/2)V(φe) is the energy density at the end of inflation, ρ*V(φ*) is the energy density when the scale corresponding to k* exited the horizon, ρr is the energy density at the end of reheating and ωr is the equation of state parameter throughout reheating, which we take its value to be constant. Predictions of the inflationary parameters change depending on the total number of e-folds.

2.2. Different reheating scenarios

In literature, most of the papers take N*≈50–60 as a constant while calculating the inflationary parameters in general. On the other hand, to be able to discriminate inflationary models from each other, their predictions should be more accurate. Therefore, to indicate an acceptable range of N* depending upon reheating temperature, we take three different scenarios into account to define N*:1. High-N scenario
ωr=1/3, this case corresponds to the assumption of instant reheating.
2.Middle-N scenario
ωr=0 and the temperature of reheating is taken as Tr=109 GeV, while computing ρr using the SM value for the usual number of relativistic degrees of freedom values for g*=106.75.
3. Low-N scenario
ωr=0, same as middle-N scenario. But in this case, the reheat temperature Tr=100 GeV.
The nsr curves for different scenarios are displayed in figure 1 for the Higgs potential in the Palatini formulation (debated in section 4) together with the 68% and 95% confidence level (CL) contours based on the data taken by the Keck Array/BICEP2 and Planck collaborations [10]. The figure illustrates the curves for the confidential N* values of 50 and 60, which are necessarily taken in agreement with the range expected from a standard thermal history after inflation for the Higgs potential in the Palatini formalism. However, N* is smaller (for example between roughly 45–55 providing that v∼0.01) for the hilltop inflation models (described in section 5), because inflation takes place at a lower energy scale in these models.

Figure 1.

New window|Download| PPT slide
Figure 1.The figure illustrates that ns r predictions for different ξ values and v=0.01 for various reheating cases as described in the text for Higgs potential in the Palatini formalism. The points on each curve represent ξ=10−2.5, 10−2, 10−1.5, 10−1, and 1, top to bottom. The pink (red) contour corresponds to the 95% (68%) CL contours based on the data taken by the Keck Array/BICEP2 and Planck collaborations [10].


3. Quadratic potential

The quadratic inflation potential model in Jordan frame is given by in the form$ \begin{eqnarray}{V}_{J}(\phi )=\displaystyle \frac{1}{2}{m}^{2}{\phi }^{2},\end{eqnarray}$here, m is a mass term. By using equation (2.14) and the value of amplitude for the curvature power spectrum ${{\rm{\Delta }}}_{{ \mathcal R }}^{2}\approx 2.4\,\times {10}^{-9}$, we can fix the required mass to be m≃6×10−6 for N=60 and minimal coupling case, thus ns≃0.967 and r≃0.16. The results are slightly disfavored by the latest observational data [10].

In the large-field limit (described in section 2), Einstein frame quadratic potential for Palatini approach in terms of χ using equation (2.10) can be obtained as follows$ \begin{eqnarray}{V}_{E}(\chi )\approx \displaystyle \frac{{m}^{2}}{2\xi }\displaystyle \frac{{\sinh }^{2}\left(\chi \sqrt{\xi }\right)}{{\left(1+{\sinh }^{2}\left(\chi \sqrt{\xi }\right)\right)}^{2}}.\end{eqnarray}$As it can be seen from equation (3.2), by expanding this potential around the minimum for large ξ values, we can obtain the flattening potential. In literature [24], analyzed the values of ns, r and m for the quadratic potential in Palatini gravity taking N*=50 and N*=60 to be constant. In this work, we analyze ns, r, α and m values as a function of ξ for the Palatini quadratic potential with large-field limit numerically for the high-N scenario. According to our results from figure 2, we find that if the non-minimal coupling parameter between the range 10−4ξ≲10−3 for the high-N scenario, values of ns can be inside the observational region, and as it can be seen from figure 3, m≃6×10−6 for the range of 10−4ξ≲10−3. However, for the ξ≃10−2 value, m≃2×10−6. As a result, the energy scale should be determined by the observational values on the amplitude on the scalar power spectrum.

Figure 2.

New window|Download| PPT slide
Figure 2.The figure shows that nsr predictions for quadratic potential in the Palatini formalism for high-N scenario for the different ξ values that are mentioned in the text. The pink (red) contour correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].


Figure 3.

New window|Download| PPT slide
Figure 3.For quadratic potential in the Palatini formalism for high-N scenario, the figures show that m and α values as functions of ξ.


In the case of larger ξ, ns values decrease and they remain outside the observational region. For the range between 10−4ξ≲10−2, we obtain 0.01≲r≲0.12. Furthermore, for the low-N scenario, inflationary parameters of Palatini quadratic potential remain the outside the observational region for any ξ value. Finally, figure 3 shows that α values are very tiny for this type of potential.

4. Higgs potential

In this section, we take a well-known symmetry-breaking type potential into account [40]$ \begin{eqnarray}{V}_{J}(\phi )=A{\left[1-{\left(\displaystyle \frac{\phi }{v}\right)}^{2}\right]}^{2},\end{eqnarray}$which is known as the Higgs potential. This potential was investigated for the minimal coupling case in such recent papers, see [14, 4144]. In this case, when inflation takes place around the minimum, the potential is approximately quadratic and thus the quadratic potential predictions in terms of N*$ \begin{eqnarray}{n}_{s}\approx 1-\displaystyle \frac{2}{{N}_{* }},\quad r\approx \displaystyle \frac{8}{{N}_{* }},\quad \alpha \approx -\displaystyle \frac{2}{{N}_{* }^{2}},\end{eqnarray}$can be obtained for inflation both φ>v and φ<v. In this work, instead of minimal coupling case, we analyze the Higgs inflation with non-minimal coupling in Palatini formulation both high-N scenario and low-N scenario. Furthermore, using equation (2.17), we obtain N* for non-minimally coupled Palatini Higgs inflation analytically in the form$ \begin{eqnarray}{N}_{* }=\displaystyle \frac{1}{8}\left({\phi }_{* }^{2}-{\phi }_{e}^{2}\right)-\displaystyle \frac{{v}^{2}}{4}\mathrm{ln}\displaystyle \frac{{\phi }_{* }}{{\phi }_{e}}.\end{eqnarray}$In the large-field limit (described in section 2), for Palatini Higgs inflation with non-minimal coupling, ns, r and α can be found using equation (2.7) together with equations (2.10), (2.12) and (2.13) in terms of N*$ \begin{eqnarray}{n}_{s}\approx 1-\displaystyle \frac{2}{{N}_{* }},\qquad r\approx \displaystyle \frac{2}{\xi {N}_{* }^{2}},\qquad \alpha \approx -\displaystyle \frac{2}{{N}_{* }^{2}}.\end{eqnarray}$On the other hand, in the case of φv when cosmological scales exit the horizon, the potential approximates to the hilltop potential type (described as section 5), effectively$ \begin{eqnarray}{V}_{E}(\phi )\approx A\left[1-2{\left(\displaystyle \frac{\phi }{v}\right)}^{2}\right].\end{eqnarray}$Predictions of this potential type in equation (4.5) for φv that r is very suppressed and ns≈1–8/v2. In this section, we analyze numerically for φ>v and φ<v cases in the high-N scenario and the low-N scenario for Higgs potential with non-minimal coupling in the Palatini approach with broad range of ξ and v. In literature, inflationary predictions of Palatini Higgs inflation were taken into account for different N* values, in general taken to be constant between N*≈50–60 [33, 34, 4547]. For example, [33] analyzed the preheating stage following the end of Palatini Higgs inflation by taking N*≈50. They showed that the slow decaying oscillations of Higgs afterwards the end of inflation, permits the field to periodically return to the plateau of the potential so the preheating stage in the Palatini Higgs inflation is necessarily instantaneous. Therefore, this decrease in N* is required to solve the problems of hot big bang.

First of all, we illustrate φ>v case for both scenarios. As it can be seen in figures 4 and 5, ξ≤0 cases are outside the 95% CL contour given by Keck Array/BICEP2 and Planck collaborations [10] for all v values. In addition to this, for small v values, inflationary predictions of ξ=10−3 can be outside the 95% CL contour. However, in larger v values, predictions are inside 95% CL for ξ=10−3. For ξ=10−2, predictions are inside 68% CL for small v values but for larger values of v, predictions remain within 95% CL contour. Furthermore, for ξ≫1 cases, predictions are inside 68% CL for small values of v and when v increases, they enter in the 95% CL and r is very tiny for larger and smaller values of v, so r is highly suppressed at any v values for larger ξ cases. For ξ=10−2 and ξ=10−3, r is very small for large v values but this case is not valid for smaller values of v. For both ξ<0 and ξ=0 cases, r does not take very small values for larger and smaller v. In addition to this, as it can be seen that from figure 5, α takes very tiny values to be observed in the near future observations for selected ξ cases and at any v values. Moreover, for all selected ξ values, when v increases, values of A increase depending on v.

Figure 4.

New window|Download| PPT slide
Figure 4.For Higgs potential in the Palatini formalism in the cases of φ>v and high-N scenario, in the top figures display changing ns and r values for different ξ cases as function of v and the bottom figure shows that nsr predictions for selected ξ values. The pink (red) contour correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].


Figure 5.

New window|Download| PPT slide
Figure 5.For Higgs potential in the Palatini formalism, the change in α and A as a function of v is plotted for different ξ values in the cases of φ>v and high-N scenario.


In addition to φ>v and high-N cases, figures 6 and 7 illustrate the φ>v but low-N case for the Higgs potential in the Palatini formalism. According to figure 6, predictions of ξ=0 and ξ<0 cases are similar to φ>v and high-N scenario results. On the other hand, predictions for the remaining ξ values slightly differ from the high-N case. For ξ≫1 cases, predictions can be in the 95% CL contour for small v values but when v increases, predictions remain inside 68% CL. In the low-N case, values of r for all the selected ξ values overlap with the high-N case, so again r is very small for ξ≫1 cases for both small and large v values. Also for larger values of v for ξ=10−2 and ξ=10−3 cases, r is also very tiny except for small v values. Furthermore, in the low-N case, values of α and A are similar to the high-N case, so α takes very small values for our selected ξ cases and for all v values to be observed in the near future measurements.

Figure 6.

New window|Download| PPT slide
Figure 6.For Higgs potential in the Palatini formalism in the cases of φ>v and low-N scenario, in the top figures display changing ns and r values for different ξ cases as function of v and the bottom figure shows that nsr predictions for selected ξ values. The pink (red) contour correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].


Figure 7.

New window|Download| PPT slide
Figure 7.For Higgs potential in the Palatini formalism, the change in α and A as a function of v is plotted for different ξ values in the cases of φ>v and low-N scenario.


Numerical results for φ<v and high-N cases for Higgs potential in the Palatini approach can be seen in figures 8 and 9. According to these figures, predictions of ξ=10−3 are ruled out for current data. In contrast, ξ=10−4 and ξ=0 cases can be inside the 95% CL contour given by the Keck Array/BICEP2 and Planck collaborations [10]. However, ξ<0 cases for the range between 10≲v≲20, predictions are outside the 95% CL contour, but when v increases, they can be in the region compatible with observational data depending on v. Unlike from φ>v and high-N scenario, here the values of r are very small for ξ=−10 and ξ=−102 cases. In addition to this, α values are very small similar to other situations. Lastly, for ξ≤0 cases, values of A increase depending on v, but this case is different for ξ=10−3 and ξ=10−4 values, as it can be seen in figure 9.

Figure 8.

New window|Download| PPT slide
Figure 8.For Higgs potential in the Palatini formalism in the cases of φ<v and high-N scenario, in the top figures display changing ns and r values for different ξ cases as function of v. The bottom figures show that nsr predictions for selected ξ values, left panel: ξ>0 and ξ=0 cases, right panel: ξ<0 cases. The pink (red) contour correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].


Figure 9.

New window|Download| PPT slide
Figure 9.For Higgs potential in the Palatini formalism, the change in α and A as a function of v is plotted for different ξ values in the cases of φ<v and high-N scenario.


Furthermore, we also obtain numerical results in the cases of φ<v and low-N scenario for the Higgs potential in figures 10 and 11. According to these figures, inflationary predictions of ξ≥0 cases are ruled out for current data. In addition to this, the cases of ξ<0, predictions begin to enter the observational region, when v increases. For larger v values, predictions remain inside the 68% CL contour, as well as the values of r are strongly suppressed for cases of both ξ=−10 and ξ=−102. According to figure 11, results for the α and A are the same as φ<v and high-N scenario. We also display inflationary parameters of the Higgs potential in the limit of induced gravity, described as in the text (see section 2) for high-N scenario in figure 12. According to this figure, all our selected ξ values are in the 68% CL contour. What is more, in this limit case, α values are also very tiny for all v and values of A increase, depending upon v.

Figure 10.

New window|Download| PPT slide
Figure 10.For Higgs potential in the Palatini formalism in the cases of φ<v and low-N scenario, in the top figures display changing ns and r values for different ξ cases as function of v. The bottom figures show that nsr predictions for selected ξ values, left panel: ξ>0 and ξ=0 cases, right panel: ξ<0 cases. The pink (red) contour correspond to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].


Figure 11.

New window|Download| PPT slide
Figure 11.For Higgs potential in the Palatini formalism, the change in α and A as a function of v is plotted for different ξ values in the cases of φ<v and low-N scenario.


Figure 12.

New window|Download| PPT slide
Figure 12.For Higgs potential in the Palatini formalism, the change in ns, r, α and A as a function of v is plotted for different ξ values and for φ>v in the induced gravity limit which corresponds to ξv2=1.


In the induced gravity limit, using equation (2.9), the Einstein frame potential can be obtained in terms of χ in the form$ \begin{eqnarray}{V}_{E}(\chi )=\displaystyle \frac{A}{{\xi }^{2}{v}^{4}}\left(1-2\exp \left(-2\sqrt{\xi }\chi \right)\right).\end{eqnarray}$

For this potential, using equation (2.13), 8ξN$\exp \left(2\sqrt{\xi }\chi \right)$. Therefore, using equation (2.12) we can find ns and r approximately in the induced gravity limit$ \begin{eqnarray}{n}_{s}\approx 1-\displaystyle \frac{2}{{N}_{* }}-\displaystyle \frac{3}{4\xi {N}_{* }^{2}},\qquad r\approx \displaystyle \frac{2}{\xi {N}_{* }^{2}}.\end{eqnarray}$The Higgs potential in the induced gravity limit was previously investigated for the Metric formulation in [4850]. In this work, we extend these papers by analyzing the Higgs potential in the induced gravity limit in the Palatini formulation for φ>v and high-N scenario. To sum up, in literature, Higgs inflation with non-minimal coupling has been discussed such [35, 38, 4851] in the Metric formulation. References [38] and (for just ξ>0) [51] analyzed the Higgs inflation with non-minimal coupling in the Metric formulation in general by taking F(φ)=1+ξφ2. Moreover, [35] explained the Higgs inflation with non-minimal coupling in the Metric formulation for both ξ>0 and ξ<0 cases for F(φ)=1+ξ(φ2v2). On the other hand, some papers took non-minimally coupled Higgs inflation in the Palatini formulation into account [22, 25, 32, 33], which we mentioned before. Reference [22] examined for the large-field limit by taking F(φ)=1+ξφ2 and they found ns≃0.968 and r≃10−14 in the Palatini approach. In addition to this, by taking F(φ)=1+ξφ2, [25] found predictions of various inflationary parameters in the Palatini approach. They also found that r values are highly suppressed for ξφ2≫1 limits and they obtained very small α values to be observed in the future measurements. Similar to the other papers [33], analyzed Palatini Higgs inflation by taking F(φ)=1+ξφ2. Different from previous papers, we analyze inflationary parameters of the Palatini Higgs inflation with non-minimal coupling using F(φ)=m2+ξφ2=1+ξ (φ2v2). Furthermore, we display our numerical calculations using both the high-N and the low-N scenario.

5. Hilltop potentials

In this section, we take other symmetry-breaking type potential models into account which also take place in some supersymmetric inflation models, i.e. [5254] for the case of the inflaton value is φ<v throughout inflation. These potential types can be described with the generalization of the Higgs potential in the form$ \begin{eqnarray}{V}_{J}(\phi )=A{\left[1-{\left(\displaystyle \frac{\phi }{v}\right)}^{\mu }\right]}^{2},\quad (\mu \gt 2).\end{eqnarray}$In the electroweak regime, which explained in section 2, we have φχ and also χv during inflation, and the Einstein frame potential can be obtained as in terms of canonical scalar field$ \begin{eqnarray}{V}_{E}(\chi )\approx A\left[1-{\left(\displaystyle \frac{\chi }{\tau }\right)}^{\mu }-2\xi {\chi }^{2}\right],\end{eqnarray}$where we have defined τ=v/21/μ. In the literature, hilltop potentials with minimal coupling case (ξ=0) have been investigated such [14, 37]. Furthermore, by taking the equations (2.11)–(2.13) into consideration, we find$ \begin{eqnarray}{n}_{s}\approx 1-\displaystyle \frac{(\mu -1)2}{(\mu -2){N}_{* }},\ r\approx 128{\left(\displaystyle \frac{16{\tau }^{2\mu }}{{\mu }^{2}{\left[4\mu -2){N}_{* }\right]}^{2\mu -2}}\right)}^{\displaystyle \frac{1}{\mu -2}},\end{eqnarray}$which illustrates that r is strongly suppressed and ns takes smaller values than the range in agreement with observational results. On the other hand in this work, we calculate inflationary parameters for hilltop potentials with non-minimal coupling in Palatini formulation, both for the high-N and the low-N scenario numerically. The results of these calculations are shown in figures 1316. Furthermore, for the potential in equation (5.2), ns and r can be obtained in the form$ \begin{eqnarray}\begin{array}{rcl}{n}_{s} & \approx & 1+\displaystyle \frac{8(\mu -1)\xi }{1-{{\rm{e}}}^{4(\mu -2)\xi {N}_{* }}}-8\xi ,\\ r & \approx & \displaystyle \frac{128{\xi }^{2}{\tau }^{2}{\left(4\xi {\tau }^{2}/\mu \right)}^{2/(\mu -2)}{{\rm{e}}}^{8(\mu -2)\xi {N}_{* }}}{{\left({{\rm{e}}}^{4(\mu -2)\xi {N}_{* }}-1\right)}^{2(\mu -1)/(\mu -2)}}.\end{array}\end{eqnarray}$These predictions are compatible with our numerical results for nsr that were computed using the Jordan frame potential described by equation (5.1) which is shown in the top figures in the figures 13 and 15 for two different scenarios. As it can be seen from the figures 1316 in general, on the condition that ξ, v≪1 and τ=0.01, observational parameters can be inside observational region except for μ=4 since predictions are ruled out for any ξ values in the case of μ=4 for both scenarios which we take into account. In addition to this, as the ξ values increase, observational parameters are ruled out for any ξ values in the cases of μ=6, 8, 10 different from smaller ξ values as well as r values are highly suppressed and also values of α are very tiny to be observed in the near future measurements for all selected μ values.

Figure 13.

New window|Download| PPT slide
Figure 13.For hilltop potentials in the Palatini formalism, top figures display that ns, r values as functions of ξ for τ=0.01 and different μ values in the cases of φ<v and high-N scenario. The bottom figure displays nsr predictions based on range of the top figures ξ values for τ=0.01. The pink (red) line corresponds to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].


Figure 14.

New window|Download| PPT slide
Figure 14.For hilltop potentials in the Palatini formalism, the figure shows that α values as functions of ξ for τ=0.01 and different μ values in the cases of φ<v and high-N scenario.


Figure 15.

New window|Download| PPT slide
Figure 15.For hilltop potentials in the Palatini formalism, top figures display that ns, r values as functions of ξ for τ=0.01 and different μ values in the cases of φ<v and low-N scenario. The bottom figure displays nsr predictions based on range of the top figures ξ values for τ=0.01. The pink (red) line corresponds to the 95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].


Figure 16.

New window|Download| PPT slide
Figure 16.For hilltop potentials in the Palatini formalism, the figure shows that α values as functions of ξ for τ=0.01 and different μ values in the cases of φ<v and low-N scenario.


6. Conclusion

In this work, we briefly expressed the Palatini inflation with a non-minimal coupling in section 2. Considering non-minimally coupled scalar fields, we discussed how these two formalisms differ from each other in section 2. A very important feature is the that Palatini approach ensures a natural inflation since the inflaton in this formalism remains below the Planckian regime. The other thing is that like strong suppression of tensor perturbations, form additional distinctive features of the Palatini approach compared to the Metric one.

We displayed our results for the inflationary predictions of non-minimally coupled Palatini quadratic potential in the large-field limit for high-N scenario in section 3 for F(φ)=1+ξφ2. Next, we analyzed the predictions of the Higgs potential for φ>v and φ<v in section 4 and hilltop potentials for φ<v in section 5 with non-minimal coupling in the Palatini formulation by taking F(φ)=1+ξ(φ2v2) for both N scenarios. Furthermore, in section 4, we also investigated the Higgs potential in the induced gravity limit for the high-N scenario.

We illustrated that for the Palatini quadratic potential with non-minimal coupling, only small ξ values fit the current measurements given by the Keck Array/BICEP2 and Planck collaborations [10] for the high-N case. According to our results, r has very tiny values in the ξ≫1 cases where the inflaton value φ>v for the Higgs potential for the high-N scenario and the low-N scenario. Therefore, we found that the significant Starobinsky attractor behavior for larger ξ values in the Metric formulation disappears in the Palatini formulation for these ξ cases where the inflaton value φ>v for both two scenarios. In addition to this, for ξ=10−2 and ξ=10−3, r has very tiny values solely for larger v. However, in the case of φ<v and for also both scenarios, r values are highly suppressed for ξ=−10 and ξ=−102.

We also analyzed the Palatini Higgs inflation in the induced gravity limit for the high-N scenario and we found that for ξ≥1 cases, r takes small values. Furthermore, we calculated the inflationary predictions of hilltop potentials numerically in the case of the inflaton value φ<v and ξ, v≪1 for the high-N scenario and the low-N scenario. In these types of potentials, inflationary parameters can be compatible with approximately ξ≲0.005 values just in the cases of φ<v and v≪1. We also obtained that r values are highly suppressed in the hilltop potentials for both scenarios.

In general, we conclude that a non-minimally coupled scalar field in the Palatini approach gives a plausible inflationary evolution for the early universe. Last but not least, we obtained that the prediction of α is too small to be observed in future measurements for all our examined potentials but we consider that more enhanced values of α could be provided by experiments in the near future, observations of the 21 cm line in particular [79].

Reference By original order
By published year
By cited within times
By Impact factor

Guth A H 1981 The inflationary universe: a possible solution to the horizon and flatness problems
Phys. Rev. D 23 347

DOI:10.1103/PhysRevD.23.347 [Cited within: 1]

Linde A D 1982 A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems
Phys. Lett. B 108 389

DOI:10.1016/0370-2693(82)91219-9

Albrecht A Steinhardt P J 1982 Cosmology for grand unified theories with radiatively induced symmetry breaking
Phys. Rev. Lett. 48 1220

DOI:10.1103/PhysRevLett.48.1220

Linde A D 1983 Chaotic inflation
Phys. Lett. B 129 177

DOI:10.1016/0370-2693(83)90837-7 [Cited within: 1]

Aghanim N(Planck Collaboration)et al. 2018Planck 2018 results: VI. Cosmological parameters arXiv:1807.06209
[Cited within: 2]

Akrami Y(Planck Collaboration)et al. 2018Planck 2018 results: X. Constraints on inflation arXiv:1807.06211
[Cited within: 1]

Kohri K Oyama Y Sekiguchi T Takahashi T 2013 Precise measurements of primordial power spectrum with, 21cm fluctuations
J. Cosmol. Astropart. Phys. 2013 JCAP10(2013)065

DOI:10.1088/1475-7516/2013/10/065 [Cited within: 2]

Basse T Hamann J Hannestad S Wong Y Y Y 2015 Getting leverage on inflation with a large photometric redshift survey
J. Cosmol. Astropart. Phys. 2015 JCAP06(2015)042

DOI:10.1088/1475-7516/2015/06/042

Muñoz J B Kovetz E D Raccanelli A Kamionkowski M Silk J 2017 Towards a measurement of the spectral runnings
J. Cosmol. Astropart. Phys. 2015 JCAP05(2017)032

DOI:10.1088/1475-7516/2017/05/032 [Cited within: 2]

Ade P A Ret al.(BICEP2 and Keck Array Collaborations) 1810 BICEP2/Keck array x: constraints on primordial gravitational waves using planck, WMAP, and new BICEP2/Keck observations through the, 2015 season
Phys. Rev. Lett. 121 221301

DOI:10.1103/PhysRevLett.121.221301 [Cited within: 14]

Wu W L K 2016 Initial performance of BICEP3: a degree angular scale, 95 GHz band polarimeter
J. Low Temp. Phys. 184 765

DOI:10.1007/s10909-015-1403-x [Cited within: 1]

Matsumura T 2014 Mission design of LiteBIRD
J. Low Temp. Phys. 176 733

DOI:10.1007/s10909-013-0996-1

Aguirre J(Simons Observatory Collaboration)et al. 2019 The simons observatory: science goals and forecasts
J. Cosmol. Astropart. Phys. 2019 JCAP02(2019)056

DOI:10.1088/1475-7516/2019/02/056 [Cited within: 1]

Martin J Ringeval C Vennin V 2014 Encyclopædia inflationaris
Phys. Dark Univ. 5-6 75

DOI:10.1016/j.dark.2014.01.003 [Cited within: 3]

Callan C GJr Coleman S R Jackiw R 1970 A new improved energy—momentum tensor
Ann. Phys. 59 42

DOI:10.1016/0003-4916(70)90394-5 [Cited within: 3]

Freedman D Z Weinberg E J 1974 The energy–momentum tensor in scalar and gauge field theories
Ann. Phys. 87 354

DOI:10.1016/0003-4916(74)90040-2

Buchbinder I L Odintsov S D Shapiro I L 1992 Effective Action in Quantum Gravity Bristol Institute of Physics Publishing413p 413
[Cited within: 2]

Salopek D S Bond J R Bardeen J M 1989 Designing density fluctuation spectra in inflation
Phys. Rev. D 40 1753

DOI:10.1103/PhysRevD.40.1753 [Cited within: 1]

Bezrukov F L Shaposhnikov M 2008 The standard model Higgs boson as the inflaton
Phys. Lett. B 659 703

DOI:10.1016/j.physletb.2007.11.072 [Cited within: 2]

Cai Y F Qiu T T Brandenberger R Zhang X M 2009 A nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee–Wick theory
Phys. Rev. D 80 023511

DOI:10.1103/PhysRevD.80.023511 [Cited within: 1]

Wan Y Qiu T Huang F P Cai Y F Li H Zhang X 2015 Bounce inflation cosmology with standard model Higgs boson
J. Cosmol. Astropart. Phys. 2015 JCAP12(2015)019

DOI:10.1088/1475-7516/2015/12/019 [Cited within: 1]

Bauer F Demir D A 2008 Inflation with non-minimal coupling: metric versus palatini formulations
Phys. Lett. B 665 222

DOI:10.1016/j.physletb.2008.06.014 [Cited within: 8]

York J WJr 1972 Role of conformal three geometry in the dynamics of gravitation
Phys. Rev. Lett. 28 1082

DOI:10.1103/PhysRevLett.28.1082

Tenkanen T 2017 Resurrecting quadratic inflation with a non-minimal coupling to gravity
J. Cosmol. Astropart. Phys. 2017 JCAP12(2017)001

DOI:10.1088/1475-7516/2017/12/001 [Cited within: 3]

Rasanen S Wahlman P 2017 Higgs inflation with loop corrections in the Palatini formulation
J. Cosmol. Astropart. Phys. 2017 JCAP11(2017)047

DOI:10.1088/1475-7516/2017/11/047 [Cited within: 4]

Racioppi A 2017 Coleman–Weinberg linear inflation: metric versus Palatini formulation
J. Cosmol. Astropart. Phys. 2017 JCAP12(2017)041

DOI:10.1088/1475-7516/2017/12/041 [Cited within: 1]

Tamanini N Contaldi C R 2011 Inflationary perturbations in Palatini generalised gravity
Phys. Rev. D 83 044018

DOI:10.1103/PhysRevD.83.044018 [Cited within: 1]

Kallosh R Linde A Roest D 2014 universal attractor for inflation at strong coupling
Phys. Rev. Lett. 112 011303

DOI:10.1103/PhysRevLett.112.011303 [Cited within: 1]

Barrie N D Kobakhidze A Liang S 2016 Natural inflation with hidden scale invariance
Phys. Lett. B 756 390

DOI:10.1016/j.physletb.2016.03.056 [Cited within: 1]

Kannike K Racioppi A Raidal M 2016 Linear inflation from quartic potential
J. High Energy Phys. 2016 JHEP01(2016)035

DOI:10.1007/JHEP01(2016)035

Artymowski M Racioppi A 2017 Scalar-tensor linear inflation
J. Cosmol. Astropart. Phys. 2017 JCAP04(2017)007

DOI:10.1088/1475-7516/2017/04/007 [Cited within: 1]

Jinno R Kubota M Oda K Y Park S C 2020 Higgs inflation in metric and Palatini formalisms: required suppression of higher dimensional operators
J. Cosmol. Astropart. Phys. 2020 JCAP03(2020)063

DOI:10.1088/1475-7516/2020/03/063 [Cited within: 3]

Rubio J Tomberg E S 2019 Preheating in Palatini Higgs inflation
J. Cosmol. Astropart. Phys. 2019 JCAP04(2019)021

DOI:10.1088/1475-7516/2019/04/021 [Cited within: 4]

Enckell V M Enqvist K Rasanen S Tomberg E 2018 Higgs inflation at the hilltop
J. Cosmol. Astropart. Phys. 2018 JCAP06(2018)005

DOI:10.1088/1475-7516/2018/06/005 [Cited within: 3]

Bostan N Güleryüz Ö Şenoğuz V N 2018 Inflationary predictions of double-well, Coleman–Weinberg, and hilltop potentials with non-minimal coupling
J. Cosmol. Astropart. Phys. 2018 JCAP05(2018)046

DOI:10.1088/1475-7516/2018/05/046 [Cited within: 3]

Zee A Broken A 1979 Symmetric theory of gravity
Phys. Rev. Lett. 42 417

DOI:10.1103/PhysRevLett.42.417 [Cited within: 1]

Lyth D H Liddle A R 2009 The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure Cambridge Cambridge University Press
[Cited within: 2]

Linde A Noorbala M Westphal A 2011 Observational consequences of chaotic inflation with nonminimal coupling to gravity
J. Cosmol. Astropart. Phys. 2011 JCAP03(2011)013

DOI:10.1088/1475-7516/2011/03/013 [Cited within: 3]

Liddle A R Leach S M 2003 How long before the end of inflation were observable perturbations produced?
Phys. Rev. D 68 103503

DOI:10.1103/PhysRevD.68.103503 [Cited within: 1]

Goldstone J 1961 Field theories with superconductor solutions
Nuovo Cimento 19 154

DOI:10.1007/BF02812722 [Cited within: 1]

Vilenkin A 1994 Topological inflation
Phys. Rev. Lett. 72 3137

DOI:10.1103/PhysRevLett.72.3137 [Cited within: 1]

Linde A D Linde D A 1994 Topological defects as seeds for eternal inflation
Phys. Rev. D 50 2456

DOI:10.1103/PhysRevD.50.2456

Destri C de Vega H J Sanchez N G 2008 MCMC analysis of WMAP3 and SDSS data points to broken symmetry inflaton potentials and provides a lower bound on the tensor to scalar ratio
Phys. Rev. D 77 043509

DOI:10.1103/PhysRevD.77.043509

Okada N Şenoğuz V N Shafi Q 2016 The observational status of simple inflationary models: an update
Turk. J. Phys. 40 150

DOI:10.3906/fiz-1505-7 [Cited within: 1]

Almeida J P B Bernal N Rubio J Tenkanen T 2019 Hidden inflaton dark matter
J. Cosmol. Astropart. Phys. 2019 JCAP03(2019)012

DOI:10.1088/1475-7516/2019/03/012 [Cited within: 1]

Tenkanen T 2019 Minimal Higgs inflation with an R2 term in Palatini gravity
Phys. Rev. D 99 063528

DOI:10.1103/PhysRevD.99.063528

Takahashi T Tenkanen T 2019 Towards distinguishing variants of non-minimal inflation
J. Cosmol. Astropart. Phys. 2019 JCAP04(2019)035

DOI:10.1088/1475-7516/2019/04/035 [Cited within: 1]

Burns D Karamitsos S Pilaftsis A 2016 Frame-covariant formulation of inflation in scalar-curvature theories
Nucl. Phys. B 907 785

DOI:10.1016/j.nuclphysb.2016.04.036 [Cited within: 2]

Kaiser D I 1995 Primordial spectral indices from generalized Einstein theories
Phys. Rev. D 52 4295

DOI:10.1103/PhysRevD.52.4295

Cerioni A Finelli F Tronconi A Venturi G 2009 Inflation and reheating in induced gravity
Phys. Lett. B 681 383

DOI:10.1016/j.physletb.2009.10.066 [Cited within: 1]

Tronconi A 2017 Asymptotically safe non-minimal inflation
J. Cosmol. Astropart. Phys. 2017 JCAP07(2017)015

DOI:10.1088/1475-7516/2017/07/015 [Cited within: 2]

Izawa K-I Yanagida T 1997 Natural new inflation in broken supergravity
Phys. Lett. B 393 331

DOI:10.1016/S0370-2693(96)01638-3 [Cited within: 1]

Kawasaki M Yamaguchi M Yokoyama J 2003 Inflation with a running spectral index in supergravity
Phys. Rev. D 68 023508

DOI:10.1103/PhysRevD.68.023508

Senoguz V N Shafi Q 2004 New inflation, preinflation, and leptogenesis
Phys. Lett. B 596 8

DOI:10.1016/j.physletb.2004.05.077 [Cited within: 1]

闂傚倸鍊峰ù鍥敋瑜忛埀顒佺▓閺呯娀銆佸▎鎾冲唨妞ゆ挾鍋熼悰銉╂⒑閸︻厼鍔嬫い銊ユ噽婢规洘绻濆顓犲幍闂佸憡鎸嗛崨顓狀偧闂備焦濞婇弨閬嶅垂閸洖桅闁告洦鍨扮粻娑㈡煕閹捐尙鍔嶉柛瀣斿喚娓婚柕鍫濈箳閸掓壆鈧鍠栨晶搴ㄥ箲閵忕姭鏀介悗锝庝簽閸旓箑顪冮妶鍡楃瑨閻庢凹鍓涚划濠氬Ψ閿旇桨绨婚梺鍝勫暊閸嬫捇鏌涙惔鈥虫毐闁伙絿鍏樻俊鐑藉Ψ閵忊剝鏉告俊鐐€栧濠氭偤閺傚簱鏋旀俊顖涚湽娴滄粓鏌ㄩ弬鍨挃闁靛棙顨婂濠氬磼濮橆兘鍋撻悜鑺ュ€块柨鏃堟暜閸嬫挾绮☉妯诲櫧闁活厽鐟╅弻鐔兼倻濮楀棙鐣烽梺绋垮椤ㄥ棝濡甸崟顖氭闁割煈鍠掗幐鍐⒑閸涘⿴娈曠€光偓閹间礁绠栨俊銈傚亾闁宠棄顦埢搴b偓锝庡墰缁愭姊绘担鍝ワ紞缂侇噮鍨拌灋闁告劦鍠栭拑鐔哥箾閹存瑥鐏╅崬顖炴⒑闂堟稓绠氶柛鎾寸箞閹敻鏁冮埀顒勫煘閹达附鍊烽柟缁樺笚閸婎垶鎮楅崗澶婁壕闂佸綊妫跨粈渚€鎷戦悢鍏肩厪闁割偅绻嶅Σ鍝ョ磼閻欐瑥娲﹂悡鏇熴亜椤撶喎鐏ラ柡瀣枑缁绘盯宕煎┑鍫濈厽濠殿喖锕ㄥ▍锝囨閹烘嚦鐔兼偂鎼存ɑ瀚涢梻鍌欒兌鏋紒銊︽そ瀹曟劕螖閸愩劌鐏婂┑鐐叉閸旀洜娆㈤悙鐑樼厵闂侇叏绠戞晶鐗堛亜閺冣偓鐢€愁潖濞差亝鍤冮柍鍦亾鐎氭盯姊洪崨濠冨鞍闁烩晩鍨堕悰顔界節閸屾鏂€闁诲函缍嗛崑鍡涘储娴犲鈷戠紓浣光棨椤忓嫷鍤曢柤鎼佹涧缁剁偤鏌涢弴銊ュ箰闁稿鎸鹃幉鎾礋椤掑偆妲伴梻浣瑰濞插繘宕规禒瀣瀬闁规壆澧楅崐椋庣棯閻楀煫顏呯妤e啯鐓ユ繝闈涙椤庢霉濠婂啫鈷旂紒杈ㄥ浮楠炲鈧綆鍓涜ⅵ闂備礁鎼惉濂稿窗閹邦兗缂氶煫鍥ㄦ煟閸嬪懘鏌涢幇銊︽珦闁逞屽墮缁夋挳鈥旈崘顔嘉ч柛鈩兠弳妤呮⒑绾懏鐝柟鐟版处娣囧﹪骞橀鑲╊唺闂佽鎯岄崢浠嬪磽閻㈠憡鈷戦柟顖嗗嫮顩伴梺绋款儏濡繃淇婄€涙ḿ绡€闁稿本顨嗛弬鈧梻浣虹帛閿曗晠宕戦崟顒傤洸濡わ絽鍟埛鎴︽煕濞戞﹫鍔熼柍钘夘樀閺岋絾骞婇柛鏃€鍨甸锝夊蓟閵夘喗鏅㈤梺鍛婃处閸撴瑩鍩€椤掆偓閻栧ジ寮婚敐澶婄疀妞ゆ挾鍋熺粊鐑芥⒑閹惰姤鏁辨慨濠咁潐缁岃鲸绻濋崟顏呭媰闂佺ǹ鏈懝楣冿綖閸ヮ剚鈷戦柛婵嗗閻掕法绱掔紒妯肩畵闁伙綁鏀辩缓浠嬪礈閸欏娅囬梻渚€娼х换鎺撴叏鐎靛摜涓嶉柟娈垮枤绾句粙鏌涚仦鍓ф噮闁告柨绉甸妵鍕Ω閵夛箑娈楅柦妯荤箞濮婂宕奸悢鎭掆偓鎺楁煛閸☆參妾柟渚垮妼椤粓宕卞Δ鈧导搴g磽娴g懓鏁剧紒韫矙濠€渚€姊洪幐搴g畵閻庢凹鍨堕、妤呮偄鐠佸灝缍婇幃鈩冩償閵忕姵鐏庢繝娈垮枛閿曘儱顪冮挊澶屾殾闁靛⿵濡囩弧鈧梺绋挎湰缁酣骞婇崱妯肩瘈缁剧増蓱椤﹪鏌涚€n亝鍣介柟骞垮灲瀹曞ジ濡疯缁侊箓姊洪崷顓烆暭婵犮垺锕㈤弻瀣炊椤掍胶鍘搁梺鎼炲劗閺呮盯寮搁幋鐐电闁告侗鍠氭晶顒傜磼缂佹ḿ鈯曟繛鐓庣箻瀹曟粏顦寸悮锝嗙節閻㈤潧浠滈柟閿嬪灩缁辩偞鎷呴崫銉︽闂佺偨鍎查弸濂稿醇椤忓牊鐓曟い鎰╁€曢弸搴ㄦ煃瑜滈崜娑㈠极婵犳艾钃熼柨婵嗩槸椤懘鏌eΟ鍝勬倎缂侇喚鏁诲娲箹閻愭祴鍋撻幇鏉跨;闁瑰墽绮埛鎺懨归敐鍫綈闁稿濞€閺屾盯寮捄銊愩倝鏌熼獮鍨伈鐎规洜鍠栭、姗€鎮欓懠顑垮枈闂備浇宕垫慨鏉懨洪妶鍜佸殨妞ゆ帒瀚猾宥夋煕鐏炵虎娈斿ù婊堢畺閺屻劌鈹戦崱娑扁偓妤€顭胯閸楁娊寮婚妸銉㈡闁惧浚鍋勯锟�
547闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗ù锝夋交閼板潡姊洪鈧粔鏌ュ焵椤掆偓閸婂湱绮嬮幒鏂哄亾閿濆簼绨介柨娑欑洴濮婃椽鎮烽弶搴撴寖缂備緡鍣崹鍫曞春濞戙垹绠虫俊銈勮兌閸橀亶姊洪崫鍕妞ゃ劌妫楅埢宥夊川鐎涙ḿ鍘介棅顐㈡祫缁插ジ鏌囬鐐寸厸鐎光偓鐎n剙鍩岄柧缁樼墵閺屽秷顧侀柛鎾跺枛瀵粯绻濋崶銊︽珳婵犮垼娉涢敃锕傛偪閸ヮ剚鈷戦悷娆忓缁€鍐┿亜閺囧棗鎳愰惌鍡涙煕閹般劍鏉哄ù婊勭矒閻擃偊宕堕妸锕€闉嶅銈冨劜缁捇寮婚敐澶婄閻庨潧鎲¢崚娑樷攽椤旂》鏀绘俊鐐舵閻e嘲螖閸涱厾顦ч梺鍏肩ゴ閺呮盯宕甸幒妤佲拻濞达絽鎲¢幉鎼佹煕閿濆啫鍔︾€规洘鍨垮畷鐔碱敍濞戞ü鎮i梻浣虹帛閸ㄥ吋鎱ㄩ妶澶婄柧闁归棿鐒﹂悡銉╂煟閺囩偛鈧湱鈧熬鎷�1130缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕闁芥ɑ绻冮妵鍕冀閵娧呯厒闂佹椿鍘介幑鍥蓟閿濆顫呴柕蹇婃櫆濮e矂姊虹粙娆惧剱闁圭懓娲ら悾鐤亹閹烘繃鏅濋梺鎸庣箓濞诧箓顢樻繝姘拻濞撴埃鍋撻柍褜鍓涢崑娑㈡嚐椤栨稒娅犻柛娆忣槶娴滄粍銇勯幇鈺佺労婵″弶妞介弻娑㈡偐鐠囇冧紣濡炪倖鎸搁崥瀣嚗閸曨剛绡€闁告劦鍘鹃崣鎴︽⒒閸屾瑧绐旈柍褜鍓涢崑娑㈡嚐椤栨稒娅犻柟缁㈠枟閻撴盯鎮橀悙鐧昏鏅堕懠顑藉亾閸偅绶查悗姘煎櫍閸┾偓妞ゆ帒锕︾粔闈浢瑰⿰鍕煉闁挎繄鍋為幆鏃堝煢閳ь剟寮ㄦ禒瀣厽闁归偊鍨伴惃鍝勵熆瑜庨惄顖炲蓟濞戙垹惟闁靛/鍌濇闂備椒绱徊鍧楀礂濮椻偓瀵偊骞樼紒妯轰汗闂佽偐鈷堥崜锕€危娴煎瓨鐓熼柣鏂挎憸閻﹦绱掔紒妯虹闁告帗甯掗埢搴ㄥ箻瀹曞洤鈧偤姊洪崘鍙夋儓闁哥喍鍗抽弫宥呪堪閸曨厾鐦堥梺闈涢獜缁插墽娑垫ィ鍐╃叆闁哄浂浜顕€鏌¢崨顐㈠姦婵﹦绮幏鍛村川婵犲倹娈橀梺鐓庣仌閸ャ劎鍘辨繝鐢靛Т閸熺増鏅舵潏鈺冪=闁稿本绋掑畷宀勬煙缁嬪尅鏀荤紒鏃傚枛閸╋繝宕掑☉杈棃闁诲氦顫夊ú锔界濠靛绠柛娑卞灡閸犲棝鏌涢弴銊ュ箺鐞氭瑩姊婚崒姘偓椋庣矆娴i潻鑰块梺顒€绉撮崒銊ф喐閺冨牆绠栨繛宸簻鎯熼梺瀹犳〃閼冲爼顢欓崶顒佲拺闁告挻褰冩禍婵囩箾閸欏澧甸柟顔惧仱瀹曞綊顢曢悩杈╃泿闂備胶鎳撻顓㈠磻濞戙埄鏁嬫繝濠傛噽绾剧厧霉閿濆懏鎯堟い锝呫偢閺屾洟宕惰椤忣厽銇勯姀鈩冪濠殿喒鍋撻梺瀹犳〃缁€浣圭珶婢舵劖鈷掑ù锝囨嚀椤曟粎绱掔€n偄娴€规洘绻傞埢搴ㄥ箻鐠鸿櫣銈﹂梺璇插嚱缂嶅棝宕抽鈧顐㈩吋閸℃瑧鐦堟繝鐢靛Т閸婅鍒婇崗闂寸箚闁哄被鍎查弫杈╃磼缂佹ḿ绠為柟顔荤矙濡啫鈽夊Δ浣稿闂傚倷鐒﹂幃鍫曞礉瀹€鈧槐鐐寸節閸屻倕娈ㄥ銈嗗姂閸婃鎯屽▎鎰箚妞ゆ劑鍊栭弳鈺呮煕鎼存稑鈧骞戦姀鐘斀閻庯綆浜為崐鐐烘⒑闂堟胆褰掑磿閺屻儺鏁囨繛宸簼閳锋垿鏌涘┑鍡楊伌婵″弶鎮傞弻锝呂旀担铏圭厜閻庤娲橀崹鍧楃嵁閹烘嚦鏃堝焵椤掑嫬瑙︾憸鐗堝笚閻撴盯鏌涢幇鈺佸濠⒀勭洴閺岋綁骞樺畷鍥╊啋闂佸搫鏈惄顖炲春閸曨垰绀冮柍鍝勫枤濡茬兘姊绘担鍛靛湱鎹㈤幇鐗堝剶闁兼祴鏅滈~鏇㈡煙閻戞﹩娈㈤柡浣革躬閺屾稖绠涢幙鍐┬︽繛瀛樼矒缁犳牠骞冨ú顏勭鐎广儱妫涢妶鏉款渻閵堝骸浜滄い锔炬暬閻涱噣宕卞☉妯活棟闁圭厧鐡ㄩ幐濠氾綖瀹ュ鈷戦柛锔诲幖閸斿鏌涢妸銊︾彧缂佹梻鍠栧鎾偄閾忚鍟庨梺鍝勵槸閻楀棙鏅舵禒瀣畺濠靛倸鎲¢悡娑㈡煕濠娾偓缁€浣圭濠婂牆纭€闂侇剙绉甸悡鏇熴亜閹邦喖孝闁告梹绮撻弻锝夊箻鐎涙ḿ顦伴梺鍝勭灱閸犳牠骞冨⿰鍏剧喓鎷犻弻銉р偓娲⒒娴e懙褰掝敄閸ャ劎绠鹃柍褜鍓熼弻锛勪沪閻e睗銉︺亜瑜岀欢姘跺蓟濞戞粎鐤€闁哄啫鍊堕埀顒佸笚缁绘盯宕遍幇顒備患濡炪値鍋呯换鍕箲閸曨個娲敂閸滃啰鑸瑰┑鐘茬棄閺夊簱鍋撹瀵板﹥绂掔€n亞鏌堝銈嗙墱閸嬫稓绮婚悩铏弿婵☆垵顕ч。鎶芥煕鐎n偅宕岄柣娑卞櫍瀹曞綊顢欓悡搴經闂傚倷绀侀幗婊堝窗閹惧绠鹃柍褜鍓涢埀顒冾潐濞叉﹢宕归崸妤冨祦婵☆垰鐨烽崑鎾斥槈濞咁収浜、鎾诲箻缂佹ǚ鎷虹紓鍌欑劍閿氶柣蹇ョ畵閺屻劌顫濋懜鐢靛帗閻熸粍绮撳畷婊冣槈閵忕姷锛涢梺缁樻⒒閸樠囨倿閸偁浜滈柟鐑樺灥閺嬨倖绻涢崗鐓庡闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞叉ê煤閻旂鈧礁鈽夐姀鈥斥偓鐑芥煠绾板崬澧┑顕嗛檮娣囧﹪鎮欓鍕ㄥ亾閺嶎厼鍨傚┑鍌溓圭壕鍨攽閻樺疇澹樼紒鈧崒鐐村€堕柣鎰緲鐎氬骸霉濠婂嫮鐭掗柡宀€鍠栭獮鍡氼槾闁圭晫濞€閺屾稒绻濋崘銊ヮ潚闂佸搫鐬奸崰鏍€佸▎鎾村殐闁宠桨鑳堕崢浠嬫煟鎼淬値娼愭繛鑼枑缁傚秹宕奸弴鐘茬ウ闂佹悶鍎洪崜娆愬劔闂備線娼чˇ顓㈠磹閺団懞澶婎潩椤戣姤鏂€闂佺粯鍔橀崺鏍亹瑜忕槐鎺楁嚑椤掆偓娴滃墽绱掗崒姘毙ч柟宕囧仱婵$柉顧佹繛鏉戝濮婃椽骞愭惔銏紩闂佺ǹ顑嗛幑鍥涙担鐟扮窞闁归偊鍘鹃崢閬嶆椤愩垺澶勬繛鍙夌墱閺侇噣宕奸弴鐔哄幍闂佺ǹ绻愰崥瀣磹閹扮増鐓涢悘鐐垫櫕鍟稿銇卞倻绐旈柡灞剧缁犳盯寮崒妤侇潔闂傚倸娲らˇ鐢稿蓟濞戙垹唯妞ゆ梻鍘ч~鈺冪磼閻愵剙鍔ら柕鍫熸倐瀵寮撮悢铏圭槇闂婎偄娲﹀ú婊堝汲閻樺樊娓婚柕鍫濇缁€澶婎渻鐎涙ɑ鍊愭鐐茬墦婵℃悂濡锋惔锝呮灁缂侇喗鐟╁畷褰掝敊绾拌鲸缍嶉梻鍌氬€烽懗鑸电仚濡炪倖鍨靛Λ婵嬬嵁閹邦厾绡€婵﹩鍓涢鍡涙⒑閸涘﹣绶遍柛銊╀憾瀹曚即宕卞☉娆戝幈闂佸搫娲㈤崝灞炬櫠娴煎瓨鐓涢柛鈩兠崫鐑樻叏婵犲嫮甯涢柟宄版嚇瀹曨偊宕熼锛勫笡闂佽瀛╅鏍窗濡ゅ懎纾垮┑鍌溓规闂佸湱澧楀妯肩矆閸愨斂浜滈煫鍥ㄦ尰椤ョ姴顭跨捄鍝勵仾濞e洤锕俊鎯扮疀閺囩偛鐓傞梻浣告憸閸c儵宕圭捄铏规殾闁硅揪闄勯崑鎰磽娴h疮缂氶柛姗€浜跺娲棘閵夛附鐝旈梺鍝ュ櫏閸嬪懘骞堥妸鈺佺劦妞ゆ帒瀚埛鎴犵磼鐎n偒鍎ラ柛搴㈠姍閺岀喓绮欏▎鍓у悑濡ょ姷鍋涚换妯虹暦閵娧€鍋撳☉娅亝绂掗幆褜娓婚柕鍫濇婢ь剟鏌ら悷鏉库挃缂侇喖顭烽獮瀣晜鐟欙絾瀚藉┑鐐舵彧缁蹭粙骞夐敓鐘茬畾闁割偁鍎查悡鏇炩攽閻樻彃顎愰柛锔诲幖瀵煡姊绘笟鈧ḿ褏鎹㈤崼銉ョ9闁哄洢鍨洪崐鍧楁煕椤垵浜栧ù婊勭矒閺岀喓鈧數枪娴犳粍銇勯弴鐔虹煂缂佽鲸甯楅幏鍛喆閸曨厼鍤掓俊鐐€ら崣鈧繛澶嬫礋楠炲骞橀鑲╊槹濡炪倖宸婚崑鎾剁棯閻愵剙鈻曢柟顔筋殔閳绘捇宕归鐣屼壕闂備浇妗ㄧ粈渚€鈥﹂悜钘壩ュù锝囩《濡插牊淇婇娑氱煂闁哥姴閰i幃楣冨焺閸愯法鐭楁繛杈剧到婢瑰﹤螞濠婂嫮绡€闁汇垽娼ф禒鈺呮煙濞茶绨界紒杈╁仱閸┾偓妞ゆ帊闄嶆禍婊勩亜閹扳晛鐒烘俊顖楀亾闂備浇顕栭崳顖滄崲濠靛鏄ラ柍褜鍓氶妵鍕箳閹存繍浠鹃梺鎶芥敱鐢繝寮诲☉姘勃闁硅鍔曢ˉ婵嬫⒑闁偛鑻崢鍝ョ磼椤旂晫鎳囬柕鍡曠閳诲酣骞囬鍓ф闂備礁鎲″ú锕傚礈閿曗偓宀e潡鎮㈤崗灏栨嫼闂佸憡鎸昏ぐ鍐╃濠靛洨绠鹃柛娆忣槺婢ц京绱掗鍨惞缂佽鲸甯掕灒闂傗偓閹邦喚娉块梻鍌欑濠€閬嶅磻閹剧繀缂氭繛鍡樻嫴婢跺⿴娼╅柤鍝ユ暩閸橀亶鏌f惔顖滅У闁稿鎳愭禍鍛婂鐎涙ḿ鍘甸悗鐟板婢ф宕甸崶鈹惧亾鐟欏嫭绀堥柛蹇旓耿閵嗕礁螣鐞涒剝鏁犻梺璇″瀻閸屾凹妫滄繝鐢靛Х閺佸憡鎱ㄩ弶鎳ㄦ椽鏁冮崒姘憋紮闂佸壊鐓堥崑鍡欑不妤e啯鐓欓悗娑欋缚缁犳﹢鏌$€n亜鏆熺紒杈ㄥ浮閸┾偓妞ゆ帒鍊甸崑鎾绘晲鎼粹剝鐏嶉梺缁樻尭閸熶即骞夌粙搴撳牚闁割偅绻勯ˇ褍鈹戦悙鏉戠仸婵ǜ鍔戦幆宀勫幢濡炴洖缍婇弫鎰板醇閻旂补鍋撻崘顔界厽闁圭儤鍩婇煬顒勬煛瀹€鈧崰搴ㄥ煝閹捐鍨傛い鏃傛櫕娴滄劙姊绘担鍛靛綊顢栭崱娑樼闁归棿绀侀悡鈥愁熆鐠哄搫顦柛瀣崌瀹曠兘顢橀悙鎰╁劜閵囧嫰鏁傞崹顔肩ギ濠殿喖锕ュ浠嬪蓟閸涘瓨鍊烽柤鑹版硾椤忣參姊洪崨濞掝亪骞夐敍鍕床婵炴垯鍨圭痪褔鏌熺€电ǹ浠滈柡瀣Т椤啴濡堕崘銊т痪闂佹寧娲忛崹褰掓偩閻戠瓔鏁冮柨鏇楀亾閸烆垶鎮峰⿰鍐伇缂侇噮鍘藉鍕箾閻愵剚鏉搁梺鍦劋婵炲﹤鐣烽幇鏉跨缂備焦锚閳ь剙娼¢弻銊╁籍閳ь剙鐣峰Ο缁樺弿闁惧浚鍋呴崣蹇斾繆椤栨氨浠㈤柣鎾村姍閺岋綁骞樺畷鍥╊啋闂佸搫鏈惄顖炲春閸曨垰绀冮柍鍝勫枤濡茶埖淇婇悙顏勨偓褏鎷嬮敐鍡曠箚闁搞儺鍓欓悞鍨亜閹哄棗浜惧┑鐘亾閺夊牄鍔庢禒姘繆閻愵亜鈧倝宕㈡總绋垮簥闁哄被鍎查崑鈺呮煟閹达絽袚闁哄懏鐓¢弻娑㈠Ψ椤栫偞顎嶉梺鍛婃礀閸熸潙顫忛搹鍦煓闁圭ǹ瀛╅幏鍗烆渻閵堝啫濡奸柟鍐茬箳缁顓兼径濠勭暰濡炪値鍏橀埀顒€纾粔娲煛娴g懓濮嶇€规洏鍔戦、娆撳礂閸忚偐鏆梻鍌氬€风粈渚€骞夐垾瓒佹椽鎮㈤搹閫涚瑝闂佸搫绋侀崢濂告嫅閻斿吋鐓ユ繝闈涙-濡插綊鏌涙繝鍕幋闁哄本绋戦埢搴ょ疀閿濆棌鏋旀繝纰樻閸嬪懘宕归崹顕呮綎婵炲樊浜濋悞濠氭煟閹邦垰钄奸悗姘嵆閺屾稑螣缂佹ê鈧劙鏌″畝瀣М妤犵偞甯¢幃娆撴偨閸偅顔撻梺璇插椤旀牠宕抽鈧畷婊堟偄妞嬪孩娈鹃梺鍦劋閸╁牆岣块埡鍛叆婵犻潧妫欓ˉ鐘绘煕濞嗗繐鏆炵紒缁樼箓閳绘捇宕归鐣屼壕闂備胶顢婂▍鏇㈠箰閸濄儱寮查梻浣虹帛鏋い鏇嗗懎顥氬┑鐘崇閻撴瑩鏌熼鍡楁噺閹插吋绻濆▓鍨仭闁瑰憡濞婂璇测槈濡攱顫嶅┑顔筋殔閻楀﹪寮ィ鍐┾拺闂傚牃鏅濈粙濠氭煙椤旂厧鈧灝顕f繝姘櫜闁糕剝锚閸斿懘姊洪棃娑氱濠殿喗鎸冲绋库枎閹惧鍘介梺缁樏崯鎸庢叏婢舵劖鐓曢柣妯虹-婢х數鈧娲樺浠嬪春閳ь剚銇勯幒宥夋濞存粍绮撻弻鐔衡偓鐢登规禒婊勩亜閺囩喓鐭嬮柕鍥у閺佸啴宕掗妶鍡╂缂傚倷娴囨ご鎼佸箰閹间緡鏁囧┑鍌溓瑰钘壝归敐鍤借绔熸惔銊︹拻濞达絼璀﹂弨鐗堢箾閸涱喗绀嬮柟顔ㄥ洦鍋愰悹鍥皺閻ゅ洭姊虹紒妯曟垵顪冮崸妤€鏋侀柛鈩冪⊕閻撴洟鏌熼柇锕€鏋涘ù婊堢畺閺岋箓骞嬪┑鎰ㄧ紓浣介哺閹瑰洤鐣烽幒鎴旀瀻闁瑰瓨绻傞‖澶愭⒒娴e憡鍟為柛鏃€娲熼垾锕傛倻閻e苯绁﹂棅顐㈡处缁嬫帡寮查幖浣圭叆闁绘洖鍊圭€氾拷28缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢痪鎹愵嚙椤潡鎳滈棃娑樞曢梺杞扮椤戝洭骞夐幖浣哥睄闁割偅绋堥崑鎾存媴閼叉繃妫冨畷銊╊敊闂傚鐩庨梻鍌欑劍閸庡磭鎹㈤幇顒婅€块梺顒€绉甸崑鍌炴倵閿濆骸鏋熼柍閿嬪灴閹嘲鈻庤箛鎿冧痪闂佺ǹ瀛╅〃濠囧蓟濞戙垹惟闁靛/宥囩濠电姰鍨奸~澶娒洪悢鐓庢瀬闁瑰墽绮弲鎼佹煥閻曞倹瀚�
相关话题/Quadratic Higgs hilltop

闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐粶缂佲偓婢跺绻嗛柕鍫濇噺閸e湱绱掗悩闈涒枅闁哄瞼鍠栭獮鎴﹀箛闂堟稒顔勯梻浣告啞娣囨椽锝炴径鎰﹂柛鏇ㄥ灠濡﹢鏌涢…鎴濇灀闁圭ǹ鍟村娲川婵犲孩鐣烽悗鍏夊亾闁归棿绀佺粻鏍ㄤ繆閵堝懏鍣洪柡鍛叀楠炴牜鈧稒岣跨粻姗€鏌i埡浣规崳缂佽鲸鎸婚幏鍛槹鎼淬倗鐛ラ梻渚€娼荤紞鍥╃礊娴e壊鍤曞┑鐘崇閸嬪嫰鏌i幘铏崳妞は佸洦鈷戦柛蹇氬亹閵堟挳鏌¢崨顔剧疄闁诡噯绻濆畷鎺楁倷缁瀚肩紓鍌欑椤戝牆鈻旈弴銏″€块柛褎顨嗛悡娆撴煕閹存瑥鈧牜鈧熬鎷�2濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閹喖姊洪崘鍙夋儓妞ゆ垵娲ㄧ划娆掔疀濞戞瑢鎷洪梺闈╁瘜閸樺ジ宕濈€n偁浜滈柕濞垮劜椤ャ垻鈧娲滈弫濠氬春閳ь剚銇勯幒鎴濐仾闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工閹冲孩绂掓潏鈹惧亾鐟欏嫭绀冩俊鐐扮矙瀵偊骞樼紒妯轰汗閻庤娲栧ú銈夌嵁濡ゅ懏鈷掑〒姘e亾婵炰匠鍛床闁割偁鍎辩壕褰掓煛瀹擃喒鍋撴俊鎻掔墢閹叉悂寮崼婵婃憰闂佹寧绻傞ˇ顖炴倿濞差亝鐓曢柟鏉垮悁缁ㄥジ鏌涢敐鍕祮婵﹨娅i幏鐘诲灳閾忣偅顔勯梻浣规偠閸庢粓宕惰閺嗩亪姊婚崒娆戝妽閻庣瑳鍛床闁稿本顕㈠ú顏勵潊闁靛牆鎳愰敍娑㈡⒑閸︻厼鍔嬫い銊ユ閸╂盯骞嬮敂鐣屽幈濠电娀娼уΛ妤咁敂閳哄懏鐓冪憸婊堝礈濞嗘垹绀婂┑鐘叉搐缁犳牠姊洪崹顕呭剱缂傚秴娲弻宥夊传閸曨偂绨藉┑鐐跺亹閸犳牕顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹
濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏″€峰┑鐘插閸犳劗鈧箍鍎卞Λ娆撳矗韫囨稒鐓忛柛顐g箥濡插綊鏌嶉柨瀣伌闁哄本绋戦埥澶婎潨閸繀绱g紓鍌欑劍椤ㄥ棛鏁Δ浣衡攳濠电姴娴傞弫鍐煥濠靛棙澶勯柛鎺撶☉椤啴濡堕崘銊т痪濠碘槅鍋勯崯顖炲箞閵娾晛鐒垫い鎺戝閻撳繘鏌涢锝囩畺闁挎稑绉垫穱濠囶敃閵忕媭浼冮梺鍝勭焿缁查箖骞嗛弮鍫晬婵犲﹤鎲涢敐澶嬧拺闁告縿鍎辨牎闂佺粯顨堟慨鎾偩閻戣棄顫呴柕鍫濇噽椤旀帒顪冮妶鍡樷拻闁哄拋鍋婂畷銏ゅ箹娴e厜鎷洪梺鍛婄☉閿曘儳绮堢€n偆绠惧ù锝呭暱濞诧箓宕愰崼鏇熺叆婵犻潧妫欓ˉ鎾趁瑰⿰鍕煉闁哄瞼鍠撻埀顒佺⊕宀h法绮婚弽褜鐔嗛悹鍝勬惈椤忣偆绱掓潏銊ョ闁逞屽墾缂嶅棙绂嶇捄浣曠喖鍩€椤掑嫭鈷戠紒顖涙礃閺夊綊鏌涚€n偅灏い顏勫暣婵″爼宕卞Δ鈧ḿ鎴︽⒑缁嬫鍎愰柟鐟版喘瀵顓奸崶銊ョ彴闂佸搫琚崕鍗烆嚕閺夊簱鏀介柨鐔哄Х閻e搫霉濠婂啰鍩g€殿喛顕ч濂稿醇椤愶綆鈧洭姊绘担鍛婂暈闁圭ǹ顭烽幃鐑藉煛娴g儤娈惧銈嗙墬缁嬫垿顢氶柆宥嗗€垫繛鎴烆仾椤忓懐顩叉い鏍ㄥ焹閺€浠嬫煟閹邦剙绾ч柍缁樻礀闇夋繝濠傚缁犵偟鈧鍠楅悡锟犮€佸Δ鍛妞ゆ巻鍋撻柍褜鍓欓悥濂稿蓟閿濆绠涙い鏃囧Г濮e嫰姊虹涵鍛棄闁稿﹤娼″璇测槈閵忕姈褔鏌涢妷顔句虎闁靛繈鍊栭ˉ鍡楊熆鐠轰警鍎戠紒鈾€鍋撳┑鐘垫暩婵挳宕愰幖浣告辈闁挎繂妫庢禍婊堝箹濞n剙鐒烘繛鍫熸礋閺屾洟宕惰椤忣參鏌涢埡鍐ㄤ槐妞ゃ垺锕㈤幃娆忣啅椤旇崵妫繝鐢靛У椤旀牠宕归柆宥呯闁规儼妫勯拑鐔兼煥閻斿搫孝闁绘劕锕弻宥嗘姜閹殿喖濡介梺璇茬箣缁舵艾顫忓ú顏勫窛濠电姴瀚崰娑㈡⒑缁嬫鍎愰柟鐟版搐椤繒绱掑Ο璇差€撻梺鍛婄缚閸庤櫕顨欏┑鐘垫暩閸嬫﹢宕犻悩璇插耿闁归偊浜濋惈蹇涙⒒娴h櫣甯涢柛鏃€顨婂顐﹀传閵壯傜瑝闂佸搫鍟悧濠囨偂濞嗘挻鐓欐い鏍ф閼活垰鈻撻崼鏇熲拺鐎规洖娲ㄧ敮娑欐叏婵犲倻绉烘鐐茬墦婵℃悂濡锋惔锝呮灁闁归濞€楠炴捇骞掑┑鍥ㄧグ闂傚倸鍊烽悞锕傚箖閸洖纾圭憸蹇曞垝婵犳艾绠婚悹鍥蔼閹芥洟姊虹紒妯活梿婵炲拑缍侀幆灞解枎閹惧鍘电紓浣割儏閻忔繈顢楅姀銈嗙厵妞ゆ梻鏅幊鍥ㄦ叏婵犲嫬鍔嬮悗鐢靛帶閳诲酣骞嬮悩妯荤矌缁辨挻鎷呴崫鍕戯綁鏌eΔ浣圭妞ゃ垺宀搁弫鎰緞濡粯娅囬梻浣稿暱閻忓牓寮插⿰鍫熷€靛┑鐘崇閳锋垹鎲搁悧鍫濈瑨濞存粈鍗抽弻娑樜熼崫鍕ㄦ寖缂備緡鍠楅悷鈺佺暦閻旂⒈鏁嶆繛鎴炲笚鐎氬ジ姊绘担鍛婅础閺嬵亝绻涚€电ǹ鍘撮柛鈹垮劜瀵板嫰骞囬鐘插箰闂備礁澹婇崑鎺楀磻閸曨剚娅犻悗鐢电《閸嬫挾鎲撮崟顒傤槬缂傚倸绉撮敃銉︾┍婵犲偆娼扮€光偓婵犲唭顏勨攽閻樻剚鍟忛柛銊ゅ嵆婵″爼骞栨担姝屾憰濠电偞鍨惰彜婵℃彃鐗婇幈銊ノ旈埀顒勬偋婵犲洤鏋侀柛鎾楀懐锛濇繛杈剧到閹碱偅鐗庨梺姹囧焺閸ㄦ娊宕戦妶澶婃槬闁逞屽墯閵囧嫰骞掗崱妞惧闂備浇顕х换鎴︽嚌妤e啠鈧箓宕归鍛缓闂侀€炲苯澧存鐐插暢椤﹀湱鈧娲栧畷顒勬箒闂佸搫顦扮€笛囧窗濡皷鍋撶憴鍕閺嬵亪鎽堕弽顬″綊鏁愭径瀣彸闂佹眹鍎烘禍顏勵潖缂佹ɑ濯村〒姘煎灡閺侇垶姊虹憴鍕仧濞存粠浜滈~蹇旂鐎n亞顦板銈嗙墬缁嬫帒鈻嶉弽顓熲拺闁告繂瀚埢澶愭煕濡湱鐭欓柟顔欍倗鐤€婵炴垶鐟ч崢閬嶆⒑閺傘儲娅呴柛鐕佸灣缁牓鍩€椤掆偓椤啴濡惰箛鏇炵煗闂佸搫妫欑粩绯村┑鐘垫暩婵兘寮崨濠冨弿濞村吋娼欓崹鍌炴煕閿旇骞樼紒鈧繝鍌楁斀闁绘ê寮堕幖鎰版煟閹烘垹浠涢柕鍥у楠炴帒顓奸崼婵嗗腐闂備焦鍓氶崹鍗灻洪悢鐓庤摕闁哄洢鍨归獮銏′繆閵堝倸浜鹃梺鍝勬4缂嶄線寮婚敍鍕勃闁告挆鍕灡婵°倗濮烽崑鐐垫暜閿熺姷宓侀悗锝庡枟閸婂鏌涢埄鍐夸緵婵☆値鍐f斀闁挎稑瀚禍濂告煕婵犲啰澧遍柡渚囧櫍閹瑩宕崟顓犲炊闂備礁缍婇崑濠囧窗濮樿埖鍎楁繛鍡楃箚閺€浠嬫煟濡搫绾у璺哄閺屾稓鈧綆鍋勬慨宥夋煛瀹€瀣М濠殿喒鍋撻梺闈涚箚閸撴繂袙閸曨垱鐓涘ù锝呮憸婢э附鎱ㄦ繝鍕笡闁瑰嘲鎳愮划娆撳箰鎼粹檧鍋撻姘f斀闁绘﹩鍠栭悘顏堟煥閺囨ê鐏╅柣锝囧厴椤㈡稑鈽夊鍡楁闂佽瀛╃粙鎺楁晪婵炲瓨绮犻崹璺侯潖濞差亜宸濆┑鐘插閻e灚绻濆▓鍨仴濡炲瓨鎮傞獮鍡涘籍閸繍娼婇梺鎸庣☉鐎氼喛鍊存繝纰夌磿閸嬫垿宕愰弽顓炵婵°倕鎳庣粣妤呭箹濞n剙鐏い鈺傚絻铻栭柨婵嗘噹閺嗙偤鏌i幘瀵告创闁哄本鐩俊鐑芥晲閸涱収鐎撮梻浣圭湽閸斿秹宕归崸妤€钃熼柨婵嗩槹閸嬪嫰鏌涘▎蹇fЧ闁绘繃妫冨铏光偓鍦У椤ュ銇勯敂鐐毈闁绘侗鍠栬灒闁兼祴鏅濋ˇ鈺呮⒑缂佹◤顏勭暦椤掑嫷鏁嗛柕蹇娾偓鑼畾闂佺粯鍔︽禍婊堝焵椤掍胶澧悡銈嗙節闂堟稒顥戦柡瀣Ч閺岋繝宕堕埡浣锋喚缂傚倸鍊瑰畝鎼佹偂椤愶箑鐐婇柕濞р偓濡插牓鎮楅悷鐗堝暈缂佽鍟存俊鐢稿礋椤栨氨顔掑┑掳鍊愰崑鎾绘煕閻曚礁鐏︽い銏$懇閺佹捇鏁撻敓锟�20婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳顭烽弻锝呂熷▎鎯ф缂備胶濮撮悘姘跺Φ閸曨喚鐤€闁圭偓鎯屽Λ鈥愁渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灥瀹曨剟宕滈幍顔剧=濞达絽鎼牎闂佹悶鍔屽ḿ鈥愁嚕婵犳艾围闁糕剝锚瀵潡姊鸿ぐ鎺戜喊闁稿繑锕㈠畷鎴﹀箻濠㈠嫭妫冮崺鈧い鎺戝閻撴繈鏌¢崘銊у妞ゎ偄鎳橀弻锝呂熼悜姗嗘¥闂佺娅曢幑鍥Χ椤忓懎顕遍柡澶嬪灩椤︺劑姊洪崘鍙夋儓闁挎洏鍎甸弫宥夊川椤栨粎锛濋梺绋挎湰閻熝囁囬敂濮愪簻闁挎棁顕ч悘锔姐亜閵忊€冲摵妞ゃ垺锕㈡慨鈧柣姗€娼ф慨锔戒繆閻愵亜鈧牕顔忔繝姘;闁规儳顕弧鈧梺閫炲苯澧撮柡灞芥椤撳ジ宕ㄩ銈囧耿闂傚倷鑳剁划顖氼潖婵犳艾鍌ㄧ憸鏂款嚕閸涘﹦鐟归柍褜鍓熷濠氬即閵忕娀鍞跺┑鐘茬仛閸旀牗鏅ラ梻鍌欒兌鏋Δ鐘叉憸缁棁銇愰幒鎴f憰濠电偞鍨崹褰掑础閹惰姤鐓忓┑鐐茬仢閸旀碍銇勯鐔告珚婵﹦鍎ょ€电厧鈻庨幋鐘虫缂傚倸鍊哥粔鎾晝椤忓牏宓侀柛鎰╁壆閺冨牆绀冮柍杞扮劍閻庮參姊绘担鍛婂暈婵炶绠撳畷锝嗘償閵娿儲杈堥梺璺ㄥ枔婵敻鍩涢幋锔界厱婵犻潧妫楅顏呫亜閵夛箑鐏撮柡灞剧〒閳ь剨缍嗛崑鍛暦鐏炵偓鍙忓┑鐘插暞閵囨繄鈧娲﹂崑濠傜暦閻旂厧鍨傛い鎰癁閸ャ劉鎷洪梺鍛婄☉閿曘儵鍩涢幇鐗堢厽婵°倕鍟埢鍫燁殽閻愭彃鏆i柡浣规崌閹晠鎼归锝囧建闂傚倷绀侀幉鈥趁洪敃鍌氱婵炲棙鎸婚崑鐔访归悡搴f憼闁抽攱鍨垮濠氬醇閻旀亽鈧帞绱掗悩鍐插摵闁哄本鐩獮妯尖偓闈涙憸閻ゅ嫰姊虹拠鈥虫灀闁逞屽墯閺嬪ジ寮告惔銊︾厵闂侇叏绠戦弸銈嗐亜閺冣偓濞叉ḿ鎹㈠┑瀣潊闁挎繂妫涢妴鎰渻閵堝棗鐏ユ俊顐g〒閸掓帡宕奸妷銉у姦濡炪倖甯掔€氼參宕愰崹顐ょ闁割偅绻勬禒銏$箾閸涱厾效闁哄矉绻濋崺鈧い鎺戝绾偓闂佺粯鍨靛Λ妤€鈻撻锔解拺闁告稑锕ユ径鍕煕鐎n偄娴€规洏鍎抽埀顒婄秵閸犳鎮¢弴銏$厸闁搞儯鍎辨俊鍏碱殽閻愮摲鎴炵┍婵犲洤鐭楀璺猴功娴煎苯鈹戦纭锋敾婵$偠妫勯悾鐑筋敃閿曗偓缁€瀣亜閹邦喖鏋庡ù婊勫劤闇夐柣妯烘▕閸庢粎绱撳鍡欏ⅹ妞ゎ叀娉曢幑鍕倻濡粯瀚抽梻浣呵圭换鎴犲垝閹捐钃熸繛鎴欏焺閺佸啴鏌ㄥ┑鍡橆棤妞わ负鍔戝娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幘鎼濠电偞鍨堕〃鍛此夊杈╃=闁稿本鐟ㄩ崗灞解攽椤旂偓鏆╅柡渚囧櫍閸ㄩ箖骞囨担鍦▉濠电姷鏁告慨鐢告嚌妤e啯鍊峰┑鐘叉处閻撱儲绻濋棃娑欘棡闁革絿枪椤法鎲撮崟顒傤槹濠殿喖锕ュ浠嬪箠閿熺姴围闁告侗鍠氶埀顒佸劤閳规垿鎮欓幓鎺旈獓闂佹悶鍔屽ḿ锟犵嵁婵犲伣鏃堝礃閳轰胶锛忛梺鑽ゅ仦缁嬪牓宕滃┑瀣€跺〒姘e亾婵﹨娅e☉鐢稿川椤斿吋閿梻鍌氬€哥€氼剛鈧碍婢橀悾鐑藉即閵忕姷顓洪梺鎸庢濡嫰鍩€椤掑倹鏆柡灞诲妼閳规垿宕卞☉鎵佸亾濡や緡娈介柣鎰缂傛氨绱掓潏銊ユ诞闁诡喒鏅涢悾鐑藉炊瑜夐幏浼存⒒娴e憡鎯堝璺烘喘瀹曟粌鈹戦崱鈺佹闂佸憡娲﹂崑鈧俊鎻掔墛缁绘盯宕卞Δ浣侯洶婵炲銆嬮幏锟�