删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Darboux transformation and exact multisolitons for a matrix coupled dispersionless system

本站小编 Free考研考试/2022-01-02

H Wajahat A Riaz,Department of Mathematics, China University of Mining and Technology, Beijing, 100083, China

Received:2019-12-23Revised:2020-03-19Accepted:2020-03-25Online:2020-06-04


Abstract
We present a matrix coupled dispersionless (CD) system. A Lax pair for the matrix CD system is proposed and Darboux transformation is constructed on the solutions of the matrix CD system and the associated Lax pair. We express an N soliton formula for the solutions of the matrix CD system in terms of quasideterminants. By using properties of the quasideterminants, we obtain some exact solutions, including bright and dark-type solitons, rogue wave and breather solutions of the matrix CD system. Furthermore, it has been shown that the solutions of the matrix CD system are expressed in terms of solutions to the usual CD system, sine-Gordon equation and Maxwell–Bloch system.
Keywords: Matrix coupled dispersionless system;Darboux transformation;solitons


PDF (4387KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
H Wajahat A Riaz. Darboux transformation and exact multisolitons for a matrix coupled dispersionless system. Communications in Theoretical Physics, 2020, 72(7): 075001- doi:10.1088/1572-9494/ab8a16

1. Introduction

Soliton equations play an important role in various fields of science, such as nonlinear optics, fluid dynamics, magnetics and others [1, 2]. Such equations admit various localized solutions, such as solitons, rogue wave and breather solutions. Unlike a rogue wave, which is spatiotemporally localized, solitons and breathers are partially localized. In addition, a soliton is a localized wave that occurs in a medium due to the balance between nonlinearity and dispersion. This nice balance causes the pulse to propagate with constant speed and undeformed shape on both vanishing and non-vanishing backgrounds [3]. On the other hand, a breather is a localized wave with periodicity in a certain direction, i.e. time-periodic breather (also known as a Kuznetsov–Ma breather) [47], spatial periodic (Akhmeidiev breather) [57] and spatiotemporally periodic (general breather) [7, 8]. Rogue waves, also known as extreme and freak waves [9], are unexpectedly high-amplitude single waves that appear from nowhere and disappear without a trace [10]. Rogue waves are known to appear both in coastal areas and the open ocean [11]. In various nonlinear phenomena breather appears along with soliton or rogue wave. Therefore, it is significant to investigate such types of localized solutions, i.e. soliton, breather and rogue waves.

For the most part, rogue waves have been observed and have become one of the most attractive topics for researchers. Mathematically, soliton equations have been studied by using various mathematical methods. Methods to derive the soliton solutions have been propose: e.g. the inverse scattering method [12], Painlevé analysis technique [12], Bäcklund transformation [13], algebraic geometry method [14], Darboux transformation (DT) [15] and Hirota's bilinear method [16]. Among the list, DT is one of the methods used to construct various exact solutions, including bright and dark soliton solutions, periodic solutions, breather solutions and rogue wave solutions [1722].

Dispersionless integrable systems have attracted a great deal of interest due to their emergence in various areas of theoretical physics [2327]. Many of these integrable systems arise as semi-classical limits of ordinary integrable systems with a dispersion term. In the semi-classical limit the dispersion term of an ordinary integrable system is eliminated resulting in a dispersionless integrable system with no dispersion term. The coupled dispersionless (CD) integrable system is an important example of an integrable nonlinear dynamical system which has various applications in diverse areas, including theoretical physics, mathematics and engineering sciences [2833].

In this work, we consider the matrix CD system given by$ \begin{eqnarray}\begin{array}{rcl} & & {\partial }_{t}{q}_{+}+{\partial }_{x}(| {r}_{+}{| }^{2}+| {r}_{0}{| }^{2})=0,\\ & & {\partial }_{t}{q}_{0}+{\partial }_{x}({r}_{+}{r}_{0}^{* }+{r}_{0}{r}_{-}^{* })=0,\\ & & {\partial }_{t}{q}_{-}+{\partial }_{x}(| {r}_{-}{| }^{2}+| {r}_{0}{| }^{2})=0,\\ & & {\partial }_{x}{\partial }_{t}{r}_{+}-2({q}_{+}{r}_{+}+{q}_{0}{r}_{0})=0,\\ & & {\partial }_{x}{\partial }_{t}{r}_{0}-({q}_{+}{r}_{0}+{q}_{0}{r}_{-}+{r}_{+}{q}_{0}^{* }+{r}_{0}{q}_{-})=0,\\ & & {\partial }_{x}{\partial }_{t}{r}_{-}-2({q}_{-}{r}_{-}+{q}_{0}^{* }{r}_{0})=0.\end{array}\end{eqnarray}$The system (1.1) can be regarded as a matrix CD system as the solutions of the above-mentioned system can be expressed in terms of solutions to the well-studied equations.

(I) For ${r}_{+}={r}_{0}={r}_{-}=r/2$ and ${q}_{+}={q}_{0}={q}_{-}={q}_{x}/2$, one obtains$ \begin{eqnarray}{\partial }_{x}{\partial }_{t}q+{\partial }_{x}{{rr}}^{* }+r{\partial }_{x}{r}^{* }=0,\,{\partial }_{x}{\partial }_{t}r-2{q}_{x}r=0,\end{eqnarray}$with the conserved quantity ${q}_{x}^{2}+| {r}_{x}{| }^{2}=c$, where c is constant. Equation (1.2) is the CD system originally introduced in [30]. If r is real, then the system (1.2) reads$ \begin{eqnarray}{\partial }_{x}{\partial }_{t}q+2r{\partial }_{x}r=0,\,{\partial }_{x}{\partial }_{t}r-2{q}_{x}r=0,\end{eqnarray}$with the conserved quantity ${q}_{x}^{2}+{r}_{x}^{2}=c$.

(II) Further substitution ${q}_{x}=\cos \varphi ,\,r=\tfrac{1}{2}{\partial }_{t}\varphi $ in (1.3) brings us to the sine-Gordon equation$ \begin{eqnarray}{\partial }_{x}{\partial }_{t}\varphi =2\sin \varphi .\end{eqnarray}$

(III) Furthermore, substitution ${r}_{+}={r}_{-}={r}_{0}\,=\tfrac{1}{4}E,{r}_{+x}\,={r}_{-,x}={r}_{0,x}=\tfrac{1}{4}P$ and ${q}_{-}={q}_{+}={q}_{0}=\tfrac{1}{4}N$ in (1.1) gives$ \begin{eqnarray}\begin{array}{rcl}{E}_{x} & = & P,\,{\partial }_{t}N=-\displaystyle \frac{1}{2}({{EP}}^{* }+{{PE}}^{* }),\\ {\partial }_{t}P & = & {NE},\,{N}^{2}+P\bar{P}=1,\end{array}\end{eqnarray}$which coincided with the Maxwell–Bloch system [34].

As we reduced the matrix CD system (1.1) into the usual CD system (1.2)–(1.3), sine-Gordon equation (1.4) and Maxwell–Bloch system (1.5), therefore, the matrix CD system can be regarded as a generalization of these equations. The Darboux/Bäcklund transformations for these equations have been studied in various references, such as [1934]. The present work deals with the matrix CD system, DT and some exact solutions. We introduce a Lax pair for the matrix CD system and derive the DT on the solutions of the matrix CD system and the associated Lax pair. The solutions are expressed in terms of quasideterminants. Further, we show that the matrix CD system exhibits various exact solutions, such as bright and dark soliton, rogue wave and breather solutions.

2. Lax pair and DT

The Lax pair for the matrix CD system is given by$ \begin{eqnarray}{\partial }_{x}\psi ={\lambda }^{-1}A\psi ,\end{eqnarray}$$ \begin{eqnarray}{\partial }_{t}\psi =(\lambda J+B)\psi ,\end{eqnarray}$where$ \begin{eqnarray}\begin{array}{rcl}J & = & \left(\begin{array}{cc}\tfrac{{\rm{i}}}{2}{I}_{2\times 2} & {0}_{2\times 2}\\ {0}_{2\times 2} & -\tfrac{{\rm{i}}}{2}{I}_{2\times 2}\end{array}\right),\,A=-{\rm{i}}\left(\begin{array}{cc}Q & {\partial }_{x}R\\ -{\partial }_{x}{R}^{\dagger } & -{Q}^{* }\end{array}\right),\\ B & = & \left(\begin{array}{cc}{0}_{2\times 2} & -R\\ {R}^{\dagger } & {0}_{2\times 2}\end{array}\right),\end{array}\end{eqnarray}$where $J,\,A$ and B are the matrices of the order 4×4, $\psi =\psi (x,\,t,\,\lambda )$ is also an eigenfunction matrix of the order 4×4 , and λ is the spectral parameter (real or complex). The symbol † in the superscript of R stands for Hermitian conjugation, while * in the superscript of Q denotes complex conjugation. The compatibility condition ${\partial }_{x}{\partial }_{t}\psi ={\partial }_{t}{\partial }_{x}\psi $ yields the zero curvature condition given by$ \begin{eqnarray}{\partial }_{t}Q+{\partial }_{x}({{RR}}^{\dagger })=0,\quad {\partial }_{x}{\partial }_{t}R-{QR}-{{RQ}}^{* }=0,\end{eqnarray}$which coincides with the system (1.1) if the matrices Q and R take the form$ \begin{eqnarray}Q=\left(\begin{array}{cc}{q}_{+} & {q}_{0}\\ {q}_{0} & {q}_{-}\end{array}\right)\quad R=\left(\begin{array}{cc}{r}_{+} & {r}_{0}\\ {r}_{0} & {r}_{-}\end{array}\right).\end{eqnarray}$Note that in (2.5) ${q}_{+}={q}_{+}^{* }$ and ${q}_{-}={q}_{-}^{* }$.

In what follows, we apply DT on the matrix CD system and obtain multisoliton solutions within the framework of quasideterminants. We define a Darboux matrix $D=D(x,\,t;\,\lambda )$ of size 4×4 that brings the trivial solution ψ of the matrix CD system into the non-trivial solution ${\psi }^{\left[1\right]}$. The new solution ${\psi }^{\left[1\right]}$ reads$ \begin{eqnarray}{\psi }^{\left[1\right]}=D\psi ,\end{eqnarray}$which satisfies the same Lax pair (2.1) and (2.2), but with the new solutions$ \begin{eqnarray}{\partial }_{x}{\psi }^{\left[1\right]}={\lambda }^{-1}{A}^{\left[1\right]}{\psi }^{\left[1\right]},\end{eqnarray}$$ \begin{eqnarray}{\partial }_{t}{\psi }^{\left[1\right]}=(\lambda {J}^{\left[1\right]}+{B}^{\left[1\right]}){\psi }^{\left[1\right]}.\end{eqnarray}$Now, we wish to find the DT on the solutions ${J}^{\left[1\right]},\,{A}^{\left[1\right]}$ and ${B}^{\left[1\right]}$. For this, we make the following ansatz for the Darboux matrix D:$ \begin{eqnarray}D=\lambda I-M,\end{eqnarray}$where M is an auxiliary matrix of size 4×4 to be determined, I is an identity matrix of size 4×4 and λ is the spectral parameter. Since D in equation (2.9) is in the first order of the polynomial of λ, it can be referred to as a one-fold Darboux matrix. It should be noted that the matrix M can be constructed from the particular matrix solutions to the Lax pair (2.1) and (2.2). For this, we define an auxiliary matrix M: $M={\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}$, where Ξ is the matrix solution of the Lax pair (2.1) and (2.2) at a particular eigenvalue matrix ${ \mathcal L }=\mathrm{diag}\left({\lambda }_{1},...,\,{\lambda }_{k}\right)$. The matrix Ξ can be defined as$ \begin{eqnarray}{\rm{\Xi }}\equiv \left(\psi ({\lambda }_{1})\left|1\right\rangle ,...,\,\psi ({\lambda }_{k})\left|k\right\rangle \right)=\left({{\boldsymbol{\Xi }}}_{1},...,\,{{\boldsymbol{\Xi }}}_{k}\right),\end{eqnarray}$where ${{\boldsymbol{\Xi }}}_{l},\,l=1,...,\,k$ are the particular eigenvector solutions to the Lax pair equations (2.1) and (2.2). The matrix Ξ in equation (2.10) satisfies the same Lax pair equations but with the eigenvalue matrix ${ \mathcal L }$:$ \begin{eqnarray}{\partial }_{x}{\rm{\Xi }}=A{\rm{\Xi }}{{ \mathcal L }}^{-1},\quad {\partial }_{t}{\rm{\Xi }}=J{\rm{\Xi }}{ \mathcal L }+B{\rm{\Xi }}.\end{eqnarray}$For $M={\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}$, we have the following propositions.

Equation (2.7) remains invariant under the DT (2.6), provided the new solution ${A}^{\left[1\right]}$:$ \begin{eqnarray}{A}^{\left[1\right]}=A-{\partial }_{x}M,\end{eqnarray}$with the covariance condition$ \begin{eqnarray}{\partial }_{x}M=\left[A,\,M\right]{M}^{-1}.\end{eqnarray}$

The relation between the new potential ${A}^{\left[1\right]}$ and the old potential A is built and given in (2.12). Now, we need to show that the matrix $M={\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}$ satisfies the condition (2.13). For this, we have$ \begin{eqnarray}\begin{array}{rcl}{\partial }_{x}M & = & {\partial }_{x}({\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1})=({\partial }_{x}{\rm{\Xi }}){ \mathcal L }{{\rm{\Xi }}}^{-1}-{\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}({\partial }_{x}{\rm{\Xi }}){{\rm{\Xi }}}^{-1},\\ & = & (A{\rm{\Xi }}{{ \mathcal L }}^{-1}){ \mathcal L }{{\rm{\Xi }}}^{-1}-{\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}(A{\rm{\Xi }}{{ \mathcal L }}^{-1}){{\rm{\Xi }}}^{-1},\\ & = & A-{{MAM}}^{-1}=[A,\,M]{M}^{-1},\end{array}\end{eqnarray}$which is (2.13). This completes the proof.

Equation (2.8) remains invariant under the DT (2.6), provided the new solutions ${B}^{\left[1\right]}$ and ${J}^{\left[1\right]}$:$ \begin{eqnarray}{B}^{\left[1\right]}=B+[J,\,M],\quad {J}^{\left[1\right]}=J,\end{eqnarray}$with the covariance condition$ \begin{eqnarray}{\partial }_{t}M=[B,\,M]+[J,\,M]M.\end{eqnarray}$

The relation between the new potential ${B}^{\left[1\right]}$ and the old potential B is built and given in (2.15). Now, we need to show that the matrix $M={\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}$ satisfies the condition (2.16). For this, we take$ \begin{eqnarray}\begin{array}{rcl}{\partial }_{t}M & = & {\partial }_{t}({\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1})=({\partial }_{t}{\rm{\Xi }}){ \mathcal L }{{\rm{\Xi }}}^{-1}-{\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}({\partial }_{t}{\rm{\Xi }}){{\rm{\Xi }}}^{-1},\\ & = & (J{\rm{\Xi }}{ \mathcal L }+B{\rm{\Xi }}){ \mathcal L }{{\rm{\Xi }}}^{-1}-{\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}(J{\rm{\Xi }}{ \mathcal L }+B{\rm{\Xi }}){{\rm{\Xi }}}^{-1},\\ & = & [J,\,M]M+[B,\,M],\end{array}\end{eqnarray}$which is (2.16). This completes the proof.

Now, we iterate DT (2.6) N-times and present the N-fold solutions.

Suppose that ${{\rm{\Xi }}}_{1},\,{{\rm{\Xi }}}_{2},...,\,{{\rm{\Xi }}}_{N}$ are particular matrix solutions of the Lax pair (2.1)–(2.2) evaluated at ${{ \mathcal L }}_{1},\,{{ \mathcal L }}_{2},....,\,{{ \mathcal L }}_{N}$, respectively. Then, $N$-fold iteration of DT in terms of quasideterminants1(1 In this paper we will consider only quasideterminants that are expanded about an $m\times m$ matrix. The quasideterminant of the $J\times J$ matrix expanded about the $m\times m$ matrix $D$ is defined as$ \begin{eqnarray}\left|\begin{array}{l}A\quad B\\ C\quad \boxed{D}\end{array}\right|=D-{{CA}}^{-1}B.\end{eqnarray}$The noncommutative Jacobi identity is given by$ \begin{eqnarray}\begin{array}{l}\left|\begin{array}{c}A\quad B\quad C\\ D\quad f\quad g\\ E\quad h\quad \boxed{i}\end{array}\right|=\left|\begin{array}{c}A\quad C\\ E\quad \boxed{i}\end{array}\right|\\ \quad -\,\left|\begin{array}{c}A\quad B\\ E\quad \boxed{h}\end{array}\right|{\left|\begin{array}{c}AB\\ D\boxed{f}\end{array}\right|}^{-1}\left|\begin{array}{c}A\quad C\\ D\quad \boxed{g}\end{array}\right|.\end{array}\end{eqnarray}$For more details see [35] and the references therein.) is expressed as$ \begin{eqnarray}{\psi }^{\left[N\right]}=\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & {{\rm{\Pi }}}^{(N-1)}\\ \widehat{{\rm{\Xi }}} & \boxed{{\lambda }^{N}I}\end{array}\right|\psi ,\end{eqnarray}$where$ \begin{eqnarray}\begin{array}{rcl}\widetilde{{\rm{\Xi }}} & = & \left(\begin{array}{cccc}{{\rm{\Xi }}}_{1} & {{\rm{\Xi }}}_{2} & \ldots & {{\rm{\Xi }}}_{N}\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & {{\rm{\Xi }}}_{2}{{ \mathcal L }}_{2} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}\\ \vdots & \vdots & \ddots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & {{\rm{\Xi }}}_{2}{{ \mathcal L }}_{2}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1}\end{array}\right),\\ \widehat{{\rm{\Xi }}} & = & {\left(\begin{array}{c}{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N}\\ {{\rm{\Xi }}}_{2}{{ \mathcal L }}_{2}^{N}\\ \vdots \\ {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N}\end{array}\right)}^{{\rm{T}}},\,{{\rm{\Pi }}}^{(N-1)}=\left(\begin{array}{c}I\\ \lambda I\\ \vdots \\ {\lambda }^{N-1}I\end{array}\right),\end{array}\end{eqnarray}$are the matrices of sizes $4N\times 4N,\,4\times 4N$ and $4N\times 4$, respectively.

The proof of (2.20) is by induction on N as follows.

The expression is true for N=1 and gives (2.6), since$ \begin{eqnarray}{\psi }^{\left[1\right]}=\left|\begin{array}{cc}{{\rm{\Xi }}}_{1} & I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \boxed{\lambda I}\end{array}\right|\psi =(\lambda I-{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}{{\rm{\Xi }}}_{1}^{-1})\psi .\end{eqnarray}$Now, assume that (2.20) is true for some fixed $N\geqslant 1$. We prove that the expression is also true for $N+1$, i.e.
$ \begin{eqnarray*}\begin{array}{rcl}{\psi }^{\left[N+1\right]} & = & \left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & \lambda I\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & {\lambda }^{N}I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{{\lambda }^{N+1}I}\end{array}\right|\psi \\ & & -\,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & {{\rm{\Xi }}}_{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N-1}\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{{{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N}}\end{array}\right|\\ & & \times \,{{ \mathcal L }}_{N+1}{\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & {{\rm{\Xi }}}_{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N-1}\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{{{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N}}\end{array}\right|}^{-1}\\ & & \times \,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & I\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & {\lambda }^{N-1}I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{{\lambda }^{N}I}\end{array}\right|\psi ,\\ {\psi }^{\left[N+1\right]} & & =\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & \lambda I\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & {\lambda }^{N}I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{{\lambda }^{N+1}I}\end{array}\right|\psi \\ & & -\,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N}\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N+1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N+1} & \boxed{{{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N+1}}\end{array}\right|\end{array}\end{eqnarray*}$$ \begin{eqnarray}\begin{array}{rcl} & & \times \,{\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N+1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N+1} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}\\ {{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & \boxed{{{\rm{\Xi }}}_{N+1}}\end{array}\right|}^{-1}\\ & & \times \,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N} & \lambda I\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & {\lambda }^{N}I\\ {{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & \boxed{I}\end{array}\right|\psi ,\end{array}\end{eqnarray}$$ \begin{eqnarray}{\psi }^{\left[N+1\right]}=\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N+1} & I\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N+1}^{N+1} & {\lambda }^{N}I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N+1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{1}^{N+1} & \boxed{{\lambda }^{N+1}I}\end{array}\right|\psi ,\end{eqnarray}$by the noncommutative Jacobi identity (2.19). This completes the proof.

The N-times iteration of DT for the fields A and B can be given by the following theorem.

Suppose that ${{\rm{\Xi }}}_{1},\,{{\rm{\Xi }}}_{2},...,\,{{\rm{\Xi }}}_{N}$ are particular matrix solutions of the Lax pair (2.1)–(2.2) corresponding to ${{ \mathcal L }}_{1},\,{{ \mathcal L }}_{2},....,\,{{ \mathcal L }}_{N}$, respectively. Then, the $N$-fold DT for the solutions of the matrix CD system in terms of quasideterminants is expressed as$ \begin{eqnarray}\begin{array}{rcl}{A}^{\left[N\right]} & = & A+{\partial }_{x}\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & { \mathcal I }\\ \widehat{{\rm{\Xi }}} & \boxed{O}\end{array}\right|,\\ {B}^{N} & = & B-\left[J,\,\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & { \mathcal I }\\ \widehat{{\rm{\Xi }}} & \boxed{O}\end{array}\right|\right],\end{array}\end{eqnarray}$where $\widetilde{{\rm{\Xi }}},\,\widehat{{\rm{\Xi }}}$ are given in (2.21), and ${ \mathcal I }={(O,O,...,I)}^{{\rm{T}}}$ is the matrix of size $4N\times 4$.

The proof of (2.25) is by induction on N as follows.

The expression is true for N=1 and gives (2.12) and (2.15), since$ \begin{eqnarray}\begin{array}{rcl}{A}^{\left[1\right]} & = & A+{\partial }_{x}\left|\begin{array}{cc}{{\rm{\Xi }}}_{1} & I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \boxed{O}\end{array}\right|=A-{\partial }_{x}({{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}{{\rm{\Xi }}}^{-1}),\\ {B}^{\left[1\right]} & = & B-\left[J,\,\left|\begin{array}{cc}{{\rm{\Xi }}}_{1} & I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \boxed{O}\end{array}\right|\right]=B+[J,\,{\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}].\end{array}\end{eqnarray}$Now, assume that (2.25) is true for some fixed $N\geqslant 1$. We prove that the expression is also true for $N+1$, i.e.
$ \begin{eqnarray*}\begin{array}{rcl}{B}^{\left[N+1\right]} & = & B-\left[J,\,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & O\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{O}\end{array}\right|\right]\\ & & +\left[J,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & {{\rm{\Xi }}}_{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N-1}\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{{{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N}}\end{array}\right|\right.\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl} & & \left.\times \,{{ \mathcal L }}_{N+1}{\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & {{\rm{\Xi }}}_{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N-1}\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{{{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N}}\end{array}\right|}^{-1}\right],\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{B}^{\left[N+1\right]} & = & B-\left[J,\,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & O\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N-1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N-1} & I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & \boxed{O}\end{array}\right|\right]\\ & & +\,\left[\Space{0ex}{6.70ex}{0ex}J,\right.\,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N}\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N+1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N+1} & \boxed{{{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N+1}}\end{array}\right|\\ & & \times \,{\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N+1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N+1} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N+1}\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N} & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}\\ {{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & \boxed{{{\rm{\Xi }}}_{N+1}}\end{array}\right|}^{-1}\\ & & \left.\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N+1} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N+1} & O\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N}^{N} & I\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N} & \boxed{O}\end{array}\right|\right],\end{array}\end{eqnarray*}$$ \begin{eqnarray}\begin{array}{rcl}{B}^{\left[N+1\right]} & = & B-\left[J,\,\left|\begin{array}{cccc}{{\rm{\Xi }}}_{1} & \ldots & {{\rm{\Xi }}}_{N+1} & O\\ \vdots & \ddots & \vdots & \vdots \\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N} & \ldots & {{\rm{\Xi }}}_{N}{{ \mathcal L }}_{N+1}^{N} & I\\ {{\rm{\Xi }}}_{1}{{ \mathcal L }}_{1}^{N+1} & \ldots & {{\rm{\Xi }}}_{N+1}{{ \mathcal L }}_{N+1}^{N+1} & \boxed{O}\end{array}\right|\right],\end{array}\end{eqnarray}$by the noncommutative Jacobi identity (2.19). This completes the proof. And the proof for ${A}^{\left[N+1\right]}$ is similar to ${B}^{\left[N+1\right]}$.

By using the expression (2.25), one obtains DT on the potentials ${q}_{\pm },\,{q}_{0}$ and ${r}_{\pm },\,{r}_{0}$ in quasideterminant form$ \begin{eqnarray}\begin{array}{rcl}{q}_{+}^{\left[N\right]} & = & {q}_{+}+{\rm{i}}{\partial }_{x}\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & {{ \mathcal I }}_{4N-3}\\ {\widehat{{\rm{\Xi }}}}_{4N-3} & \boxed{0}\end{array}\right|,\\ {q}_{-}^{\left[N\right]} & = & {q}_{-}+{\rm{i}}{\partial }_{x}\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & {{ \mathcal I }}_{4N-2}\\ {\widehat{{\rm{\Xi }}}}_{4N-2} & \boxed{0}\end{array}\right|,\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}{q}_{0}^{\left[N\right]} & = & {q}_{0}+{\rm{i}}{\partial }_{x}\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & {{ \mathcal I }}_{4N-2}\\ {\widehat{{\rm{\Xi }}}}_{4N-3} & \boxed{0}\end{array}\right|,\\ {r}_{0}^{\left[N\right]} & = & {r}_{0}+{\rm{i}}\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & {{ \mathcal I }}_{4N}\\ {\widehat{{\rm{\Xi }}}}_{4N-3} & \boxed{0}\end{array}\right|,\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}{r}_{+}^{\left[N\right]} & = & {r}_{+}+{\rm{i}}\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & {{ \mathcal I }}_{4N-1}\\ {\widehat{{\rm{\Xi }}}}_{4N-3} & \boxed{0}\end{array}\right|,\\ {r}_{-}^{\left[N\right]} & = & {r}_{-}+{\rm{i}}\left|\begin{array}{cc}\widetilde{{\rm{\Xi }}} & {{ \mathcal I }}_{4N}\\ {\widehat{{\rm{\Xi }}}}_{4N-2} & \boxed{0}\end{array}\right|,\end{array}\end{eqnarray}$where ${{ \mathcal I }}_{4N-3},\,{{ \mathcal I }}_{4N-2},\,{{ \mathcal I }}_{4N-1}$ and ${{ \mathcal I }}_{4N}$ are the column vectors with entry 1 in the $4N-3,\,4N-2,\,4N-1$ and $4N$row-th vector, respectively and zeros elsewhere, whereas ${\widehat{{\rm{\Xi }}}}_{4N-3}$ and ${\widehat{{\rm{\Xi }}}}_{4N-2}$ are, respectively, the $4N-3$ and $4N-2$row vectors of $\widetilde{{\rm{\Xi }}}$.

3. Explicit solutions

In this section, we shall investigate the effect of DT $D=\lambda I-{\rm{\Xi }}{ \mathcal L }{{\rm{\Xi }}}^{-1}$ explicitly on the potentials ${q}_{+},\,{q}_{-},\,{q}_{0}$ and ${r}_{+},\,{r}_{-},\,{r}_{0}$ of the matrix CD system (1.1). The solution ψ of the Lax pair (2.1)–(2.2) for the seed solutions (i.e. $R={0}_{2\times 2},\,Q=\mathrm{diag}(1,\,-1)$) is given by$ \begin{eqnarray}\psi =\mathrm{diag}\left({{\rm{e}}}^{\alpha (\lambda )},\,{{\rm{e}}}^{\beta (\lambda )},\,{{\rm{e}}}^{\bar{\alpha }(\lambda )},\,{{\rm{e}}}^{\bar{\beta }(\lambda )}\right),\end{eqnarray}$where $\alpha (\lambda )=-{\rm{i}}{\lambda }^{-1}x+\tfrac{{\rm{i}}\lambda t}{2},\,\beta (\lambda )={\rm{i}}\lambda x+\tfrac{{\rm{i}}\lambda t}{2}$.

To find the soliton solutions, we need to have the matrix Ξ in an explicit form. This matrix Ξ can be constructed from the particular vector solutions to the Lax pair (2.1)–(2.2). We now define the vectors satisfying the Lax pair equations for the particular value of λ, so that, for example, ${\xi }_{1}=\left({\epsilon }_{1}{{\rm{e}}}^{\alpha ({\lambda }_{1})}\right.$, ${\left.{\epsilon }_{2}{{\rm{e}}}^{\beta ({\lambda }_{1})},-{{\rm{e}}}^{\bar{\alpha }({\lambda }_{1})},0\right)}^{{\rm{T}}}$, ${\xi }_{2}=\left({\bar{\epsilon }}_{2}{{\rm{e}}}^{\alpha ({\lambda }_{1})}\right.$, ${\left.-{\bar{\epsilon }}_{1}{{\rm{e}}}^{\beta ({\lambda }_{1})},0,{{\rm{e}}}^{\bar{\beta }({\lambda }_{1})}\right)}^{{\rm{T}}}$ are independent column vector solutions of the system (2.1)–(2.2) evaluated at $\lambda ={\lambda }_{1}$, and ${\xi }_{3}\,=$${\left({{\rm{e}}}^{\alpha ({\bar{\lambda }}_{1})},0,{\bar{\epsilon }}_{1}{{\rm{e}}}^{\bar{\alpha }({\bar{\lambda }}_{1})},-{\epsilon }_{2}{{\rm{e}}}^{\bar{\beta }({\bar{\lambda }}_{1})}\right)}^{{\rm{T}}}$, ${\xi }_{4}={\left(0,{{\rm{e}}}^{\beta ({\bar{\lambda }}_{1})},{\bar{\epsilon }}_{2}{{\rm{e}}}^{\bar{\alpha }({\bar{\lambda }}_{1})},{\epsilon }_{1}{{\rm{e}}}^{\bar{\beta }({\bar{\lambda }}_{1})}\right)}^{{\rm{T}}}$ are independent column solutions of the system (2.1)–(2.2) evaluated at $\lambda ={\bar{\lambda }}_{1}$, so that the matrix Ξ with the particular eigenvalue matrix ${ \mathcal L }$ reads$ \begin{eqnarray}\begin{array}{rcl}{\rm{\Xi }} & = & \left({\xi }_{1},{\xi }_{2},{\xi }_{3},{\xi }_{4}\right),\\ { \mathcal L } & = & \mathrm{diag}\left({\lambda }_{1},{\lambda }_{1},{\bar{\lambda }}_{1},{\bar{\lambda }}_{1}\right).\end{array}\end{eqnarray}$By substituting (3.2) into (2.28)–(2.30), we obtain one-fold solutions given by$ \begin{eqnarray}\begin{array}{rcl}{q}_{\pm }^{\left[1\right]} & = & \pm 1-{\partial }_{x}[{\rm{i}}\displaystyle \frac{b}{A}\left({\epsilon }^{2}{A}_{+}{A}_{-}\pm | {\epsilon }_{1}{| }^{2}\right.\\ & & \times \,\left.({A}_{+}{B}_{-}-{B}_{+}{A}_{-})\mp {B}_{+}{B}_{-}\right)],\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}{r}_{+}^{\left[1\right]} & = & {\rm{i}}\displaystyle \frac{b}{A}{\epsilon }_{1}{\phi }_{+}{\bar{\chi }}_{+}(\epsilon {A}_{-}+{B}_{-}),\\ {r}_{-}^{\left[1\right]} & = & {\rm{i}}\displaystyle \frac{b}{A}{\bar{\epsilon }}_{1}{\phi }_{-}{\bar{\chi }}_{-}(\epsilon {A}_{+}+{B}_{+}),\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}{q}_{0}^{\left[1\right]} & = & {\rm{i}}{\epsilon }_{1}{\bar{\epsilon }}_{2}{\partial }_{x}[\displaystyle \frac{b}{A}{\phi }_{+}{\bar{\chi }}_{+}({\chi }_{+}{\bar{\phi }}_{-}-{\chi }_{-}{\bar{\phi }}_{+})],\\ {r}_{0}^{\left[1\right]} & = & -{\rm{i}}\displaystyle \frac{b}{A}{\bar{\epsilon }}_{2}{\phi }_{+}{\bar{\chi }}_{+}(\epsilon {\phi }_{-}{\bar{\phi }}_{+}+{\chi }_{+}{\bar{\chi }}_{-}),\end{array}\end{eqnarray}$where $A=[{\epsilon }^{2}{A}_{+}{A}_{-}+| {\epsilon }_{1}{| }^{2}({A}_{+}{B}_{-}+{B}_{+}{A}_{-})+{B}_{+}{B}_{-}+2| {\epsilon }_{2}{| }^{2}]$, $\epsilon =\left(| {\epsilon }_{1}{| }^{2}+| {\epsilon }_{1}{| }^{2}\right)$, ${A}_{\pm }=| {\phi }_{\pm }{| }^{2},\,{B}_{\pm }=| {\chi }_{\pm }{| }^{2}$ and ${\phi }_{\pm }\,={{\rm{e}}}^{\mp {\rm{i}}{\lambda }_{1}^{-1}x+\tfrac{{\rm{i}}{\lambda }_{1}t}{2}},\,{\chi }_{\pm }={{\rm{e}}}^{\pm {\rm{i}}{\lambda }_{1}^{-1}x-\tfrac{{\rm{i}}{\lambda }_{1}t}{2}}$ and $b={\mathfrak{I}}({\lambda }_{1})$. Equations (3.3) and (3.4) represent dark-type or bright-type soliton solutions, while equation (3.5) represents rogue wave solutions. The evolution plots of the rogue wave solutions ${q}_{0}^{[j]}$ and ${r}_{0}^{[j]}$ governed by the spectral parameters ${\lambda }_{j}={a}_{j}+{\rm{i}}{b}_{j},j=1,\,2,\,3$ are shown in figures 1 and 2.

Figure 1.

New window|Download| PPT slide
Figure 1.(a), (b) and (c) are, respectively, the profiles of ${q}_{0}^{[j]}$ (2.29) for $j=1,\,2$ and 3 with parameters ${\lambda }_{1}=0.2+2{\rm{i}},\,{\lambda }_{2}=0.3-2{\rm{i}},\,{\lambda }_{3}\,=2{\rm{i}},\,{\epsilon }_{1}=1-2{\rm{i}}$ and ${\epsilon }_{2}=1-{\rm{i}}$.


Figure 2.

New window|Download| PPT slide
Figure 2.(a), (b) and (c) are, respectively, the profiles of ${r}_{0}^{[j]}$ (2.29) for $j=1,\,2$ and 3 with parameters ${\lambda }_{1}=0.2+2{\rm{i}},\,{\lambda }_{2}=0.3-2{\rm{i}},\,{\lambda }_{3}\,=2{\rm{i}},\,{\epsilon }_{1}=1-2{\rm{i}}$ and ${\epsilon }_{2}=1-{\rm{i}}$.


Here, an explicit form of ${q}_{0}^{[2]},\,{q}_{0}^{[3]}$ and ${r}_{0}^{[2]},\,{r}_{0}^{[3]}$ is not given as it is rather cumbersome.

The evolution plots of the solutions ${q}_{0}^{\left[1\right]}$ and ${r}_{0}^{\left[1\right]}$ under the seed solutions $R={0}_{2\times 2},\,Q=\mathrm{diag}(\cos x,\,-\cos x)$ is depicted in figure 3.

Figure 3.

New window|Download| PPT slide
Figure 3.(a), (b) are, respectively, the profiles of ${q}_{0}^{\left[1\right]}$ and ${r}_{0}^{\left[1\right]}$ (3.5) with parameters ${\lambda }_{1}=-0.1+{\rm{i}},\,{\epsilon }_{1}=1-2{\rm{i}}$ and ${\epsilon }_{2}=1-0.1{\rm{i}}$.


Figure 3 shows the breather solution of the matrix CD system.

4. Concluding remarks

In this paper, we have derived a DT for the matrix CD system and constructed some exact solutions. We have constructed a quasideterminant Darboux matrix and obtained N soliton solutions. By using properties of the quasideterminants and symbolic computation, we have computed first-, second- and third-order rogue wave solutions. Moreover, breather solutions are also presented. The solutions of the matrix CD system have been shown to give solutions of the usual CD system, sine-Gordon equation and Maxwell–Bloch system. These results can be further extended to the case of supersymmetric generalization of the system. The matrix superfield Lax representation can be used to obtain superfield Riccati equations, which may result in superfield Bäcklund transformation of the supersymmetric matrix CD system. It would also be interesting to construct an integrable discretization of the system in order to explore numerical simulation by using various numerical schemes.

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11 871 471, 11 331 008 and 11 931 017), Foreign Experts Scientific Cooperation Fund. The author thanks the editor and anonymous referees for their useful comments and suggestions, which helped to improve the paper.

Reference By original order
By published year
By cited within times
By Impact factor

Kivshar Y S Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals New York Academic
[Cited within: 1]

Cuevas-Maraver J Kevrekidis P G Williams F 2014 The sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High Energy Physics Berlin Springer
[Cited within: 1]

Zabusky N J Porter M A 2010 Soliton Scholarpedia 5 2068
DOI:10.4249/scholarpedia.2068 [Cited within: 1]

Ma Y C 1979 The perturbed plane-wave solutions of the cubic Schrödinger equation
Stud. Appl. Math. 60 73

DOI:10.1002/sapm197960173 [Cited within: 1]

Huang L L Yue Y F Chen Y 2018 Localized waves and interaction solutions to a (3+1)-dimensional generalized KP equation
Comput. Math. Appl. 76 831

DOI:10.1016/j.camwa.2018.05.023 [Cited within: 1]

Akhmediev N Korneev V I 1986 Modulation instability and periodic solutions of the nonlinear Schrödinger equation
Theor. Math. Phys. 69 1089

DOI:10.1007/BF01037866

Chan H N Chow K W 2018 Periodic and localized wave patterns for coupled Ablowitz-Ladik systems with negative cross phase modulation
Commun. Nonlinear Sci. Numer. Simul. 65 185

DOI:10.1016/j.cnsns.2018.05.020 [Cited within: 3]

Yue Y F Huang L L Chen Y 2018 N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation
Comput. Math. Appl. 75 2538

DOI:10.1016/j.camwa.2017.12.022 [Cited within: 1]

Draper L 1965 Freak ocean waves
Mar. Obs. 35 193

[Cited within: 1]

Akhmediev N Ankiewicz A Taki M 2009 Waves that appear from nowhere and disappear without a trace
Phys. Lett. A 373 675

DOI:10.1016/j.physleta.2008.12.036 [Cited within: 1]

Kharif C Pelinovsky E Slunyaev A 2009 Rogue Waves in the Ocean Heidelberg Springer
[Cited within: 1]

Ablowitz M J Clarkson P A 1991 Solitons, Nonlinear Evolution Equations, and Inverse Scattering Cambridge Cambridge University Press
[Cited within: 2]

Konno K Wadati M 1975 Progr. Theoret. Phys. 53 1652
DOI:10.1143/PTP.53.1652 [Cited within: 1]

Belokolos E D Bobenko A I Enol’Skii V Z Its A R Matveev V B 1994 Algebro Geometrical Approach to Nonlinear Integrable Equations Berlin Springer
[Cited within: 1]

Matveev V B Salle M A 1991 Darboux. Transformations and Solitons Berlin Springer
[Cited within: 1]

Hirota R 1980 Direct Method in Soliton Theory Berlin Springer
[Cited within: 1]

Guo B L Ling L M Liu Q P 2012 Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions
Phys. Rev. E 85 026607

DOI:10.1103/PhysRevE.85.026607 [Cited within: 1]

Shen J Geng X Xue B 2019 Exact solutions of a negative matrix AKNS system with a Hermitian symmetric space
Appl. Math. Lett. 90 8

DOI:10.1016/j.aml.2018.10.006

Riaz H W A Hassan M 2018 A discrete generalized coupled dispersionless integrable system and its multisoliton solutions
J. Math. Anal. Appl. 458 1639

DOI:10.1016/j.jmaa.2017.10.046 [Cited within: 1]

Riaz H W A Hassan M 2018 Integrability of a multicomponent coupled dispersionless integrable system
Theor. Math. Phys. 197 1714

DOI:10.1134/S0040577918120036

Rajan M S M Mahalingam A 2013 Multi-soliton propagation in a generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch system with loss/gain driven by an external potential
J. Math. Phys. 54 043514

DOI:10.1063/1.4798477

Mani Rajan M S Mahalingam A Uthayakumar A Porsezianc K 2013 Observation of two soliton propagation in an erbium doped inhomogeneous lossy fiber with phase modulation
Commun. Nonlinear Sci. Numer. Simulat. 18 1410

DOI:10.1016/j.cnsns.2012.10.008 [Cited within: 1]

Takasaki K 1995 Dispersionless Toda hierarchy and two-dimensional string theory
Commun. Math. Phys. 170 743

DOI:10.1007/BF02099441 [Cited within: 1]

Carroll R Kodama Y 1995 Solution of the dispersionless Hirota equations
J. Phys. A: Math. Gen. 28 6373

DOI:10.1088/0305-4470/28/22/013

Dunajski M 2008 Interpolating dispersionless integrable system
J. Phys. A: Math. Theor. 41 315202

DOI:10.1088/1751-8113/41/31/315202

Rajan M S M Mahalingam A 2015 Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction
Nonlinear Dyn. 79 2469

DOI:10.1007/s11071-014-1826-y

Rajan M S M 2016 Dynamics of optical soliton in a tapered erbium-doped fiber under periodic distributed amplification system
Nonlinear Dyn. 85 599

DOI:10.1007/s11071-016-2709-1 [Cited within: 1]

Konno K Oono H 1994 New coupled integrable dispersionless equations
J. Phys. Soc. Japan 63 477

DOI:10.1143/JPSJ.63.377 [Cited within: 1]

Hirota R Tsujimoto S 1994 Note on new coupled integrable dispersionless equations
J. Phys. Soc. Japan 63 3533

DOI:10.1143/JPSJ.63.3533

Kakuhata H Konno K 1996 A generalization of coupled integrable, dispersionless system
J. Phys. Soc. Japan 65 340

DOI:10.1143/JPSJ.65.340 [Cited within: 1]

Hassan M 2009 Darboux transformation of the generalized coupled dispersionless integrable system
J. Phys. A: Math. Theor. 42 65203

DOI:10.1088/1751-8113/42/6/065203

Lou S Y Yu G F 2016 A generalization of the coupled integrable dispersionless equations
Math. Meth. Appl. Sci. 39 4025

DOI:10.1002/mma.3844

Abbagari S et al. 2011 Prolongation structure analysis of a coupled dispersionless system
Chinese Phys. Lett. 28 020204

DOI:10.1088/0256-307X/28/2/020204 [Cited within: 1]

Steudel H 1991 Space-time symmetry of self-induced transparency and of stimulated Raman scattering
Phys. Lett. A 156 491

DOI:10.1016/0375-9601(91)90186-C [Cited within: 2]

Gelfand I M Gelfand S Retakh V M Wilson R L 2005 Quasideterminants
Adv. Math. 193 56

DOI:10.1016/j.aim.2004.03.018 [Cited within: 1]

相关话题/Darboux transformation exact