删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Bilinear forms through the binary Bell polynomials, solitons and B【-逻*辑*与-】auml;cklund transformati

本站小编 Free考研考试/2022-01-02

Xin-Yi Gao, Yong-Jiang Guo,, Wen-Rui Shan,State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

Received:2020-04-7Revised:2020-04-28Accepted:2020-06-22Online:2020-08-06


Abstract
Water waves are one of the most common phenomena in nature, the studies of which help energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, symbolic computation is performed on the Boussinesq–Burgers system for shallow water waves in a lake or near an ocean beach. For the water-wave horizontal velocity and height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials and N-soliton solutions are worked out, while two auto-Bäcklund transformations are constructed together with the solitonic solutions, where N is a positive integer. Our bilinear forms, N-soliton solutions and Bäcklund transformations are different from those in the existing literature. All of our results are dependent on the water-wave dispersive power.
Keywords: lakes and ocean beaches;shallow water waves;Boussinesq–Burgers system;symbolic computation;bilinear forms through the binary Bell polynomials;Bäcklund transformations;solitonic solutions


PDF (261KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Xin-Yi Gao, Yong-Jiang Guo, Wen-Rui Shan. Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq–Burgers system for the shallow water waves in a lake or near an ocean beach. Communications in Theoretical Physics, 2020, 72(9): 095002- doi:10.1088/1572-9494/aba23d

Water has been known as a constant reminder that life repeats and the only element that has a visible cycle [1]. The water cycle has been believed to result in the distribution of water on land surface, to purify water, to support plant growth, to facilitate agriculture and to sustain aquatic ecosystem [2]. Water waves have been seen as one of the most common phenomena in nature, the studies of which help the energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc [310]. On the water waves, each year, hundreds of papers have been published, a few of which, e.g. are [310] recently. More recent nonlinear-physics contributions have been seen as well [1113].

For the propagation of shallow water waves in a lake or near an ocean beach, people have investigated the Boussinesq–Burgers system [1419],$ \begin{eqnarray}{u}_{t}=\displaystyle \frac{\beta -1}{2}\,{u}_{{xx}}+2{{uu}}_{x}+\displaystyle \frac{1}{2}{v}_{x},\,\end{eqnarray}$$ \begin{eqnarray}{v}_{t}=\left(1-\displaystyle \frac{\beta }{2}\right)\beta {u}_{{xxx}}+2{\left({uv}\right)}_{x}+\displaystyle \frac{1-\beta }{2}\,{v}_{{xx}},\,\,\end{eqnarray}$where x and t are the normalized space and time, the subscripts denote the partial derivatives, the differentiable function u=u(x, t) represents the horizontal velocity, and the differentiable function v=v(x, t) denotes the height of the water surface above the bottom level [16], while β is a real constant representing the dispersive power [15].

For system(1), finite-band solutions have been investigated with the help of the Lax representations of some stationary evolution equations [14], rational solutions have been obtained via the bilinear method and Kadomtsev–Petviashvili hierarchy reduction [15], non-auto-Bäcklund transformations, nonlocal symmetries, conservation laws and interaction solutions have been constructed [16], Darboux transformations and multi-soliton solutions have been presented [17, 18], bilinear form and multi-soliton solutions have been studied [19]. By the way, other issues related to system(1) have been seen [2028].

However, to our knowledge, Bell-polynomial investigation on the bilinear forms and N solitons for system(1) has not been carried out, where N is a positive integer. Auto-Bäcklund-transformation work on system(1), which is different from that in [16], has not been discussed, either. In this paper, we will briefly review the Bell-polynomial concepts. With the binary Bell polynomials and symbolic computation[29] we will work out the bilinear forms for system(1), which are different from those in [15, 19], and N solitons for system(1), which are different from those in [1519]. Also with symbolic computation, we will construct two auto-Bäcklund transformations with some soliton features. Conclusions will come out last.

Let us begin the work with the Bell-polynomial preliminary: Bell polynomials have been said to provide a relatively-direct way to get the bilinear forms for certain nonlinear evolution equations, instead of the dependent variable transformations [3032]. References [3032] have presented the following:The two-dimensional Bell polynomials:$ \begin{eqnarray}\begin{array}{rcl}{Y}_{{mx},{nt}}(\theta ) & \equiv & {Y}_{m,n}({\theta }_{\mathrm{1,1}},\cdots ,{\theta }_{1,n},\cdots ,{\theta }_{m,1},\cdots ,{\theta }_{m,n})\\ & = & {{\rm{e}}}^{-\theta }{\partial }_{x}^{m}{\partial }_{t}^{n}{{\rm{e}}}^{\theta },\end{array}\end{eqnarray}$where θ is a ${C}^{\infty }$ function of x and t, ${\theta }_{k,l}={\partial }_{x}^{k}{\partial }_{t}^{l}\theta $, $k=0,\cdots ,m,l=0,\cdots ,n$, with m and n being the nonnegative integers, e.g.$ \begin{eqnarray}\begin{array}{lcl}{Y}_{x,t} & = & {\theta }_{x,t}+{\theta }_{x}{\theta }_{t},\\ {Y}_{2x,t} & = & {\theta }_{2x,t}+{\theta }_{2x}{\theta }_{t}+2{\theta }_{x,t}{\theta }_{x}+{\theta }_{x}^{2}{\theta }_{t},\quad \cdots .\end{array}\end{eqnarray}$
The binary Bell polynomials:$ \begin{eqnarray}\displaystyle \begin{array}{rl}{{\mathscr{Y}}}_{{mx},{nt}}(p,q) & \equiv \,{Y}_{{mx},{nt}}({\psi }_{\mathrm{1,1}},\cdots ,{\psi }_{1,n},\cdots ,{\psi }_{m,1},\,{\left.\cdots ,{\psi }_{m,n})\right|}_{{\psi }_{k,l}=\left\{\begin{array}{l}{p}_{k,l},\mathrm{if}k+l\mathrm{is}\mathrm{odd},\\ {q}_{k,l},\mathrm{if}k+l\mathrm{is}\mathrm{even},\end{array}\right.}\end{array}\end{eqnarray}$where p(x, t) and q(x, t) are both the ${C}^{\infty }$ functions of x and t, ${\psi }_{k,l}$'s are all the functions of p and q, ${p}_{k,l}={\partial }_{x}^{k}{\partial }_{t}^{l}p$ and ${q}_{k,l}={\partial }_{x}^{k}{\partial }_{t}^{l}q$, e.g.$ \begin{eqnarray}\begin{array}{lcl}{{\mathscr{Y}}}_{x}(p,q) & = & {p}_{x},\quad {{\mathscr{Y}}}_{2x}(p,q)={q}_{2x}+{p}_{x}^{2},\\ {{\mathscr{Y}}}_{x,t}(p,q) & = & {p}_{x}{p}_{t}+{q}_{{xt}},\\ {{\mathscr{Y}}}_{3x}(p,q) & = & {p}_{3x}+3{p}_{x}{q}_{2x}+{p}_{x}^{3},\ \ \cdots .\,\end{array}\end{eqnarray}$
References [3335] have linked the ${\mathscr{Y}}$ polynomials to the Hirota D operators as$ \begin{eqnarray}{{\mathscr{Y}}}_{{mx},{nt}}\left[p=\mathrm{ln}\left(\displaystyle \frac{f}{g}\right),q=\mathrm{ln}\left({fg}\right)\right]={\left({fg}\right)}^{-1}{D}_{x}^{m}{D}_{t}^{n}f\cdot g,\end{eqnarray}$where f(x, t) and g(x, t) are the ${C}^{\infty }$ functions of x and t, while Dx and Dt are the Hirota D operators defined by$ \begin{eqnarray}\begin{array}{l}{D}_{x}^{m}{D}_{t}^{n}f(x,t)\cdot g(x,t)\\ \equiv \,{\left(\displaystyle \frac{\partial }{\partial x}-\displaystyle \frac{\partial }{\partial x^{\prime} }\right)}^{m}\,{\left.{\left(\displaystyle \frac{\partial }{\partial t}-\displaystyle \frac{\partial }{\partial t^{\prime} }\right)}^{n}f(x,t)g(x^{\prime} ,t^{\prime} )\right|}_{x^{\prime} =x,t^{\prime} =t},\end{array}\end{eqnarray}$with $x^{\prime} $ and $t^{\prime} $ being the formal variables.

Hereby, through the binary Bell polynomials, we need to work out the bilinear forms and N solitons for system(1).

To begin with, what is reported in [19] can be considered as a special case of our results in this part.

Similar to the work in [36, 37], the scaling transformation,$ \begin{eqnarray*}\begin{array}{l}x\to \varphi x,\quad t\to {\varphi }^{2}t,\quad \beta \to {\varphi }^{0}\beta ,\\ u\to {\varphi }^{-1}u,\quad v\to {\varphi }^{-2}v,\end{array}\end{eqnarray*}$
leads to our assumptions
$ \begin{eqnarray}u(x,t)={{\rm{\Upsilon }}}_{1}\,{p}_{x}(x,t),\,\end{eqnarray}$$ \begin{eqnarray}v(x,t)={{\rm{\Upsilon }}}_{2}\,{p}_{{xx}}(x,t)+{{\rm{\Upsilon }}}_{3}\,{q}_{{xx}}(x,t)+\sigma ,\end{eqnarray}$where ϒ1, ϒ2, ϒ3 and Σ are all the real constants. With the substitution of assumptions(8) and the assumptions that $ \begin{eqnarray*}{{\rm{\Upsilon }}}_{3}=2{{\rm{\Upsilon }}}_{1}^{2},\quad {{\rm{\Upsilon }}}_{2}=(1-\beta ){{\rm{\Upsilon }}}_{1}\quad \mathrm{and}\quad {{\rm{\Upsilon }}}_{1}=\pm \displaystyle \frac{1}{2}\end{eqnarray*}$
back into system(1), Bell-polynomial procedure and symbolic computation help us to reduce assumptions(8) to$ \begin{eqnarray}u(x,t)=\pm \displaystyle \frac{1}{2}{p}_{x}(x,t),\,\end{eqnarray}$$ \begin{eqnarray}v(x,t)=\pm \displaystyle \frac{1-\beta }{2}{p}_{{xx}}(x,t)+\displaystyle \frac{1}{2}{q}_{{xx}}(x,t)+\sigma ,\end{eqnarray}$and then to convert system(1) into two sets of the coupled systems of the ${\mathscr{Y}}$ polynomials:$ \begin{eqnarray}\pm \displaystyle \frac{1}{2}{{\mathscr{Y}}}_{2x}(p,q)-{{\mathscr{Y}}}_{t}(p)=0,\,\end{eqnarray}$$ \begin{eqnarray}\pm 2{{\mathscr{Y}}}_{x,t}(p,q)-{{\mathscr{Y}}}_{3x}(p,q)-4\sigma {{\mathscr{Y}}}_{x}(p)=0\ .\end{eqnarray}$

Further, with$ \begin{eqnarray}p(x,t)=\mathrm{ln}\left[\displaystyle \frac{f(x,t)}{g(x,t)}\right],\,\end{eqnarray}$$ \begin{eqnarray}q(x,t)=\mathrm{ln}\left[f(x,t)g(x,t)\right],\end{eqnarray}$we transform system(1), through systems(10), into the following two branches of bilinear forms with the binary Bell polynomials:$ \begin{eqnarray}\left(\pm \displaystyle \frac{1}{2}{D}_{x}^{2}-{D}_{t}\right)f\cdot g=0,\,\end{eqnarray}$$ \begin{eqnarray}\left(\pm 2{D}_{x}{D}_{t}-{D}_{x}^{3}-4\sigma {D}_{x}\right)f\cdot g=0\ .\end{eqnarray}$

The reason for the existence of two branches of bilinear forms(12) is that there appear the ‘±’ signs.

It is noted that bilinear forms(12) are different from those in [15, 19].

Expanding f(x, t) and g(x, t) in bilinear forms(12) with respect to a small parameter ε as$ \begin{eqnarray}f(x,t)=1+\displaystyle \sum _{\varsigma =1}^{N}{\epsilon }^{\varsigma }{f}_{\varsigma }(x,t),\,\end{eqnarray}$$ \begin{eqnarray}g(x,t)=1+\displaystyle \sum _{\varpi =1}^{N}{\epsilon }^{\varpi }{g}_{\varpi }(x,t),\end{eqnarray}$and then setting ε=1, we obtain the N-soliton solutions for system(1) as$ \begin{eqnarray}\left.\begin{array}{l}u(x,t)=\\ v(x,t)=\end{array}\right\}\ \mathrm{expressions}\ (9)\ \mathrm{and}\ (11),\mathrm{with}\,\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}f(x,t) & \,= & \displaystyle \sum _{{\mu }_{i},{\mu }_{j}=0,1}\exp \left[\displaystyle \sum _{i=1}^{N}{\mu }_{i}({\lambda }_{i}x+{\tau }_{i}t+{\omega }_{i})\right.\\ & & +\,\left.\displaystyle \sum _{1\leqslant i\lt j}^{(N)}{\mu }_{i}{\mu }_{j}{\delta }_{{ij}}\right],\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}g(x,t) & \,= & \displaystyle \sum _{{\mu }_{i},{\mu }_{j}=0,1}\exp \left[\displaystyle \sum _{i=1}^{N}{\mu }_{i}({\lambda }_{i}x+{\tau }_{i}t+{\kappa }_{i})\right.\\ & & +\,\left.\displaystyle \sum _{1\leqslant i\lt j}^{(N)}{\mu }_{i}{\mu }_{j}{\delta }_{{ij}}\right],\end{array}\end{eqnarray}$$ \begin{eqnarray}{{\rm{e}}}^{{\delta }_{{ij}}}\,={\left(\displaystyle \frac{\sqrt{{a}_{i}{b}_{j}}-\sqrt{{a}_{j}{b}_{i}}}{\sqrt{{a}_{i}{a}_{j}}-\sqrt{{b}_{i}{b}_{j}}}\right)}^{2},\,\end{eqnarray}$$ \begin{eqnarray}{{\rm{e}}}^{{\omega }_{i}}\,={a}_{i},\,\end{eqnarray}$$ \begin{eqnarray}{{\rm{e}}}^{{\kappa }_{i}}\,={b}_{i},\,\end{eqnarray}$$ \begin{eqnarray}{\tau }_{i}\,=\pm \displaystyle \frac{({a}_{i}+{b}_{i}){\lambda }_{i}^{2}}{2({a}_{i}-{b}_{i})},\,\end{eqnarray}$$ \begin{eqnarray}{\lambda }_{i}\,=({a}_{i}-{b}_{i})\sqrt{\displaystyle \frac{\sigma }{{a}_{i}{b}_{i}}},\,\end{eqnarray}$ς, ϖ, i and j being the positive integers with ςN, ϖN, iN and jN, ωi's and κi's denoting the real constants, ${f}_{\varsigma }(x,t)$'s and ${g}_{\varpi }(x,t)$'s being all the real differentiable functions of x and t, ai and bi representing the parameters characterizing the i-th soliton, aiΣ > 0, biΣ > 0, the sum ${\sum }_{{\mu }_{i},{\mu }_{j}=0,1}$ taken over all the possible combinations of μj=0,1 while ${\sum }_{1\leqslant i\lt j}^{(N)}$ being the summation over all the possible pairs chosen from the N elements under the condition i<j.

It is noted that there exist two branches of N-soliton solutions(14) because of the ‘±’ signs. Both of the branches are dependent on β, the water-wave dispersive power.

It is also noted that N-soliton solutions(14) are different from those in [1519].

Our next goal should be auto-Bäcklund transformations(17)–(25), which are different from those reported in [16], and the relevant soliton features for system(1), to be seen below.

For system(1), we need to consider the Painlevé expansions in the form of the generalized Laurent series [38, 39] (and references therein), i.e.$ \begin{eqnarray}u(x,t)={\phi }^{-{\rm{\Xi }}}(x,t)\displaystyle \sum _{\xi =0}^{\infty }{u}_{\xi }(x,t){\phi }^{\xi }(x,t),\end{eqnarray}$$ \begin{eqnarray}v(x,t)={\phi }^{-{ \mathcal X }}(x,t)\displaystyle \sum _{\chi =0}^{\infty }{v}_{\chi }(x,t){\phi }^{\chi }(x,t),\end{eqnarray}$and to balance the powers of φ at the lowest orders, so as to get$ \begin{eqnarray}{ \mathcal X }=2,\qquad {\rm{\Xi }}=1,\end{eqnarray}$where ξ and ${ \mathcal X }$ are the natural numbers, uξ's, vχ's and φ are all the analytic functions with ${u}_{0}\ne 0$, ${v}_{0}\ne 0$ and ${\phi }_{x}\ne 0$.

With symbolic computation, we will truncate Painlevé expansions(15) at the constant level terms [38, 39], as$ \begin{eqnarray}u(x,t)=\displaystyle \frac{{u}_{0}(x,t)}{\phi (x,t)}+{u}_{1}(x,t),\end{eqnarray}$$ \begin{eqnarray}v(x,t)=\displaystyle \frac{{v}_{0}(x,t)}{{\phi }^{2}(x,t)}+\displaystyle \frac{{v}_{1}(x,t)}{\phi (x,t)}+{v}_{2}(x,t),\,\end{eqnarray}$and substitute expansions(17) into system(1). Then, we require that the coefficients of like powers of φ vanish, and see the Painlevé–Bäcklund equations:$ \begin{eqnarray}\,{v}_{0}=\displaystyle \frac{\pm (\beta -1)-1}{2}{\phi }_{x}^{2},\,\end{eqnarray}$$ \begin{eqnarray}\,\,{u}_{0}=\pm \displaystyle \frac{{\phi }_{x}}{2},\,\end{eqnarray}$$ \begin{eqnarray}\,{v}_{1}=\pm \displaystyle \frac{2{\phi }_{t}-4{\phi }_{x}{u}_{1}-(\beta -1){\phi }_{{xx}}}{2},\,\end{eqnarray}$$ \begin{eqnarray}\,\pm {\phi }_{{xx}}+4{\phi }_{x}{u}_{1}-2{\phi }_{t}=0,\end{eqnarray}$$ \begin{eqnarray}\,\begin{array}{l}\pm 4\beta {\phi }_{x}^{2}{u}_{1,x}\mp 4{\phi }_{x}^{2}{u}_{1,x}\pm 16{\phi }_{x}{\phi }_{t}{u}_{1}\\ \mp \,16{\phi }_{x}^{2}{u}_{1}^{2}\pm 4{\phi }_{x}^{2}{v}_{2}\mp 4{\phi }_{t}^{2}\pm 3{\phi }_{{xx}}^{2}\\ \pm 4{\phi }_{x}{\phi }_{{xxx}}+12{\phi }_{x}^{2}{u}_{1,x}+24{\phi }_{x}{\phi }_{{xx}}{u}_{1}\\ -\,4{\phi }_{{xx}}{\phi }_{t}-8{\phi }_{x}{\phi }_{{xt}}=0,\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\,4\beta {\phi }_{{xx}}{u}_{1,x}+4\beta {\phi }_{x}{u}_{1,{xx}}\\ \,\,\,-\,32{\phi }_{x}{u}_{1,x}{u}_{1}+8{\phi }_{x}{u}_{1,t}+8{\phi }_{t}{u}_{1,x}-4{\phi }_{{xx}}{u}_{1,x}\\ \,\,\,-\,4{\phi }_{x}{u}_{1,{xx}}-16{\phi }_{{xx}}{u}_{1}^{2}+16{\phi }_{{xt}}{u}_{1}+4{\phi }_{x}{v}_{2,x}\\ \,\,+\,4{\phi }_{{xx}}{v}_{2}-4{\phi }_{{tt}}+{\phi }_{{xxxx}}=0,\end{array}\end{eqnarray}$$ \begin{eqnarray}\,{u}_{1,t}=\displaystyle \frac{\beta -1}{2}{u}_{1,{xx}}+2{u}_{1}{u}_{1,x}+\displaystyle \frac{1}{2}{v}_{2,x},\,\end{eqnarray}$$ \begin{eqnarray}\,{v}_{2,t}=\left(1-\displaystyle \frac{\beta }{2}\right)\beta {u}_{1,{xxx}}+2{\left({u}_{1}{v}_{2}\right)}_{x}+\displaystyle \frac{1-\beta }{2}{v}_{2,{xx}}.\end{eqnarray}$

Hereby, u1(x, t) and v2(x, t) can be treated as the seed solutions for system(1) [38, 39]. The sets of equations (17)–(25) constitute two auto-Bäcklund transformations, since there exist the ‘±’ signs, and the whole sets are mutually consistent, or, explicitly solvable with respect to φ(x, t), u0(x, t), u1(x, t), v0(x, t), v1(x, t) and v2(x, t), to be seen right below.

Each of auto-Bäcklund transformations(17)–(25) works as a system of equations relating a set of the solutions of system(1), e.g. one set of solutions(27) or (28), to another set of the solutions of system(1) itself. Therefore, we could, in principle at least, be able to progressively construct more and more complicated solutions of system(1).

Each of auto-Bäcklund transformations(17)–(25) is dependent on β, the water-wave dispersive power.

We will try to find the explicitly-solvable soliton examples, assuming that$ \begin{eqnarray}\left\{\begin{array}{l}\phi (x,t)={{\rm{e}}}^{{\zeta }_{1}(t)x+{\zeta }_{2}(t)}+1,\\ {u}_{1}(x,t)={\zeta }_{3}(t)+{\zeta }_{4}(t)x,\\ {v}_{2}(x,t)={\zeta }_{5}(t)+{\zeta }_{6}(t)x+{\zeta }_{7}(t){x}^{2},\end{array}\right.\end{eqnarray}$where ζl(t)'s (l=1, ..., 7) are the real differentiable functions, with ${\zeta }_{1}(t)\ne 0$ since ${\phi }_{x}\ne 0$.

With symbolic computation, we substitute assumptions(26) into equations (18)–(25), and work out
$ \begin{eqnarray*}\begin{array}{l}{\zeta }_{7}(t)=\displaystyle \frac{{[{\zeta }_{1}^{\prime} (t)-2{\zeta }_{1}(t){\zeta }_{4}(t)]}^{2}}{{\zeta }_{1}{(t)}^{2}}\end{array}\end{eqnarray*}$with the “′” sign denoting the derivative, with respect to t. There exist two cases, ζ1(t) ≠ constant or ζ1(t) = constant.

Case (1):${\zeta }_{1}(t)\,\ne $constant
$ \begin{eqnarray*}\begin{array}{r}\\ {\zeta }_{1}(t)= {\zeta }_{8}\,{{\rm{e}}}^{2\displaystyle \int {\zeta }_{4}(t){\rm{d}}{t}},\\ {\zeta }_{4}(t) = \displaystyle \frac{1}{{\zeta }_{9}-2t}\ {\rm{with}}\ {\zeta }_{9}-2t\ne 0,\\ {\zeta }_{6}(t) = 0,\\ {\zeta }_{3}(t) = \displaystyle \frac{{\rho }_{1}}{{\zeta }_{9}-2t},\\ {\zeta }_{5}(t) = \displaystyle \frac{{\rho }_{2}}{{\zeta }_{9}-2t},\\ {\zeta }_{2}(t) = \displaystyle \frac{{\zeta }_{8}(4{\rho }_{1}\pm {\zeta }_{8})}{4({\zeta }_{9}-2t)}+{2\rho }_{3},\\ {\rho }_{2} = 1-\beta \pm 1,\end{array}\end{eqnarray*}$
where ${\zeta }_{8}\ne 0$, ζ9, ρ1, ρ2 and ρ3 are all the real constants.

Computing with expressions(17) as well, we can obtain the following β-dependent soliton solutions of system(1):$ \begin{eqnarray}\begin{array}{rcl}u(x,t) & = & \pm \displaystyle \frac{{\zeta }_{8}}{4({\zeta }_{9}-2t)}\,\\ & & \times \mathrm{Tanh}\,\left[\displaystyle \frac{{\zeta }_{8}x}{2({\zeta }_{9}-2t)}+\displaystyle \frac{{\zeta }_{8}(4{\rho }_{1}\pm {\zeta }_{8})}{8({\zeta }_{9}-2t)}+{\rho }_{3}\right]\\ & & +\,\displaystyle \frac{x}{{\zeta }_{9}-2t}+\displaystyle \frac{4{\rho }_{1}\pm {\zeta }_{8}}{4({\zeta }_{9}-2t)},\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}\quad v(x,t) & = & \displaystyle \frac{{\zeta }_{8}^{2}(\pm \beta \mp 1-1)}{8{\left({\zeta }_{9}-2t\right)}^{2}}\,\\ & & \times {\mathrm{Tanh}}^{2}\,\left[\displaystyle \frac{{\zeta }_{8}x}{2({\zeta }_{9}-2t)}+\displaystyle \frac{{\zeta }_{8}(4{\rho }_{1}\pm {\zeta }_{8})}{8({\zeta }_{9}-2t)}+{\rho }_{3}\right]\\ & & +\,\displaystyle \frac{{\zeta }_{8}^{2}(1\mp \beta \pm 1)+8(1-\beta \pm 1)({\zeta }_{9}-2t)}{8{\left({\zeta }_{9}-2t\right)}^{2}}.\end{array}\end{eqnarray}$There exist two branches of those solutions because of the ‘±’ signs.

Case (2):ζ1(t)=η1=non-zero constant

Similarly, we can obtain the following β-dependent solitonic solutions of system(1):$ \begin{eqnarray}\begin{array}{rcl}u(x,t) & = & \pm \displaystyle \frac{{\eta }_{1}}{4}\,\mathrm{Tanh}\left[\displaystyle \frac{{\eta }_{1}x}{2}+\displaystyle \frac{{\eta }_{1}\left(4{\eta }_{2}\pm {\eta }_{1}\right)t}{4}+\displaystyle \frac{{\eta }_{3}}{2}\right]\\ & & +\,{\eta }_{2}\pm \displaystyle \frac{{\eta }_{1}}{4},\,\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{rcl}v(x,t) & = & \displaystyle \frac{{\eta }_{1}^{2}(\pm \beta \mp 1-1)}{8}\,\\ & & \times \,{\mathrm{Tanh}}^{2}\,\left[\displaystyle \frac{{\eta }_{1}x}{2}+\displaystyle \frac{{\eta }_{1}\left(4{\eta }_{2}\pm {\eta }_{1}\right)t}{4}+\displaystyle \frac{{\eta }_{3}}{2}\right]\\ & & -\,\displaystyle \frac{{\eta }_{1}^{2}(\pm \beta \mp 1-1)}{8},\,\end{array}\end{eqnarray}$where η2 and η3 are also the real constants. There exist two branches of those solutions because of the ‘±’ signs.

Right now, let us finish up the paper. Water has been known as a constant reminder that life repeats and the only element that has a visible cycle. The water cycle has been believed to result in the distribution of water on land surface, to purify water, to support plant growth, to facilitate agriculture and to sustain aquatic ecosystem. Water waves have been seen as one of the most common phenomena in nature, the studies of which help the energy development, marine/offshore engineering, hydraulic engineering, mechanical engineering, etc. Hereby, on system(1), the Boussinesq–Burgers system for the shallow water waves in a lake or near an ocean beach, symbolic computation has been performed. For u(x, t), the water-wave horizontal velocity, and v(x, t), the height of the water surface above the bottom, two sets of the bilinear forms through the binary Bell polynomials, i.e. bilinear forms(12), and N-soliton solutions(14) have been worked out, while two sets of auto-Bäcklund transformations(17)–(25) have been constructed together with solitonic solutions(27) and (28). It has been noted that bilinear forms(12), N-soliton solutions(14) and Bäcklund transformations(17)–(25) are different from those in the existing literatures. All of our results have been shown to be dependent on β, the water-wave dispersive power.

Acknowledgments

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Nature Science Foundation of China under Grant No. 11871116 and Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11.


Reference By original order
By published year
By cited within times
By Impact factor

Cooper E J et al. 2020 Northwest Sci. 94 70
DOI:10.3955/046.094.0106 [Cited within: 1]

Alejandra Moreno M et al. 2020 Food Hydrocolloid. 107 105973
DOI:10.3955/046.094.0106 [Cited within: 1]

Su J J Gao Y T Deng G F Jia T T 2019 Phys. Rev. E 100 042210
DOI:10.3955/046.094.0106 [Cited within: 1]

Deng G F Gao Y T Su J J Ding C C 2019 Appl. Math. Lett. 98 177
DOI:10.3955/046.094.0106 [Cited within: 1]

Jia T T Gao Y T Deng G F Hu L 2019 Nonlinear Dyn. 98 269
DOI:10.3955/046.094.0106 [Cited within: 1]

Feng Y J Gao Y T Li L Q Jia T T 2020 Applicable Anal.accepted
DOI:10.3955/046.094.0106 [Cited within: 1]

Hethnawi A et al. 2020 Colloids Surf. A 597 124814
DOI:10.1016/j.colsurfa.2020.124814 [Cited within: 1]

Mhawej M Fadel A Faour G 2020 Int. J. Remote Sen. 41 5321
DOI:10.1016/j.colsurfa.2020.124814 [Cited within: 1]

Wang M Tian B Sun Y Zhang Z 2020 Comput. Math. Appl. 79 576
DOI:10.1016/j.colsurfa.2020.124814 [Cited within: 1]

Hu C C Tian B Wu X Y Yuan Y Q Du Z 2018 Eur. Phys. J. Plus 133 40
DOI:10.1016/j.colsurfa.2020.124814 [Cited within: 1]

Chen Y Q Tian B Qu Q X Li H Zhao X H Tian H Y Wang M 2020 Mod. Phys. Lett. B accepted
DOI:10.1016/j.colsurfa.2020.124814 [Cited within: 1]

Chen Y Q Tian B Qu Q X Li H Zhao X H Tian H Y Wang M 2020 Int. J. Mod. Phys. B accepted JPB20076387
DOI:10.1016/j.colsurfa.2020.124814 [Cited within: 1]

Sowmya G Gireesha B J Sindhu S Prasannakumara B C 2020 Commun. Theor. Phys. 72 025004
DOI:10.1088/1572-9494/ab6904 [Cited within: 2]

Jia T T Gao Y T Feng Y J Hu L Su J J Li L Q Ding C C 2019 Nonlinear Dyn. 96 229
DOI:10.1088/1572-9494/ab6904 [Cited within: 2]

Hu S H Tian B Du X X Liu L Zhang C R 2019 Pramana—J. Phys. 93 38
DOI:10.1088/1572-9494/ab6904 [Cited within: 2]

Khater M M Lu D C Attia R A Inc M 2019 Commun. Theor. Phys. 71 1267
DOI:10.1088/0253-6102/71/11/1267

Feng Y J Gao Y T Jia T T Li L Q 2019 Mod. Phys. Lett. B 33 1950354
DOI:10.1088/0253-6102/71/11/1267

Yuan Y Q Tian B Qu Q X Zhao X H Du X X 2020 Z. Angew. Math. Phys. 71 46
DOI:10.1088/0253-6102/71/11/1267

Kumar R Kumar R Koundal R Shehzad S A Sheikholeslami M 2019 Commun. Theor. Phys. 71 779
DOI:10.1088/0253-6102/71/7/779

Hu L Gao Y T Jia S L Su J J Deng G F 2019 Mod. Phys. Lett. B 33 1950376
DOI:10.1088/0253-6102/71/7/779

Su J J Gao Y T Ding C C 2019 Appl. Math. Lett. 88 201
DOI:10.1088/0253-6102/71/7/779

Bona J L Colin T Guillope C 2019 Discrete Cont. Dyn. Syst. 39 5543
DOI:10.3934/dcds.2019244

Ding C C Gao Y T Deng G F 2019 Nonlinear Dyn. 97 2023
DOI:10.3934/dcds.2019244

Deng G F Gao Y T Su J J Ding C C Jia T T 2020 Nonlinear Dyn. 99 1039
DOI:10.3934/dcds.2019244

Congy T El G A Hoefer M A 2019 J. Fluid Mech. 875 1145
DOI:10.1017/jfm.2019.534

Roy R De S Mandal B N 2019 Appl. Math. Comput. 355 458
DOI:10.1016/j.amc.2019.03.004

Roy R De S Mandal B N 2019 Fluid Dyn. Res. 51 045508
DOI:10.1016/j.amc.2019.03.004

Hu C C Tian B Yin H M Zhang C R Zhang Z 2019 Comput. Math. Appl. 78 166
DOI:10.1016/j.camwa.2019.02.026

Wang M Tian B Qu Q X Du X X Zhang C R Zhang Z 2019 Eur. Phys. J. Plus 134 578
DOI:10.1016/j.camwa.2019.02.026

Eeltink D Armaroli A Ducimetiere Y M Kasparian J Brunetti M 2019 Phys. Rev. E 100 013102
DOI:10.1103/PhysRevE.100.013102 [Cited within: 2]

Yin H M Tian B Zhao X H 2020 Appl. Math. Comput. 368 124768
DOI:10.1016/j.amc.2019.124768 [Cited within: 1]

Chen S S Tian B Sun Y Zhang C R 2020 Ann. Phys. 531 1900011
DOI:10.1016/j.amc.2019.124768 [Cited within: 1]

Ding C C Gao Y T Li L Q 2019 Chaos Solitons Fractals 120 259
DOI:10.1016/j.amc.2019.124768 [Cited within: 1]

Du Z Tian B Chai H P Zhao X H 2020 Appl. Math. Lett. 102 106110
DOI:10.1016/j.aml.2019.106110

Du X X Tian B Qu Q X Yuan Y Q Zhao X H 2020 Chaos Solitons Fractals 134 109709
DOI:10.1016/j.aml.2019.106110

Li L Q Gao Y T Hu L Jia T T Ding C C Feng Y J 2020 Nonlinear Dyn. 100 2729
DOI:10.1016/j.aml.2019.106110

Zhang C R Tian B Qu Q X Liu L Tian H Y 2020 Z. Angew. Math. Phys. 71 18
DOI:10.1007/s00033-019-1225-9 [Cited within: 1]

Hu S H Tian B Du X X Du Z Wu X Y 2019 J. Comput. Nonlin. Dyn. 14 111001
DOI:10.1007/s00033-019-1225-9 [Cited within: 1]

Yuan Y Q Tian B Qu Q X Zhang C R Du X X 2020 Nonlinear Dyn. 99 3001
DOI:10.1007/s00033-019-1225-9 [Cited within: 1]

Geng X G Wu Y T 1999 J. Math. Phys. 40 2971
DOI:10.1063/1.532739 [Cited within: 2]

Li M Hu W K Wu C F 2018 Nonlinear Dyn. 94 1291
DOI:10.1007/s11071-018-4424-6 [Cited within: 6]

Dong M J Tian S F Yan X W Zhang T T 2019 Nonlinear Dyn. 95 273
DOI:10.1007/s11071-018-4563-9 [Cited within: 4]

Xu R 2008 Commun. Theor. Phys. 50 579
DOI:10.1088/0253-6102/50/3/08 [Cited within: 1]

Mei J Ma Z 2013 Appl. Math. Comput. 219 6163
[Cited within: 1]

Zhang C C Chen A H 2016 Appl. Math. Lett. 58 133
DOI:10.1016/j.aml.2016.02.015 [Cited within: 7]

Kupershmidt B A 1985 Commun. Math. Phys. 99 51
DOI:10.1007/BF01466593 [Cited within: 1]

Kawamoto S 1984 J. Phys. Soc. Jpn. 53 469
DOI:10.1143/JPSJ.53.469

Wazwaz A M 2017 Filomat 31 831
DOI:10.2298/FIL1703831W

Hu J Xu Z W Yu G F 2016 Appl. Math. Lett. 62 76
DOI:10.1016/j.aml.2016.07.003

Rady A S Osman E S Khalfallah M 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1172
DOI:10.1016/j.cnsns.2009.05.053

Gu Z Q 1990 J. Math. Phys. 31 1374
DOI:10.1063/1.528723

Wang P Tian B Liu W J Lv X Jiang Y 2011 Appl. Math. Comput. 218 1726
DOI:10.1016/j.amc.2011.06.053

Wang Y H 2014 Appl. Math. Lett. 38 100
DOI:10.1016/j.aml.2014.07.014

Roshid H O Rahman M A 2014 Results Phys. 4 150
DOI:10.1016/j.rinp.2014.07.006 [Cited within: 1]

Zhang Y F Feng B L 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3045
DOI:10.1016/j.rinp.2014.07.006 [Cited within: 1]

Chen S S Tian B Liu L Yuan Y Q Zhang C R 2019 Chaos Solitons Fractals 118 337
DOI:10.1016/j.chaos.2018.11.010 [Cited within: 1]

Du Z Tian B Qu Q X Wu X Y Zhao X H 2020 Appl. Numer. Math. 153 179
DOI:10.1016/j.chaos.2018.11.010 [Cited within: 1]

Yin H M Tian B Zhao X C 2020 J. Magn. Magn. Mater. 495 165871
DOI:10.1016/j.chaos.2018.11.010 [Cited within: 1]

Du X X Tian B Yuan Y Q Du Z 2019 Ann. Phys. Berlin 531 1900198
DOI:10.1016/j.chaos.2018.11.010 [Cited within: 1]

Zhang C R Tian B Y. Sun Yin H M 2019 EPL 127 40003
DOI:10.1016/j.chaos.2018.11.010 [Cited within: 1]

Zhao X Tian B Qu Q X Yuan Y Q Du X X Chu M X 2020 Mod. Phys. Lett. B accepted
DOI:10.1016/j.chaos.2018.11.010 [Cited within: 1]

Bell E T 1934 Ann. Math. 35 258
DOI:10.2307/1968431 [Cited within: 2]

Lambert F Loris I Springael J Willox R 1994 J. Phys. A: Math. Gen. 27 5325
DOI:10.1088/0305-4470/27/15/028

Wang Y F Tian B Jiang Y 2017 Appl. Math. Comput. 292 448
DOI:10.1016/j.amc.2016.07.025 [Cited within: 2]

Matveev V B Salle M A 1991 Darboux Transformations and SolitonsBerlin Springer
[Cited within: 1]

Wadati M 1975 J. Phys. Soc. Jpn. 38 673
DOI:10.1143/JPSJ.38.673

Caruello F Tabor M 1989 Physica D 39 77
DOI:10.1016/0167-2789(89)90040-7 [Cited within: 1]

Lambert F Springael J 2001 Chaos Solitons Fractals 12 2821
DOI:10.1016/S0960-0779(01)00096-0 [Cited within: 1]

Lambert F Springael J 2008 Acta Appl. Math. 102 147
DOI:10.1007/s10440-008-9209-3 [Cited within: 1]

Gao X Y Guo Y J Shan W R 2020 Appl. Math. Lett. 104 106170
DOI:10.1016/j.aml.2019.106170 [Cited within: 3]

Gao X Y 2019 Appl. Math. Lett. 91 165
DOI:10.1016/j.aml.2018.11.020 [Cited within: 3]

相关话题/Bilinear forms through