Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and S
本站小编 Free考研考试/2022-01-02
Jalil Manafian,1,6, Onur Alp Ilhan,2, As’ad Alizadeh,3,4, Sizar Abid Mohammed,51Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran 2Department of Mathematics, Faculty of Education, Erciyes University, 38039-Melikgazi-Kayseri, Turkey 3Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran 4Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho, Iraq 5Department of Mathematics, College of Basic Education, University of Duhok, Zakho Street 38, 1006 AJ Duhok, Iraq
First author contact:6Author to whom any correspondence should be addressed. Received:2019-12-22Revised:2020-03-13Accepted:2020-03-13Online:2020-06-09
Abstract The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky–Konopelchenko (BK) equation. The solutions obtained contain first-order, second-order, and third-order wave solutions. At the critical point, the second-order derivative and Hessian matrix for only one point is investigated, and the lump solution has one maximum value. He’s semi-inverse variational principle (SIVP) is also used for the generalized BK equation. Three major cases are studied, based on two different ansatzes using the SIVP. The physical phenomena of the multiple soliton solutions thus obtained are then analyzed and demonstrated in the figures below, using a selection of suitable parameter values. This method should prove extremely useful for further studies of attractive physical phenomena in the fields of heat transfer, fluid dynamics, etc. Keywords:multiple rogue wave solutions;multiple soliton solutions;generalized Bogoyavlensky–Konopelchenko equation;semi-inverse variational principle
PDF (2091KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article Jalil Manafian, Onur Alp Ilhan, As’ad Alizadeh, Sizar Abid Mohammed. Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. Communications in Theoretical Physics, 2020, 72(7): 075002- doi:10.1088/1572-9494/ab8a13
1. Introduction
As we know, the model of many natural phenomena and differential equations in science and engineering are nonlinear, and it is very important to obtain analytically or numerically accurate solutions. In order to achieve this goal, various methods have been developed for linear and nonlinear equations such as: the Exp-function method [1], the homotopy analysis method [2], the homotopy perturbation method [3], the (G’/G)-expansion method [4], the improved $\tan (\phi /2)$-expansion method [5, 6], Hirota’s bilinear method [7–19], He’s variational principle [20, 21], the binary Darboux transformation [22], the Lie group analysis [23, 24], the Bäcklund transformation method [25], and the multiple Exp-function method [26, 27]. Moreover, many powerful methods have been used to investigate the new properties of mathematical models symbolizing serious real world problems [28–30].
Bogoyavlenski introduced a model equation to describe nonisospectral scattering problems [31], specifically the (2+1)-dimensional Bogoyavlenski equation:$ \begin{eqnarray}4{{\rm{\Psi }}}_{t}+{{\rm{\Psi }}}_{{xxy}}-4{{\rm{\Psi }}}^{2}{{\rm{\Psi }}}_{y}-4{{\rm{\Psi }}}_{x}{\rm{\Phi }}=0,\end{eqnarray}$ $ \begin{eqnarray*}{\rm{\Psi }}{{\rm{\Psi }}}_{y}={{\rm{\Phi }}}_{x}.\end{eqnarray*}$Kudryashov and Pickering [32] proposed the above equation as a member of a (2+1) Schwarzian breaking soliton hierarchy. Clarkson and co-authors [33] investigated equation (1.1) as part of a group of equations associated with nonisospectral scattering problems. Estevez and Prada [34] presented a generalization of the sine-Gordon equation possessing the Painleve feature. Zhran and Khater [35] examined the Bogoyavlenskii equation utilizing the modified extended tanh-function method. The authors of [36] showed that the above equation is an as-modified version of the following nonlinear equation:$ \begin{eqnarray}4{{\rm{\Psi }}}_{{xt}}+8{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xy}}+4{{\rm{\Psi }}}_{y}{{\rm{\Psi }}}_{{xx}}+{{\rm{\Psi }}}_{{xxxy}}=0,\end{eqnarray}$this is known as the breaking soliton equation. Equation (1.2) is also a specific version of a form of Bogoyavlensky–Konopelchenko (BK) equation, given as$ \begin{eqnarray}\begin{array}{l}a{{\rm{\Psi }}}_{{xt}}+b{{\rm{\Psi }}}_{{xxxx}}+c{{\rm{\Psi }}}_{{xxy}}+d{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xx}}\\ \qquad +\,e{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xy}}+k{{\rm{\Psi }}}_{{xx}}{{\rm{\Psi }}}_{y}=0.\end{array}\end{eqnarray}$The BK equation defines the (2+1)-dimensional interaction of a Riemann wave propagation along the y-axis with a long wave along the x-axis, and is also a two-dimensional generalization of the well known Korteweg-de Vries equation [37, 38]. This study is aimed at investigating the following generalized BK equation [39]:$ \begin{eqnarray}\begin{array}{l}{{\rm{\Psi }}}_{t}+\alpha (6{\rm{\Psi }}{{\rm{\Psi }}}_{x}+{{\rm{\Psi }}}_{{xxx}})+\beta ({{\rm{\Psi }}}_{{xxy}}+3{\rm{\Psi }}{{\rm{\Psi }}}_{y}+3{{\rm{\Psi }}}_{x}{{\rm{\Phi }}}_{y})\\ \,+\,{\gamma }_{1}{{\rm{\Psi }}}_{x}+{\gamma }_{2}{{\rm{\Psi }}}_{y}+{\gamma }_{3}{{\rm{\Phi }}}_{{yy}}=0,\end{array}\end{eqnarray}$in which Φx=ψ, and α, β, γ1, γ2, and γ3 are determined values. Equation (1.4) can be written as$ \begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{{xt}}+\alpha (6{{\rm{\Phi }}}_{x}{{\rm{\Phi }}}_{{xx}}+{{\rm{\Phi }}}_{{xxxx}})+\beta ({{\rm{\Phi }}}_{{xxxy}}+3{{\rm{\Phi }}}_{x}{{\rm{\Phi }}}_{{xy}}+3{{\rm{\Phi }}}_{{xx}}{{\rm{\Phi }}}_{{xy}})\\ \,+\,{\gamma }_{1}{{\rm{\Phi }}}_{{xx}}+{\gamma }_{2}{{\rm{\Phi }}}_{{xy}}+{\gamma }_{3}{{\rm{\Phi }}}_{{yy}}=0,\end{array}\end{eqnarray}$by applying the bilinear transformation ${\rm{\Psi }}=2{(\mathrm{ln}f)}_{{xx}}$ and ${\rm{\Phi }}=2{(\mathrm{ln}f)}_{x}$, the equation (1.5) transforms to the bilinear form as follows:$ \begin{eqnarray}\begin{array}{l}\left(\alpha {D}_{x}^{4}+\beta {D}_{x}^{3}{D}_{y}+{D}_{t}{D}_{x}+{\gamma }_{1}{D}_{x}^{2}\right.\\ \,\left.+\,{\gamma }_{2}{D}_{x}{D}_{y}+{\gamma }_{3}{D}_{y}^{2}\right){\mathfrak{f}}.{\mathfrak{f}}=0,\end{array}\end{eqnarray}$ $ \begin{eqnarray*}\begin{array}{l}{D}_{x}^{4}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xxxx}}-4{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{{xxx}}+3{{\mathfrak{f}}}_{{xx}}^{2}),\\ {D}_{x}^{3}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xxxy}}-{{\mathfrak{f}}}_{y}{{\mathfrak{f}}}_{{xxx}}-3{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{{xxy}}+3{{\mathfrak{f}}}_{{xx}}{{\mathfrak{f}}}_{{xy}}),\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{l}{D}_{x}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xx}}-{{\mathfrak{f}}}_{x}^{2}),\ \ \ {D}_{x}{D}_{t}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xt}}-{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{t}),\\ {D}_{x}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xy}}-{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{y}),\ \ {D}_{y}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{yy}}-{{\mathfrak{f}}}_{y}^{2}).\end{array}\end{eqnarray*}$ Various research models already exist relating to lump solutions for the (2+1)-dimensional nonlinear equation. Liu and co-workers employed the Hirota bilinear method to obtain an N-soliton solution for the (3+1)-dimensional generalized KP equation [40]. The same group also constructed an N-soliton solution for the(2+1)-dimensional generalized Hirota-Satsuma-Ito equation [41]. Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities [42], and in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction [43] have been investigated both analytically and numerically. With regard to the integrable coupled nonlinear Schrödinger system, N-soliton solutions within this system were obtained, and the collision dynamics between two solitons was also analyzed via the Riemann-Hilbert method by Wang and co-authors in [44].
Currently, nonlinear differential equations represent a significant opportunity for researchers to define tangible incidents. This has driven mathematicians and scientists to examine a wide variety of soliton solutions. As a result, in the past few years a growing number of effective and realistic methods have been initiated and dilated to extract closed form solutions to NLDEs. Among these, the semi-inverse principle method is one of the more powerful methods to be examined, in studies relating to the buckling analysis of circular cylinders [45], one-dimensional compressible flow in a microgravity space [46], the generalized KdV-Burgers equation with fractal derivatives [47], and the thin film equation [48]. In addition, it would be beneficial to researchers to consider recent studies on the variational approach to nonlinear oscillators, as investigated by authors such as Liu [49], Nawaz, and co-workers [50], He [51, 52], and Kovacic, Rakaric, and Cveticanin [53]. Finally, any review of the above methods should include two-scale fractal calculus, a hot topic in mathematics and physics, as demonstrated in the valuable works [54, 55].
In this paper, we will study the multiple lump soliton to determine multiple soliton solutions. The multiple lump method has been utilized by researchers for a variety of applications requiring nonlinear equations, including: the construction of rogue waves with a controllable center in nonlinear systems [56], the (3+1)-dimensional Hirota bilinear equation [57], the generalized (3+1)-dimensional KP equation [58], and the Boussinesq equation [59].
The remainder of this paper is structured as follows: the multiple lump scheme is summarized in section 2. In section 3, the generalized BK equation is used to investigate first-order, second-order, and third-order wave solutions. SIVP will also be examined in section 4. In the last section, the conclusions are presented.
2. Multiple lump solution method
This section elucidates a systematic explanation of the multiple lump soliton solution [56–58] so that it can be further applied to nonlinear PDEs in order to furnish exact solutions:
Step 1. Take the following NLPDE$ \begin{eqnarray}{ \mathcal N }(x,y,t,{\rm{\Psi }},{{\rm{\Psi }}}_{x},{{\rm{\Psi }}}_{y},{{\rm{\Psi }}}_{t},{{\rm{\Psi }}}_{{xx}},{{\rm{\Psi }}}_{{xy}},{{\rm{\Psi }}}_{{tt}},\ldots )=0.\end{eqnarray}$We commence a Painlevè analysis, using the following transformation$ \begin{eqnarray}{\rm{\Psi }}={\mathfrak{T}}(f),\end{eqnarray}$based on the dependant variable function f.
Step 2. By means of transformation (2.2), the nonlinear equation (2.1) can be written in terms of the following Hirota’s bilinear form:$ \begin{eqnarray}{\mathfrak{G}}({D}_{\xi },{D}_{y};f)=0,\end{eqnarray}$where $\xi =x-{ct}$ and c is a real parameter. Moreover, the D-operator [22] is given as follows:$ \begin{eqnarray}\prod _{i=1}^{2}{D}_{{\jmath}_{i}}^{{\beta }_{i}}f.g={\left.\prod _{i=1}^{2}{\left(\displaystyle \frac{\partial }{\partial {\jmath}_{i}}-\displaystyle \frac{\partial }{\partial {\jmath}_{i}^{{\prime} }}\right)}^{{\beta }_{i}}f(\jmath)g(\jmath^{\prime} )\right|}_{\jmath^{\prime} =\jmath},\end{eqnarray}$where the vectors $\jmath=({\jmath}_{1},{\jmath}_{2},{\jmath}_{3})=(x,y,t)$, $\jmath^{\prime} =({\jmath}_{1}^{{\prime} },{\jmath}_{2}^{{\prime} },{\jmath}_{3}^{{\prime} })=(x^{\prime} ,y^{\prime} ,t^{\prime} )$, and β1, β2, β3 are arbitrary nonnegative integers.
Step 3. Let$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {\mathfrak{f}}(\xi ,y;\theta ,\delta )\\ & = & {\chi }_{n+1}(\xi ,y)+2\delta {{yp}}_{n}(\xi ,y)\\ & & +2\delta \xi {s}_{n}(\xi ,y)+({\theta }^{2}+{\delta }^{2}){\chi }_{n-1}(\xi ,y),\end{array}\end{eqnarray}$with$ \begin{eqnarray}{\chi }_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{a}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray}$ $ \begin{eqnarray*}{p}_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{b}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray*}$ $ \begin{eqnarray*}{s}_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{c}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray*}$${\chi }_{0}=1,{\chi }_{1}={p}_{0}={s}_{0}=0$, where ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\,\in \{0,2,4,...,n(n+1)\})$ and θ, δ are real values. The coefficients ${a}_{m,l},{b}_{m,l},{c}_{m,l}$ can be found, and special values θ, δ are utilized to control the wave center.
Step 4. By inserting (2.6) into (2.5) and setting all the coefficients of the diverse powers of ${y}^{m}{\xi }^{m}$ to zero, we obtain a system of nonlinear algebra equations. Using the symbolic computation system Maple or Mathematica, solving the system gained above leads to the values of ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\in \{0,2,4,...,n(n+1)\})$.
Step 5. Plugging the values of ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\,\in \{0,2,4,...,n(n+1)\})$ into (2.4) gives some rational solutions to the (2 + 1)-dimensional generalized BK equation (1.5), which are then utilized to search for lump solutions. This type of lump solution is localized in y and ξ.
3. Lump solutions of a (2+1)-D generalized BK equation
3.1. Set I: one-wave solution
We commence with a one-wave function based on $\xi =x-{ct}$, whereby equation (1.5) is transformed as follows:$ \begin{eqnarray}\left(\alpha {D}_{\xi }^{4}+\beta {D}_{\xi }^{3}{D}_{y}+({\gamma }_{1}-c){D}_{\xi }^{2}+{\gamma }_{2}{D}_{\xi }{D}_{y}+{\gamma }_{3}{D}_{y}^{2}\right){\mathfrak{f}}.{\mathfrak{f}}=0,\end{eqnarray}$where c is the unfound constant, and $ \begin{eqnarray*}\begin{array}{rcl}{D}_{\xi }^{4}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi \xi \xi }-4{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{\xi \xi \xi }+3{{\mathfrak{f}}}_{\xi \xi }^{2}),\\ {D}_{\xi }^{3}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi \xi y}-{{\mathfrak{f}}}_{y}{{\mathfrak{f}}}_{\xi \xi \xi }-3{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{\xi \xi y}+3{{\mathfrak{f}}}_{\xi \xi }{{\mathfrak{f}}}_{\xi y}),\\ {D}_{\xi }^{2}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi }-{{\mathfrak{f}}}_{\xi }^{2}),\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}{D}_{\xi }{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{\xi y}-{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{y}),\ \ {D}_{y}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{yy}}-{{\mathfrak{f}}}_{y}^{2}).\end{eqnarray*}$ Based on the approach presented in section 2, as proposed by Zhaqilao [56], we are able to derive the higher order lump solutions with controllable center of the variable-coefficient (2+1)-dimensional generalized BK equation. Considering n=0 at (2.5), then (2.5) will be given as$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{1}(\xi ,y;\theta ,\delta )\\ & = & {\chi }_{1}(\xi ,y)+2\delta {{yp}}_{0}(\xi ,y)+2\delta \xi {s}_{0}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{-1}(\xi ,y)\\ & = & {a}_{2,0}{\xi }^{2}+{a}_{0,2}{y}^{2}+{a}_{0,0}.\end{array}\end{eqnarray}$Without loss of generality, we can choose ${a}_{\mathrm{2,0}}=1$. Plugging (3.2) into (3.1) and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations given as:$ \begin{eqnarray}\begin{array}{l}4\,{a}_{\mathrm{0,0}}{a}_{\mathrm{0,2}}{\gamma }_{3}-4\,{{ca}}_{\mathrm{0,0}}+4\,{a}_{\mathrm{0,0}}{\gamma }_{1}+24\,\alpha =0,\\ \,4\,{a}_{\mathrm{0,2}}{\gamma }_{3}+4\,c-4\,{\gamma }_{1}=0,\\ \,-4\,{a}_{0,2}^{2}{\gamma }_{3}-4\,{{ca}}_{\mathrm{0,2}}+4\,{a}_{\mathrm{0,2}}{\gamma }_{1}=0.\end{array}\end{eqnarray}$Solving equation (3.3), we get$ \begin{eqnarray}{a}_{\mathrm{0,2}}=-\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}},\ \ {a}_{\mathrm{0,0}}=3\,\displaystyle \frac{\alpha }{c-{\gamma }_{1}}.\end{eqnarray}$Thus, we can obtain a solution to equation (3.2) as follows:$ \begin{eqnarray}{\mathfrak{f}}={{\mathfrak{f}}}_{1}(\xi ,y;\theta ,\delta )={\left(\xi -\theta \right)}^{2}-\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}}{\left(y-\delta \right)}^{2}+\displaystyle \frac{3\alpha }{c-{\gamma }_{1}},\end{eqnarray}$Assuming λ<0, and cg(t)>0, then the first-order lump solutions of equation (1.5) can be expressed as$ \begin{eqnarray}\begin{array}{rcl}{\rm{\Psi }}(\xi ,y) & = & {{\rm{\Psi }}}_{0}+\displaystyle \frac{4}{-\tfrac{{\left(y-\delta \right)}^{2}\left(c-{\gamma }_{1}\right)}{{\gamma }_{3}}+{\left(\xi -\theta \right)}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}}\\ & & -\displaystyle \frac{2{\left(2\xi -2\theta \right)}^{2}}{{\left(-\tfrac{{\left(y-\delta \right)}^{2}\left(c-{\gamma }_{1}\right)}{{\gamma }_{3}}+{\left(\xi -\theta \right)}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}\right)}^{2}}.\end{array}\end{eqnarray}$It is worth mentioning that this lump has the following features:$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$By selecting suitable values of parameters, the graphical representation of a periodic wave solution is presented in figures 1 and 2 which includes a 3D plot, a contour plot, a density plot, and a 2D plot where three spaces arise at spaces y=−1, y=0, and y=1. In figure 1 the lump has one center (δ, θ)=(2, 2), whereas in figure 2 the rogue wave has one center $(\delta ,\theta )=(-2,-2)$. Due to our use of a simple computation, the lump has two critical points, but we investigate only one point, $({\xi }_{1},{y}_{1})=\left(\tfrac{c\theta -\theta \,{\gamma }_{1}+3\,\sqrt{\alpha \,c-\alpha \,{\gamma }_{1}}}{c-{\gamma }_{1}},\delta \right)$. At point (ξ1, y1), the second-order derivative and Hessian matrix can be determined, as given in [60]:$ \begin{eqnarray}\left\{\begin{array}{l}{\rm{\Theta }}1={\left.\tfrac{{\partial }^{2}}{\partial {\xi }^{2}}{\rm{\Psi }}(\xi ,y)\right|}_{({\xi }_{1},{y}_{1})}=\tfrac{1}{12}\tfrac{{\left(c-{\gamma }_{1}\right)}^{2}}{{\alpha }^{2}},\\ {{\rm{\Delta }}}_{1}={\det }{\left(\begin{array}{cc}\tfrac{{\partial }^{2}}{\partial {\xi }^{2}}{\rm{\Psi }}(\xi ,y) & \tfrac{{\partial }^{2}}{\partial \xi \partial y}{\rm{\Psi }}(\xi ,y)\\ \tfrac{{\partial }^{2}}{\partial \xi \partial y}{\rm{\Psi }}(\xi ,y) & \tfrac{{\partial }^{2}}{\partial {y}^{2}}{\rm{\Psi }}(\xi ,y)\end{array}\right)}_{({\xi }_{1},{y}_{1})}=-\tfrac{\left({c}^{2}-2\,c{\gamma }_{1}+{\gamma }_{1}^{2}\right){\left(c-{\gamma }_{1}\right)}^{3}}{108\,{\alpha }^{4}{\gamma }_{3}}.\end{array}\right.\end{eqnarray}$If $\tfrac{c-{\gamma }_{1}}{{\gamma }_{3}}\lt 0$, and Δ1>0, then point (ξ1, y1) is the extreme value point. Based on the above analysis, point (ξ1, y1) is a maximum value point at which ${{\rm{\Psi }}}_{\max }$. By using different C and λ values, the lump solution ψ(ξ, y) has one maximum value containing ${{\rm{\Psi }}}_{\max }=\tfrac{1}{6}\tfrac{6\,\alpha \,{\psi }_{0}-c+{\gamma }_{1}}{\alpha }$.
Figure 1.
New window|Download| PPT slide Figure 1.The one-order lump (3.6) at $\delta =2,\theta =2,c=3,\alpha =1.2,{\gamma }_{1}=1$, ${\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 2.
New window|Download| PPT slide Figure 2.The one-order lump (3.6) at $\delta =-2,\theta =-2,c=3,\alpha =1.2$, ${\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
3.2. Set II: second-wave solutions
We commence with two-wave functions based on the statement in step 2 in the previous section. Here, we suppose that equation (1.5) has the rational function of two-wave solutions. Taking n=1 at (2.5), then (2.5) will be expressed as$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta )={\chi }_{2}(\xi ,y)+2\delta {{yp}}_{1}(\xi ,y)+2\delta \xi {s}_{1}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{0}(\xi ,y)={\xi }^{6}+{a}_{\mathrm{4,2}}{y}^{2}{\xi }^{4}\\ & & +{a}_{\mathrm{2,4}}{y}^{4}{\xi }^{2}+{a}_{\mathrm{0,6}}{y}^{6}\\ & & +{a}_{\mathrm{4,0}}{\xi }^{4}+{a}_{\mathrm{2,2}}{y}^{2}{\xi }^{2}+{a}_{\mathrm{0,4}}{y}^{4}+{a}_{\mathrm{2,0}}{\xi }^{2}+{a}_{\mathrm{0,2}}{y}^{2}+{a}_{\mathrm{0,0}}\\ & & +2\,\delta \,y\left({\xi }^{2}{b}_{\mathrm{2,0}}+{y}^{2}{b}_{\mathrm{0,2}}+{b}_{\mathrm{0,0}}\right)\\ & & +2\,\theta \,\xi \left({\xi }^{2}{c}_{\mathrm{2,0}}+{y}^{2}{c}_{\mathrm{0,2}}+{c}_{\mathrm{0,0}}\right)+{\delta }^{2}+{\theta }^{2}.\end{array}\end{eqnarray}$Without loss of generality, we can choose ${a}_{\mathrm{6,0}}=1$. Plugging (3.9) into (3.1), and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations, and by solving the related system we can express the following parameters:$ \begin{eqnarray}\begin{array}{rclcl}{a}_{\mathrm{0,0}} & = & -\displaystyle \frac{1}{3}\displaystyle \frac{-{\delta }^{2}{a}_{4,2}^{2}{b}_{2,0}^{2}{\gamma }_{3}^{3}+3\,{\delta }^{2}{a}_{4,2}^{3}{\gamma }_{3}^{3}+3\,{\theta }^{2}{a}_{4,2}^{3}{\gamma }_{3}^{3}-3\,{\theta }^{2}{a}_{\mathrm{4,2}}{c}_{0,2}^{2}{\gamma }_{3}^{3}+151875\,{\alpha }^{3}}{{a}_{4,2}^{3}{\gamma }_{3}^{3}},{a}_{\mathrm{0,2}} & = & 1425\,\displaystyle \frac{{\alpha }^{2}}{{a}_{\mathrm{4,2}}{\gamma }_{3}^{2}},\ \end{array}\end{eqnarray}$ $ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{0,4}} & = & -\displaystyle \frac{17\,\alpha \,{a}_{\mathrm{4,2}}}{3\,{\gamma }_{3}},\ {a}_{\mathrm{0,6}}=\displaystyle \frac{1}{27}{a}_{4,2}^{3},\ {a}_{\mathrm{2,0}}=-1125\,\displaystyle \frac{{\alpha }^{2}}{{a}_{4,2}^{2}{\gamma }_{3}^{2}},\\ {a}_{\mathrm{2,2}} & = & -90\,\displaystyle \frac{\alpha }{{\gamma }_{3}},\ {a}_{\mathrm{2,4}}=\displaystyle \frac{1}{3}{a}_{4,2}^{2},\ {a}_{\mathrm{4,0}}=-75\,\displaystyle \frac{\alpha }{{a}_{\mathrm{4,2}}{\gamma }_{3}},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{4,2}} & = & -3\,\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}},\ {b}_{\mathrm{0,0}}=-5\,\displaystyle \frac{{b}_{\mathrm{2,0}}\alpha }{{a}_{\mathrm{4,2}}{\gamma }_{3}},\ {b}_{\mathrm{0,2}}=-\displaystyle \frac{1}{9}{a}_{\mathrm{4,2}}{b}_{\mathrm{2,0}},\\ {b}_{\mathrm{2,0}} & = & {b}_{\mathrm{2,0}},\ {c}_{\mathrm{0,0}}=-3\,\displaystyle \frac{{c}_{\mathrm{0,2}}\alpha }{{a}_{4,2}^{2}{\gamma }_{3}},\ {c}_{\mathrm{0,2}}={c}_{\mathrm{0,2}},\ {c}_{\mathrm{2,0}}=-\displaystyle \frac{{c}_{\mathrm{0,2}}}{{a}_{\mathrm{4,2}}},\end{array}\end{eqnarray*}$ in which ${b}_{\mathrm{2,0}}$ and ${c}_{\mathrm{0,2}}$ are arbitrary values. Thus, the second-order lump solutions of equation (1.5) can be obtained by$ \begin{eqnarray}{\rm{\Psi }}(\xi ,y)=2{\left(\mathrm{ln}{{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta \right)}_{\xi \xi },\end{eqnarray}$where ${{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta )$ is given in equation (3.9). It is worth mentioning that this lump displays the following features:$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$By selecting suitable values of parameters, the graphical representation of periodic wave solution is presented in figures 3 and 4 including 3D plot, contour plot, density plot, and 2D plot where three spaces arise at spaces $y=-1$, y=0, and y=1. In figure 3 the rogue wave has one center (δ, θ)=(2, 3), whereas in figure 4 the lump has one center $(\delta ,\theta )=(-2,-3)$.
Figure 3.
New window|Download| PPT slide Figure 3.The second-order lump (3.12) at $\delta =2,\theta =2,c=3,{b}_{\mathrm{2,0}}=2,{c}_{\mathrm{0,2}}=3$, $\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 4.
New window|Download| PPT slide Figure 4.The second-order lump (3.12) at $\delta =-2,\theta =-2,c=3,{b}_{\mathrm{2,0}}=2,{c}_{\mathrm{0,2}}=3$, $\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
3.3. Set III: third-order solutions
We commence with three-wave functions based on the statement in step 2 in the previous section, and suppose that equation (1.5) has the rational function of third-order lump solutions. Taking n=2 at (2.5), then (2.5) is expressed as$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta )={\chi }_{3}(\xi ,y)+2\delta {{yp}}_{2}(\xi ,y)+2\delta \xi {s}_{2}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{1}(\xi ,y)={a}_{\mathrm{0,0}}+{\xi }^{12}\\ & & +2\,\theta \,\xi \left({\xi }^{6}{c}_{\mathrm{6,0}}+{\xi }^{4}{y}^{2}{c}_{\mathrm{4,2}}+{\xi }^{2}{y}^{4}{c}_{\mathrm{2,4}}+{y}^{6}{c}_{\mathrm{0,6}}\right.\\ & & \left.+{\xi }^{4}{c}_{\mathrm{4,0}}+{\xi }^{2}{y}^{2}{c}_{\mathrm{2,2}}+{y}^{4}{c}_{\mathrm{0,4}}+{\xi }^{2}{c}_{\mathrm{2,0}}+{y}^{2}{c}_{\mathrm{0,2}}+{c}_{\mathrm{0,0}}\right)\\ & & +{a}_{\mathrm{0,6}}{y}^{6}+{a}_{\mathrm{4,0}}{\xi }^{4}+{a}_{\mathrm{0,4}}{y}^{4}+{a}_{\mathrm{2,0}}{\xi }^{2}+{a}_{\mathrm{0,2}}{y}^{2}+{a}_{\mathrm{8,2}}{y}^{2}{\xi }^{8}\\ & & +{a}_{\mathrm{6,4}}{y}^{4}{\xi }^{6}+{a}_{\mathrm{8,4}}{y}^{4}{\xi }^{8}+{a}_{\mathrm{10,2}}{y}^{2}{\xi }^{10}+{a}_{\mathrm{4,8}}{y}^{8}{\xi }^{4}+{a}_{\mathrm{6,2}}{y}^{2}{\xi }^{6}\\ & & +{a}_{\mathrm{6,6}}{y}^{6}{\xi }^{6}+{a}_{\mathrm{4,4}}{y}^{4}{\xi }^{4}+{a}_{\mathrm{4,6}}{y}^{6}{\xi }^{4}+{a}_{\mathrm{2,8}}{y}^{8}{\xi }^{2}+{a}_{\mathrm{2,6}}{y}^{6}{\xi }^{2}\\ & & +{a}_{\mathrm{2,10}}{y}^{10}{\xi }^{2}+2\,\delta \,y({\xi }^{6}{b}_{\mathrm{6,0}}+{\xi }^{4}{y}^{2}{b}_{\mathrm{4,2}}+{\xi }^{2}{y}^{4}{b}_{\mathrm{2,4}}\\ & & +{y}^{6}{b}_{\mathrm{0,6}}+{\xi }^{4}{b}_{\mathrm{4,0}}+{\xi }^{2}{y}^{2}{b}_{\mathrm{2,2}}+{y}^{4}{b}_{\mathrm{0,4}}+{\xi }^{2}{b}_{\mathrm{2,0}}+{y}^{2}{b}_{\mathrm{0,2}}+{b}_{\mathrm{0,0}})\\ & & +{a}_{\mathrm{0,8}}{y}^{8}+{a}_{\mathrm{0,10}}{y}^{10}+{a}_{\mathrm{0,12}}{y}^{12}+\left({\delta }^{2}+{\theta }^{2}\right){\chi }_{1}(\xi ,y),\end{array}\end{eqnarray}$where ${\chi }_{1}{(\xi ,y)=(\xi -\theta )}^{2}-\tfrac{c-{\gamma }_{1}}{{\gamma }_{3}}{(y-\delta )}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}$. Without loss of generality, we can choose a12,0=1. Plugging (3.13) into (3.1) and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations, and by solving the related system we arrive at the following parameters:$ \begin{eqnarray}\begin{array}{rcl}\alpha & = & -\displaystyle \frac{{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{\gamma }_{3}}{588},\ c=-\displaystyle \frac{1}{6}{a}_{\mathrm{10,2}}{\gamma }_{3}+{\gamma }_{1},\\ {a}_{\mathrm{0,0}} & = & \displaystyle \frac{\left(9\,150\,625{a}_{10,0}^{5}{a}_{10,2}^{3}+1129430400\,{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+21956126976{\delta }^{2}{b}_{4,2}^{2}\right){a}_{\mathrm{10,0}}}{83013134400{a}_{10,2}^{3}\left({\delta }^{2}+{\theta }^{2}+1\right)},\end{array}\end{eqnarray}$ $ \begin{eqnarray*}\begin{array}{rclcl}{a}_{\mathrm{0,2}} & = & \displaystyle \frac{32896875\,{a}_{10,0}^{5}{a}_{10,2}^{3}+1317668800\,{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+25615481472\,{\delta }^{2}{b}_{4,2}^{2}}{17788528800\,{a}_{10,2}^{2}\left({\delta }^{2}+{\theta }^{2}+1\right)},\,{a}_{\mathrm{0,4}} & = & \displaystyle \frac{334525\,{a}_{10,0}^{4}{a}_{10,2}^{2}}{203297472},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{0,6}} & = & \displaystyle \frac{28535\,{a}_{10,0}^{3}{a}_{10,2}^{3}}{21781872},\ \ {a}_{\mathrm{0,8}}=\displaystyle \frac{1445\,{a}_{10,0}^{2}{a}_{10,2}^{4}}{4148928},\\ {a}_{\mathrm{0,10}} & = & \displaystyle \frac{29\,{a}_{10,2}^{5}{a}_{\mathrm{10,0}}}{381024},\ \ {a}_{\mathrm{0,12}}=\displaystyle \frac{{a}_{10,2}^{6}}{46656},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rclcl}{a}_{\mathrm{2,0}} & = & \displaystyle \frac{2495625\,{a}_{10,0}^{5}{a}_{10,2}^{3}+188238400{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+3659354496\,{\delta }^{2}{b}_{4,2}^{2}}{423536400\,{a}_{10,2}^{3}\left({\delta }^{2}+{\theta }^{2}+1\right)},{a}_{\mathrm{2,2}} & = & \displaystyle \frac{275\,{a}_{10,0}^{4}{a}_{\mathrm{10,2}}}{268912},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{2,4}} & = & -\displaystyle \frac{25\,{a}_{10,0}^{3}{a}_{10,2}^{2}}{57624},\ \ {a}_{\mathrm{2,6}}=\displaystyle \frac{1265\,{a}_{10,0}^{2}{a}_{10,2}^{3}}{74088},\\ {a}_{\mathrm{2,8}} & = & \displaystyle \frac{95\,{a}_{\mathrm{10,0}}{a}_{10,2}^{4}}{21168},\ {a}_{\mathrm{2,10}}=\displaystyle \frac{{a}_{10,2}^{5}}{1296},\ {a}_{\mathrm{4,0}}=-\displaystyle \frac{15125\,{a}_{10,0}^{4}}{806736},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{4,2}} & = & \displaystyle \frac{375\,{a}_{\mathrm{10,2}}{a}_{10,0}^{3}}{9604},\ {a}_{\mathrm{4,4}}=\displaystyle \frac{2675\,{a}_{10,0}^{2}{a}_{10,2}^{2}}{24696},\\ {a}_{\mathrm{4,6}} & = & \displaystyle \frac{365\,{a}_{\mathrm{10,0}}{a}_{10,2}^{3}}{5292},\ {a}_{\mathrm{4,8}}=\displaystyle \frac{5\,{a}_{10,2}^{4}}{432},\ {a}_{\mathrm{6,0}}=\displaystyle \frac{55\,{a}_{10,0}^{3}}{2058},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{6,2}} & = & \displaystyle \frac{95\,{a}_{\mathrm{10,2}}{a}_{10,0}^{2}}{294},\ {a}_{\mathrm{6,4}}=\displaystyle \frac{55\,{a}_{\mathrm{10,0}}{a}_{10,2}^{2}}{126},\ {a}_{\mathrm{6,6}}=\displaystyle \frac{5\,{a}_{10,2}^{3}}{54},\\ {a}_{\mathrm{8,0}} & = & \displaystyle \frac{15\,{a}_{10,0}^{2}}{196},\ {a}_{\mathrm{8,2}}=\displaystyle \frac{115\,{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}}{98},\ {a}_{\mathrm{8,4}}=\displaystyle \frac{5\,{a}_{10,2}^{2}}{12},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}{a}_{\mathrm{10,0}}={a}_{\mathrm{10,0}},\ {a}_{\mathrm{10,2}}={a}_{\mathrm{10,2}},\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{b}_{\mathrm{0,0}} & = & -\displaystyle \frac{11\,{a}_{10,0}^{3}{b}_{\mathrm{4,2}}}{1372\,{a}_{\mathrm{10,2}}},\ {b}_{\mathrm{0,2}}=\displaystyle \frac{{a}_{10,0}^{2}{b}_{\mathrm{4,2}}}{196},\ {b}_{\mathrm{0,4}}=\displaystyle \frac{{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{b}_{\mathrm{4,2}}}{420},\\ {b}_{\mathrm{0,6}} & = & -\displaystyle \frac{{a}_{10,2}^{2}{b}_{\mathrm{4,2}}}{180},\ {b}_{\mathrm{2,0}}=\displaystyle \frac{57\,{a}_{10,0}^{2}{b}_{\mathrm{4,2}}}{686\,{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{b}_{\mathrm{2,2}} & = & \displaystyle \frac{19\,{a}_{\mathrm{10,0}}{b}_{\mathrm{4,2}}}{49},\ {b}_{\mathrm{2,4}}=\displaystyle \frac{3}{10}{a}_{\mathrm{10,2}}{b}_{\mathrm{4,2}},\ {b}_{\mathrm{4,0}}=-\displaystyle \frac{9\,{a}_{\mathrm{10,0}}{b}_{\mathrm{4,2}}}{7\,{a}_{\mathrm{10,2}}},\\ {b}_{\mathrm{4,2}} & = & {b}_{\mathrm{4,2}},\ {b}_{\mathrm{6,0}}=-6\,\displaystyle \frac{{b}_{\mathrm{4,2}}}{{a}_{\mathrm{10,2}}},\ {c}_{\mathrm{0,0}}=-\displaystyle \frac{5\,{a}_{10,0}^{3}{c}_{\mathrm{4,2}}}{1764\,{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{c}_{\mathrm{0,2}} & = & -\displaystyle \frac{535\,{a}_{10,0}^{2}{c}_{\mathrm{4,2}}}{86436},\ {c}_{\mathrm{0,4}}=-\displaystyle \frac{5\,{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{c}_{\mathrm{4,2}}}{588},\\ {c}_{\mathrm{0,6}} & = & -\displaystyle \frac{5\,{a}_{10,2}^{2}{c}_{\mathrm{4,2}}}{324},\ {c}_{\mathrm{2,0}}=\displaystyle \frac{5\,{a}_{10,0}^{2}{c}_{\mathrm{4,2}}}{294\,{a}_{\mathrm{10,2}}},\\ {c}_{\mathrm{2,2}} & = & \displaystyle \frac{115\,{a}_{\mathrm{10,0}}{c}_{\mathrm{4,2}}}{441},\end{array}\end{eqnarray*}$ $ \begin{eqnarray*}\begin{array}{rcl}{c}_{\mathrm{2,4}} & = & \displaystyle \frac{5\,{a}_{\mathrm{10,2}}{c}_{\mathrm{4,2}}}{54},\ {c}_{\mathrm{4,0}}=-\displaystyle \frac{13\,{a}_{\mathrm{10,0}}{c}_{\mathrm{4,2}}}{147\,{a}_{\mathrm{10,2}}},\\ {c}_{\mathrm{4,2}} & = & {c}_{\mathrm{4,2}},\ {c}_{\mathrm{6,0}}=-\displaystyle \frac{2}{3}\displaystyle \frac{{c}_{\mathrm{4,2}}}{{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$ in which ${b}_{\mathrm{4,2}}$ and ${c}_{\mathrm{4,2}}$ are arbitrary values. Thus, the third-order lump solutions of equation (1.5) can be obtained by$ \begin{eqnarray}{\rm{\Psi }}(\xi ,y)=2{\left(\mathrm{ln}{{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta \right)}_{\xi \xi },\end{eqnarray}$where ${{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta )$ is given in equation (3.9). It is worth mentioning that this lump has the following features:$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$By selecting suitable values of parameters, the graphical representation of periodic wave solution is presented in figures 5–7 including 3D plot, contour plot, density plot, and 2D plot where three spaces arise at spaces y=−1, y=0, and y=1. In figure 5 the rogue wave has one center $(\delta ,\theta )=(-2,-3)$, while in figure 6 the lump has one center (δ, θ)=(2, 3), and in figure 7 the rogue wave has one center (δ, θ)=(0, 0).
Figure 5.
New window|Download| PPT slide Figure 5.The three-order lump (3.16) at $\delta =-2,\theta =-3,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2$, ${b}_{\mathrm{4,2}}=3,{c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 6.
New window|Download| PPT slide Figure 6.The three-order lump (3.16) at $\delta =2,\theta =3,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2,{b}_{\mathrm{4,2}}=3$, ${c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
Figure 7.
New window|Download| PPT slide Figure 7.The three-order lump (3.16) at $\delta =0,\theta =0,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2$, ${b}_{\mathrm{4,2}}=3,{c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.
4. Application of SIVP for equation (1.5)
By utilizing the wave transformation $\xi =k(x+y-{ct})$ in equation (1.5) one can arrive at a nonlinear ordinary differential equation as follows:$ \begin{eqnarray}\begin{array}{l}{k}^{2}(\alpha +\beta ){\rm{\Psi }}\unicode{x02057}+6k(\alpha +\beta ){\rm{\Psi }}^{\prime} {\rm{\Psi }}^{\prime\prime} \\ \quad +\,({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}-c){\rm{\Psi }}^{\prime\prime} =0.\end{array}\end{eqnarray}$Based on the semi-inverse variational principle [61–63], and by multiplying equation (4.1) with ${\rm{\Psi }}^{\prime} $ and integrating, we obtain the stationary integral$ \begin{eqnarray}\begin{array}{rcl}J & = & {\displaystyle \int }_{-\infty }^{\infty }\left(2k(\alpha +\beta ){\left({\rm{\Psi }}^{\prime} \right)}^{3}-\displaystyle \frac{1}{2}{k}^{2}(\alpha +\beta ){\left({\rm{\Psi }}^{\prime\prime} \right)}^{2}\right.\\ & & \left.+\displaystyle \frac{1}{2}({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}-c){\left({\rm{\Psi }}^{\prime} \right)}^{2}+{k}^{2}(\alpha +\beta ){\rm{\Psi }}^{\prime} {\rm{\Psi }}\prime\prime\prime \right){\rm{d}}\xi .\end{array}\end{eqnarray}$
4.1. Case I
Using the solitary wave function as follows:$ \begin{eqnarray}u(\xi )=A\ {\rm{sech}} \left(B\xi \right).\end{eqnarray}$Thus, the stationary integral changes to$ \begin{eqnarray}\begin{array}{rcl}J & = & \displaystyle \frac{1}{30}{A}^{2}B\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}\right.\\ & & \left.-12\,{kAB}\alpha -12\,{kAB}\beta -5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5\,{\gamma }_{3}\right),\end{array}\end{eqnarray}$SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=0\end{eqnarray}$and$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial B}=0,\end{eqnarray}$and arrive at the following two nonlinear algebraic systems:$ \begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{15}{AB}\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}-12\,{kAB}\alpha -12\,{kAB}\beta \right.\\ \quad \left.-\,5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5\,{\gamma }_{3}\right)\\ \quad +\,\displaystyle \frac{1}{30}{A}^{2}B\left(-12\,B\alpha \,k-12\,B\beta \,k\right)=0,\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{30}{A}^{2}\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}-12\,{kAB}\alpha \right.\\ \quad \left.-\,12\,{kAB}\beta -5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5{\gamma }_{3}\right)\\ \quad +\,\displaystyle \frac{1}{30}{A}^{2}B\left(-42\,B\alpha \,{k}^{2}-42B\beta \,{k}^{2}\right.\\ \quad -\,12\,A\alpha \,k-12\,A\beta \,k=0.\end{array}\end{eqnarray}$By solving the above equations, one can recover a relation between these two parameters from (4.7) and (4.8) as$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{1}{3}\displaystyle \frac{\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\sqrt{21}}{\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{21}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$The domain of definition of the above relations will be as$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$Lastly, the solitary wave solution acquired by means of SIVP will be as$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{1}{3}\displaystyle \frac{\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\sqrt{21}}{\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {\rm{sech}} \\ \times \,\left[\pm \displaystyle \frac{1}{21}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$
4.2. Case II
We use the solitary wave function as follows:$ \begin{eqnarray}u(\xi )=A\ {{\rm{sech}} }^{2}(B\xi ).\end{eqnarray}$Thus, the stationary integral changes to$ \begin{eqnarray}J=-\displaystyle \frac{\left(240\,{B}^{2}\alpha \,{k}^{2}+240\,{B}^{2}\beta \,{k}^{2}+70\,{kAB}\alpha +70\,{kAB}\beta +28\,c-28\,{\gamma }_{1}-28\,{\gamma }_{2}-28\,{\gamma }_{3}\right){A}^{2}B}{105}.\end{eqnarray}$SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=-\displaystyle \frac{\left(70B\alpha k+70B\beta k\right){A}^{2}B}{105}-\displaystyle \frac{\left(480{B}^{2}\alpha {k}^{2}+480{B}^{2}\beta {k}^{2}+140{kAB}\alpha +140{kAB}\beta +56c-56{\gamma }_{1}-56\,{\gamma }_{2}-56{\gamma }_{3}\right){AB}}{105}=0\end{eqnarray}$and$ \begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial J}{\partial B} & = & -\displaystyle \frac{\left(480\,B\alpha \,{k}^{2}+480\,B\beta \,{k}^{2}+70\,A\alpha \,k+70\,A\beta \,k\right){A}^{2}B}{105}\\ & & -\displaystyle \frac{\left(240\,{B}^{2}\alpha \,{k}^{2}+240\,{B}^{2}\beta \,{k}^{2}+70\,{kAB}\alpha +70\,{kAB}\beta +28\,c-28\,{\gamma }_{1}-28\,{\gamma }_{2}-28\,{\gamma }_{3}\right){A}^{2}}{105}=0.\end{array}\end{eqnarray}$By solving the above equations, one can recover a relation between these two parameters from (4.14) and (4.15) as$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$The domain of definition of the above relations will be as$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$Lastly, the bright wave solution acquired by means of SIVP will be as$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {{\rm{sech}} }^{2}\\ \times \,\left[\pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$
4.3. Case III
Suppose the dark soliton wave solution takes the following form:$ \begin{eqnarray}u(\xi )=A\ {\tanh }^{2}(B\xi ).\end{eqnarray}$Thus, the stationary integral changes to$ \begin{eqnarray}J=-\displaystyle \frac{2\,{A}^{2}B\left(-120\,{B}^{2}{{ck}}^{2}+35\,{kABc}-14\,S\right)}{105}.\end{eqnarray}$SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=\displaystyle \frac{2\,{A}^{2}B\left(-120\,{B}^{2}\alpha \,{k}^{2}-120\,{B}^{2}\beta \,{k}^{2}+35\,{kAB}\alpha +35\,{kAB}\beta -14\,c+14\,{\gamma }_{1}+14\,{\gamma }_{2}+14\,{\gamma }_{3}\right)}{105}=0\end{eqnarray}$and$ \begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial J}{\partial B} & = & \displaystyle \frac{2\,{A}^{2}\left(-120\,{B}^{2}\alpha \,{k}^{2}-120\,{B}^{2}\beta \,{k}^{2}+35\,{kAB}\alpha +35\,{kAB}\beta -14\,c+14\,{\gamma }_{1}+14\,{\gamma }_{2}+14\,{\gamma }_{3}\right)}{105}\\ & & +\displaystyle \frac{2\,{A}^{2}B\left(-240\,B\alpha \,{k}^{2}-240\,B\beta \,{k}^{2}+35\,A\alpha \,k+35A\beta \,k\right)}{105}=0.\end{array}\end{eqnarray}$By solving the above equations, one can recover a relation between these two parameters from (4.21) and (4.22) as$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$The domain of definition of the above relations will be as$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$Lastly, the dark wave solution acquired by the help of SIVP will be as$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {\tanh }^{2}\\ \times \,\left[\pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$
5. Conclusion
In this article, we obtained multiple lump solutions and solitary, bright, and dark soliton solutions for the generalized Bogoyavlensky–Konopelchenko equation. The multiple lump solutions method contains first-order, second-order, and third-order wave solutions. At the critical point, the second-order derivative and Hessian matrix for only one point was investigated, and the lump solution for the first-order rouge wave solution obtained one maximum value. These results are beneficial for the study of gas, plasma, optics, acoustics, heat transfer, fluid dynamics, and classical mechanics. All calculations in this paper have been made using Maple.
DehghanMManafianJSaadatmandiA2011 Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics 21 736753 DOI:10.1108/09615531111148482 [Cited within: 1]
DehghanMManafianJSaadatmandiA2010 Solving nonlinear fractional partial differential equations using the homotopy analysis method 26 448479 DOI:10.1002/num.20460 [Cited within: 1]
DehghanMManafianJ2009 The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method 64a 420430 DOI:10.1515/zna-2009-7-803 [Cited within: 1]
SindiC TManafianJ2017 Wave solutions for variants of the KdV-Burger and the K(n,n)-Burger equations by the generalized G’/G-expansion method 40 43504363 DOI:10.1002/mma.4309 [Cited within: 1]
ManafianJLakestaniM2016 Application of ${\tan }(\phi /2)$-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity 127 20402054 DOI:10.1016/j.ijleo.2015.11.078 [Cited within: 1]
SeadawyA RManafianJ2018 New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod 8 11581167 DOI:10.1016/j.rinp.2018.01.062 [Cited within: 1]
ManafianJLakestaniM2020 N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation 150 103598 DOI:10.1016/j.geomphys.2020.103598
ManafianJMuradM A SAlizadehAJafarmadarS2020M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation 135 167 DOI:10.1140/epjp/s13360-020-00109-0
MaW XZhouY2018 Lump solutions to nonlinear partial differential equations via Hirota bilinear forms 264 26332659 DOI:10.1016/j.jde.2017.10.033
MaW X2019 A search for lump solutions to a combined fourthorder nonlinear PDE in (2+1)-dimensions 9 13191332 DOI:10.11948/2156-907X.20180227
MaW X2019 Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions 14 619629 DOI:10.1007/s11464-019-0771-y
MaW X2019 Long-time asymptotics of a three-component coupled mKdV system 7 573 DOI:10.3390/math7070573
ManafianJMohammadi-IvatloBAbapourM2019 Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation 13 1341 DOI:10.1016/j.amc.2019.03.016
IlhanO AManafianJShahriariM2019 Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation 78 24292448 DOI:10.1016/j.camwa.2019.03.048
IlhanO AManafianJ2019 Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics 33 1950277 DOI:10.1142/S0217984919502774
MaW XZhouYDoughertyR2016 Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations 30 1640018 DOI:10.1142/S021797921640018X
LüJBiligeSGaoXBaiYZhangR2018 Abundant lump solution and interaction phenomenon to Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation 6 17331747 DOI:10.4236/jamp.2018.68148
ManafianJIlhanO AAlizadehA2020 Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction solutions 95 065203 DOI:10.1088/1402-4896/ab68be [Cited within: 1]
HeJ H2019 A modified Li-He’s variational principle for plasma
ChenS STianBLiuLYuanY QZhangC R2019 Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system 118 337346 DOI:10.1016/j.chaos.2018.11.010 [Cited within: 2]
DuX XTianBWuX YYinH MZhangC R2018 Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electronpositron- ion plasma 133 378 DOI:10.1140/epjp/i2018-12239-y [Cited within: 1]
RayS Saha2017 On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky–Konopelchenko equation in wave propagation 74 11581165 DOI:10.1016/j.camwa.2017.06.007 [Cited within: 1]
ZhaoX HTianBXieX YWuX YSunYGuoY J2018 Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth 28 356366 DOI:10.1080/17455030.2017.1348645 [Cited within: 1]
AbdullahiR A2016 The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions 71 12481258 DOI:10.1016/j.camwa.2016.02.005 [Cited within: 1]
MaW XZhuZ2012 Solving the (3+1)-dimensional generalized kp and bkp equations by the multiple exp-function algorithm 218 1187111879 DOI:10.1016/j.amc.2012.05.049 [Cited within: 1]
BaskonusH MBulutH2016 Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics 26 201208 DOI:10.1080/17455030.2015.1132860 [Cited within: 1]
SulaimanT ANuruddeenR IZerradEMikailB B2019 Dark and singular solitons to the two nonlinear Schrödinger’s equations 186 423430 DOI:10.1016/j.ijleo.2019.04.023
IncMAliyuA IYusufABaleanuD2018 Optical solitary waves, conservation laws and modulation instabilty analysis to nonlinear Schrödinger’s equations in compressional dispersive Alfvan waves 155 257266 DOI:10.1016/j.ijleo.2017.10.109 [Cited within: 1]
ZahranE H MKhaterM M A2016 Modified extended tanh-function method and its applications to the Bogoyavlenskii equation 40 17691775 DOI:10.1016/j.apm.2015.08.018 [Cited within: 1]
AbadiS A MNajaM2012 Soliton solutions for (2+1)-dimensional breaking soliton equation: three wave method 1 141149 DOI:10.14419/ijamr.v1i2.32 [Cited within: 1]
ChenS TMaW X2019 Exact Solutions to a Generalized Bogoyavlensky–Konopelchenko equation via Maple Symbolic Computations 2019 8787460 DOI:10.1155/2019/8787460 [Cited within: 1]
KovacicIRakaricZCveticaninL2010 A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities 217 39443954 DOI:10.1016/j.amc.2010.09.058 [Cited within: 1]
Zhaqilao2018 A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems 75 33313342 DOI:10.1016/j.camwa.2018.02.001 [Cited within: 3]