删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and S

本站小编 Free考研考试/2022-01-02

Jalil Manafian,1,6, Onur Alp Ilhan,2, As’ad Alizadeh,3,4, Sizar Abid Mohammed,51Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
2Department of Mathematics, Faculty of Education, Erciyes University, 38039-Melikgazi-Kayseri, Turkey
3Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
4Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho, Iraq
5Department of Mathematics, College of Basic Education, University of Duhok, Zakho Street 38, 1006 AJ Duhok, Iraq

First author contact: 6Author to whom any correspondence should be addressed.
Received:2019-12-22Revised:2020-03-13Accepted:2020-03-13Online:2020-06-09


Abstract
The multiple lump solutions method is employed for the purpose of obtaining multiple soliton solutions for the generalized Bogoyavlensky–Konopelchenko (BK) equation. The solutions obtained contain first-order, second-order, and third-order wave solutions. At the critical point, the second-order derivative and Hessian matrix for only one point is investigated, and the lump solution has one maximum value. He’s semi-inverse variational principle (SIVP) is also used for the generalized BK equation. Three major cases are studied, based on two different ansatzes using the SIVP. The physical phenomena of the multiple soliton solutions thus obtained are then analyzed and demonstrated in the figures below, using a selection of suitable parameter values. This method should prove extremely useful for further studies of attractive physical phenomena in the fields of heat transfer, fluid dynamics, etc.
Keywords: multiple rogue wave solutions;multiple soliton solutions;generalized Bogoyavlensky–Konopelchenko equation;semi-inverse variational principle


PDF (2091KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Jalil Manafian, Onur Alp Ilhan, As’ad Alizadeh, Sizar Abid Mohammed. Multiple rogue wave and solitary solutions for the generalized BK equation via Hirota bilinear and SIVP schemes arising in fluid mechanics. Communications in Theoretical Physics, 2020, 72(7): 075002- doi:10.1088/1572-9494/ab8a13

1. Introduction

As we know, the model of many natural phenomena and differential equations in science and engineering are nonlinear, and it is very important to obtain analytically or numerically accurate solutions. In order to achieve this goal, various methods have been developed for linear and nonlinear equations such as: the Exp-function method [1], the homotopy analysis method [2], the homotopy perturbation method [3], the (G’/G)-expansion method [4], the improved $\tan (\phi /2)$-expansion method [5, 6], Hirota’s bilinear method [719], He’s variational principle [20, 21], the binary Darboux transformation [22], the Lie group analysis [23, 24], the Bäcklund transformation method [25], and the multiple Exp-function method [26, 27]. Moreover, many powerful methods have been used to investigate the new properties of mathematical models symbolizing serious real world problems [2830].

Bogoyavlenski introduced a model equation to describe nonisospectral scattering problems [31], specifically the (2+1)-dimensional Bogoyavlenski equation:$ \begin{eqnarray}4{{\rm{\Psi }}}_{t}+{{\rm{\Psi }}}_{{xxy}}-4{{\rm{\Psi }}}^{2}{{\rm{\Psi }}}_{y}-4{{\rm{\Psi }}}_{x}{\rm{\Phi }}=0,\end{eqnarray}$
$ \begin{eqnarray*}{\rm{\Psi }}{{\rm{\Psi }}}_{y}={{\rm{\Phi }}}_{x}.\end{eqnarray*}$Kudryashov and Pickering [32] proposed the above equation as a member of a (2+1) Schwarzian breaking soliton hierarchy. Clarkson and co-authors [33] investigated equation (1.1) as part of a group of equations associated with nonisospectral scattering problems. Estevez and Prada [34] presented a generalization of the sine-Gordon equation possessing the Painleve feature. Zhran and Khater [35] examined the Bogoyavlenskii equation utilizing the modified extended tanh-function method. The authors of [36] showed that the above equation is an as-modified version of the following nonlinear equation:$ \begin{eqnarray}4{{\rm{\Psi }}}_{{xt}}+8{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xy}}+4{{\rm{\Psi }}}_{y}{{\rm{\Psi }}}_{{xx}}+{{\rm{\Psi }}}_{{xxxy}}=0,\end{eqnarray}$this is known as the breaking soliton equation. Equation (1.2) is also a specific version of a form of Bogoyavlensky–Konopelchenko (BK) equation, given as$ \begin{eqnarray}\begin{array}{l}a{{\rm{\Psi }}}_{{xt}}+b{{\rm{\Psi }}}_{{xxxx}}+c{{\rm{\Psi }}}_{{xxy}}+d{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xx}}\\ \qquad +\,e{{\rm{\Psi }}}_{x}{{\rm{\Psi }}}_{{xy}}+k{{\rm{\Psi }}}_{{xx}}{{\rm{\Psi }}}_{y}=0.\end{array}\end{eqnarray}$The BK equation defines the (2+1)-dimensional interaction of a Riemann wave propagation along the y-axis with a long wave along the x-axis, and is also a two-dimensional generalization of the well known Korteweg-de Vries equation [37, 38]. This study is aimed at investigating the following generalized BK equation [39]:$ \begin{eqnarray}\begin{array}{l}{{\rm{\Psi }}}_{t}+\alpha (6{\rm{\Psi }}{{\rm{\Psi }}}_{x}+{{\rm{\Psi }}}_{{xxx}})+\beta ({{\rm{\Psi }}}_{{xxy}}+3{\rm{\Psi }}{{\rm{\Psi }}}_{y}+3{{\rm{\Psi }}}_{x}{{\rm{\Phi }}}_{y})\\ \,+\,{\gamma }_{1}{{\rm{\Psi }}}_{x}+{\gamma }_{2}{{\rm{\Psi }}}_{y}+{\gamma }_{3}{{\rm{\Phi }}}_{{yy}}=0,\end{array}\end{eqnarray}$in which Φx=ψ, and α, β, γ1, γ2, and γ3 are determined values. Equation (1.4) can be written as$ \begin{eqnarray}\begin{array}{l}{{\rm{\Phi }}}_{{xt}}+\alpha (6{{\rm{\Phi }}}_{x}{{\rm{\Phi }}}_{{xx}}+{{\rm{\Phi }}}_{{xxxx}})+\beta ({{\rm{\Phi }}}_{{xxxy}}+3{{\rm{\Phi }}}_{x}{{\rm{\Phi }}}_{{xy}}+3{{\rm{\Phi }}}_{{xx}}{{\rm{\Phi }}}_{{xy}})\\ \,+\,{\gamma }_{1}{{\rm{\Phi }}}_{{xx}}+{\gamma }_{2}{{\rm{\Phi }}}_{{xy}}+{\gamma }_{3}{{\rm{\Phi }}}_{{yy}}=0,\end{array}\end{eqnarray}$by applying the bilinear transformation ${\rm{\Psi }}=2{(\mathrm{ln}f)}_{{xx}}$ and ${\rm{\Phi }}=2{(\mathrm{ln}f)}_{x}$, the equation (1.5) transforms to the bilinear form as follows:$ \begin{eqnarray}\begin{array}{l}\left(\alpha {D}_{x}^{4}+\beta {D}_{x}^{3}{D}_{y}+{D}_{t}{D}_{x}+{\gamma }_{1}{D}_{x}^{2}\right.\\ \,\left.+\,{\gamma }_{2}{D}_{x}{D}_{y}+{\gamma }_{3}{D}_{y}^{2}\right){\mathfrak{f}}.{\mathfrak{f}}=0,\end{array}\end{eqnarray}$
$ \begin{eqnarray*}\begin{array}{l}{D}_{x}^{4}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xxxx}}-4{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{{xxx}}+3{{\mathfrak{f}}}_{{xx}}^{2}),\\ {D}_{x}^{3}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xxxy}}-{{\mathfrak{f}}}_{y}{{\mathfrak{f}}}_{{xxx}}-3{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{{xxy}}+3{{\mathfrak{f}}}_{{xx}}{{\mathfrak{f}}}_{{xy}}),\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{l}{D}_{x}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xx}}-{{\mathfrak{f}}}_{x}^{2}),\ \ \ {D}_{x}{D}_{t}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xt}}-{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{t}),\\ {D}_{x}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{xy}}-{{\mathfrak{f}}}_{x}{{\mathfrak{f}}}_{y}),\ \ {D}_{y}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{yy}}-{{\mathfrak{f}}}_{y}^{2}).\end{array}\end{eqnarray*}$
Various research models already exist relating to lump solutions for the (2+1)-dimensional nonlinear equation. Liu and co-workers employed the Hirota bilinear method to obtain an N-soliton solution for the (3+1)-dimensional generalized KP equation [40]. The same group also constructed an N-soliton solution for the(2+1)-dimensional generalized Hirota-Satsuma-Ito equation [41]. Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities [42], and in a rotating Bose-Einstein condensate with spatiotemporally modulated interaction [43] have been investigated both analytically and numerically. With regard to the integrable coupled nonlinear Schrödinger system, N-soliton solutions within this system were obtained, and the collision dynamics between two solitons was also analyzed via the Riemann-Hilbert method by Wang and co-authors in [44].

Currently, nonlinear differential equations represent a significant opportunity for researchers to define tangible incidents. This has driven mathematicians and scientists to examine a wide variety of soliton solutions. As a result, in the past few years a growing number of effective and realistic methods have been initiated and dilated to extract closed form solutions to NLDEs. Among these, the semi-inverse principle method is one of the more powerful methods to be examined, in studies relating to the buckling analysis of circular cylinders [45], one-dimensional compressible flow in a microgravity space [46], the generalized KdV-Burgers equation with fractal derivatives [47], and the thin film equation [48]. In addition, it would be beneficial to researchers to consider recent studies on the variational approach to nonlinear oscillators, as investigated by authors such as Liu [49], Nawaz, and co-workers [50], He [51, 52], and Kovacic, Rakaric, and Cveticanin [53]. Finally, any review of the above methods should include two-scale fractal calculus, a hot topic in mathematics and physics, as demonstrated in the valuable works [54, 55].

In this paper, we will study the multiple lump soliton to determine multiple soliton solutions. The multiple lump method has been utilized by researchers for a variety of applications requiring nonlinear equations, including: the construction of rogue waves with a controllable center in nonlinear systems [56], the (3+1)-dimensional Hirota bilinear equation [57], the generalized (3+1)-dimensional KP equation [58], and the Boussinesq equation [59].

The remainder of this paper is structured as follows: the multiple lump scheme is summarized in section 2. In section 3, the generalized BK equation is used to investigate first-order, second-order, and third-order wave solutions. SIVP will also be examined in section 4. In the last section, the conclusions are presented.

2. Multiple lump solution method

This section elucidates a systematic explanation of the multiple lump soliton solution [5658] so that it can be further applied to nonlinear PDEs in order to furnish exact solutions:

Step 1. Take the following NLPDE$ \begin{eqnarray}{ \mathcal N }(x,y,t,{\rm{\Psi }},{{\rm{\Psi }}}_{x},{{\rm{\Psi }}}_{y},{{\rm{\Psi }}}_{t},{{\rm{\Psi }}}_{{xx}},{{\rm{\Psi }}}_{{xy}},{{\rm{\Psi }}}_{{tt}},\ldots )=0.\end{eqnarray}$We commence a Painlevè analysis, using the following transformation$ \begin{eqnarray}{\rm{\Psi }}={\mathfrak{T}}(f),\end{eqnarray}$based on the dependant variable function f.

Step 2. By means of transformation (2.2), the nonlinear equation (2.1) can be written in terms of the following Hirota’s bilinear form:$ \begin{eqnarray}{\mathfrak{G}}({D}_{\xi },{D}_{y};f)=0,\end{eqnarray}$where $\xi =x-{ct}$ and c is a real parameter. Moreover, the D-operator [22] is given as follows:$ \begin{eqnarray}\prod _{i=1}^{2}{D}_{{\jmath}_{i}}^{{\beta }_{i}}f.g={\left.\prod _{i=1}^{2}{\left(\displaystyle \frac{\partial }{\partial {\jmath}_{i}}-\displaystyle \frac{\partial }{\partial {\jmath}_{i}^{{\prime} }}\right)}^{{\beta }_{i}}f(\jmath)g(\jmath^{\prime} )\right|}_{\jmath^{\prime} =\jmath},\end{eqnarray}$where the vectors $\jmath=({\jmath}_{1},{\jmath}_{2},{\jmath}_{3})=(x,y,t)$, $\jmath^{\prime} =({\jmath}_{1}^{{\prime} },{\jmath}_{2}^{{\prime} },{\jmath}_{3}^{{\prime} })=(x^{\prime} ,y^{\prime} ,t^{\prime} )$, and β1, β2, β3 are arbitrary nonnegative integers.

Step 3. Let$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {\mathfrak{f}}(\xi ,y;\theta ,\delta )\\ & = & {\chi }_{n+1}(\xi ,y)+2\delta {{yp}}_{n}(\xi ,y)\\ & & +2\delta \xi {s}_{n}(\xi ,y)+({\theta }^{2}+{\delta }^{2}){\chi }_{n-1}(\xi ,y),\end{array}\end{eqnarray}$with$ \begin{eqnarray}{\chi }_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{a}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray}$
$ \begin{eqnarray*}{p}_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{b}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray*}$
$ \begin{eqnarray*}{s}_{n}(\xi ,y)=\sum _{k=0}^{\tfrac{n(n+1)}{2}}\sum _{i=0}^{k}{c}_{n(n+1)-2k,2i}{y}^{2i}{\xi }^{n(n+1)-2k},\,\end{eqnarray*}$${\chi }_{0}=1,{\chi }_{1}={p}_{0}={s}_{0}=0$,
where ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\,\in \{0,2,4,...,n(n+1)\})$ and θ, δ are real values. The coefficients ${a}_{m,l},{b}_{m,l},{c}_{m,l}$ can be found, and special values θ, δ are utilized to control the wave center.

Step 4. By inserting (2.6) into (2.5) and setting all the coefficients of the diverse powers of ${y}^{m}{\xi }^{m}$ to zero, we obtain a system of nonlinear algebra equations. Using the symbolic computation system Maple or Mathematica, solving the system gained above leads to the values of ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\in \{0,2,4,...,n(n+1)\})$.

Step 5. Plugging the values of ${a}_{m,l},{b}_{m,l},{c}_{m,l}(m,l\,\in \{0,2,4,...,n(n+1)\})$ into (2.4) gives some rational solutions to the (2 + 1)-dimensional generalized BK equation (1.5), which are then utilized to search for lump solutions. This type of lump solution is localized in y and ξ.

3. Lump solutions of a (2+1)-D generalized BK equation

3.1. Set I: one-wave solution

We commence with a one-wave function based on $\xi =x-{ct}$, whereby equation (1.5) is transformed as follows:$ \begin{eqnarray}\left(\alpha {D}_{\xi }^{4}+\beta {D}_{\xi }^{3}{D}_{y}+({\gamma }_{1}-c){D}_{\xi }^{2}+{\gamma }_{2}{D}_{\xi }{D}_{y}+{\gamma }_{3}{D}_{y}^{2}\right){\mathfrak{f}}.{\mathfrak{f}}=0,\end{eqnarray}$where c is the unfound constant, and
$ \begin{eqnarray*}\begin{array}{rcl}{D}_{\xi }^{4}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi \xi \xi }-4{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{\xi \xi \xi }+3{{\mathfrak{f}}}_{\xi \xi }^{2}),\\ {D}_{\xi }^{3}{D}_{y}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi \xi y}-{{\mathfrak{f}}}_{y}{{\mathfrak{f}}}_{\xi \xi \xi }-3{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{\xi \xi y}+3{{\mathfrak{f}}}_{\xi \xi }{{\mathfrak{f}}}_{\xi y}),\\ {D}_{\xi }^{2}{\mathfrak{f}}.{\mathfrak{f}} & = & 2({{\mathfrak{ff}}}_{\xi \xi }-{{\mathfrak{f}}}_{\xi }^{2}),\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}{D}_{\xi }{D}_{y}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{\xi y}-{{\mathfrak{f}}}_{\xi }{{\mathfrak{f}}}_{y}),\ \ {D}_{y}^{2}{\mathfrak{f}}.{\mathfrak{f}}=2({{\mathfrak{ff}}}_{{yy}}-{{\mathfrak{f}}}_{y}^{2}).\end{eqnarray*}$
Based on the approach presented in section 2, as proposed by Zhaqilao [56], we are able to derive the higher order lump solutions with controllable center of the variable-coefficient (2+1)-dimensional generalized BK equation. Considering n=0 at (2.5), then (2.5) will be given as$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{1}(\xi ,y;\theta ,\delta )\\ & = & {\chi }_{1}(\xi ,y)+2\delta {{yp}}_{0}(\xi ,y)+2\delta \xi {s}_{0}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{-1}(\xi ,y)\\ & = & {a}_{2,0}{\xi }^{2}+{a}_{0,2}{y}^{2}+{a}_{0,0}.\end{array}\end{eqnarray}$Without loss of generality, we can choose ${a}_{\mathrm{2,0}}=1$. Plugging (3.2) into (3.1) and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations given as:$ \begin{eqnarray}\begin{array}{l}4\,{a}_{\mathrm{0,0}}{a}_{\mathrm{0,2}}{\gamma }_{3}-4\,{{ca}}_{\mathrm{0,0}}+4\,{a}_{\mathrm{0,0}}{\gamma }_{1}+24\,\alpha =0,\\ \,4\,{a}_{\mathrm{0,2}}{\gamma }_{3}+4\,c-4\,{\gamma }_{1}=0,\\ \,-4\,{a}_{0,2}^{2}{\gamma }_{3}-4\,{{ca}}_{\mathrm{0,2}}+4\,{a}_{\mathrm{0,2}}{\gamma }_{1}=0.\end{array}\end{eqnarray}$Solving equation (3.3), we get$ \begin{eqnarray}{a}_{\mathrm{0,2}}=-\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}},\ \ {a}_{\mathrm{0,0}}=3\,\displaystyle \frac{\alpha }{c-{\gamma }_{1}}.\end{eqnarray}$Thus, we can obtain a solution to equation (3.2) as follows:$ \begin{eqnarray}{\mathfrak{f}}={{\mathfrak{f}}}_{1}(\xi ,y;\theta ,\delta )={\left(\xi -\theta \right)}^{2}-\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}}{\left(y-\delta \right)}^{2}+\displaystyle \frac{3\alpha }{c-{\gamma }_{1}},\end{eqnarray}$Assuming λ<0, and cg(t)>0, then the first-order lump solutions of equation (1.5) can be expressed as$ \begin{eqnarray}\begin{array}{rcl}{\rm{\Psi }}(\xi ,y) & = & {{\rm{\Psi }}}_{0}+\displaystyle \frac{4}{-\tfrac{{\left(y-\delta \right)}^{2}\left(c-{\gamma }_{1}\right)}{{\gamma }_{3}}+{\left(\xi -\theta \right)}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}}\\ & & -\displaystyle \frac{2{\left(2\xi -2\theta \right)}^{2}}{{\left(-\tfrac{{\left(y-\delta \right)}^{2}\left(c-{\gamma }_{1}\right)}{{\gamma }_{3}}+{\left(\xi -\theta \right)}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}\right)}^{2}}.\end{array}\end{eqnarray}$It is worth mentioning that this lump has the following features:$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$By selecting suitable values of parameters, the graphical representation of a periodic wave solution is presented in figures 1 and 2 which includes a 3D plot, a contour plot, a density plot, and a 2D plot where three spaces arise at spaces y=−1, y=0, and y=1. In figure 1 the lump has one center (δ, θ)=(2, 2), whereas in figure 2 the rogue wave has one center $(\delta ,\theta )=(-2,-2)$. Due to our use of a simple computation, the lump has two critical points, but we investigate only one point, $({\xi }_{1},{y}_{1})=\left(\tfrac{c\theta -\theta \,{\gamma }_{1}+3\,\sqrt{\alpha \,c-\alpha \,{\gamma }_{1}}}{c-{\gamma }_{1}},\delta \right)$. At point (ξ1, y1), the second-order derivative and Hessian matrix can be determined, as given in [60]:$ \begin{eqnarray}\left\{\begin{array}{l}{\rm{\Theta }}1={\left.\tfrac{{\partial }^{2}}{\partial {\xi }^{2}}{\rm{\Psi }}(\xi ,y)\right|}_{({\xi }_{1},{y}_{1})}=\tfrac{1}{12}\tfrac{{\left(c-{\gamma }_{1}\right)}^{2}}{{\alpha }^{2}},\\ {{\rm{\Delta }}}_{1}={\det }{\left(\begin{array}{cc}\tfrac{{\partial }^{2}}{\partial {\xi }^{2}}{\rm{\Psi }}(\xi ,y) & \tfrac{{\partial }^{2}}{\partial \xi \partial y}{\rm{\Psi }}(\xi ,y)\\ \tfrac{{\partial }^{2}}{\partial \xi \partial y}{\rm{\Psi }}(\xi ,y) & \tfrac{{\partial }^{2}}{\partial {y}^{2}}{\rm{\Psi }}(\xi ,y)\end{array}\right)}_{({\xi }_{1},{y}_{1})}=-\tfrac{\left({c}^{2}-2\,c{\gamma }_{1}+{\gamma }_{1}^{2}\right){\left(c-{\gamma }_{1}\right)}^{3}}{108\,{\alpha }^{4}{\gamma }_{3}}.\end{array}\right.\end{eqnarray}$If $\tfrac{c-{\gamma }_{1}}{{\gamma }_{3}}\lt 0$, and Δ1>0, then point (ξ1, y1) is the extreme value point. Based on the above analysis, point (ξ1, y1) is a maximum value point at which ${{\rm{\Psi }}}_{\max }$. By using different C and λ values, the lump solution ψ(ξ, y) has one maximum value containing ${{\rm{\Psi }}}_{\max }=\tfrac{1}{6}\tfrac{6\,\alpha \,{\psi }_{0}-c+{\gamma }_{1}}{\alpha }$.

Figure 1.

New window|Download| PPT slide
Figure 1.The one-order lump (3.6) at $\delta =2,\theta =2,c=3,\alpha =1.2,{\gamma }_{1}=1$, ${\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.


Figure 2.

New window|Download| PPT slide
Figure 2.The one-order lump (3.6) at $\delta =-2,\theta =-2,c=3,\alpha =1.2$, ${\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.


3.2. Set II: second-wave solutions

We commence with two-wave functions based on the statement in step 2 in the previous section. Here, we suppose that equation (1.5) has the rational function of two-wave solutions. Taking n=1 at (2.5), then (2.5) will be expressed as$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta )={\chi }_{2}(\xi ,y)+2\delta {{yp}}_{1}(\xi ,y)+2\delta \xi {s}_{1}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{0}(\xi ,y)={\xi }^{6}+{a}_{\mathrm{4,2}}{y}^{2}{\xi }^{4}\\ & & +{a}_{\mathrm{2,4}}{y}^{4}{\xi }^{2}+{a}_{\mathrm{0,6}}{y}^{6}\\ & & +{a}_{\mathrm{4,0}}{\xi }^{4}+{a}_{\mathrm{2,2}}{y}^{2}{\xi }^{2}+{a}_{\mathrm{0,4}}{y}^{4}+{a}_{\mathrm{2,0}}{\xi }^{2}+{a}_{\mathrm{0,2}}{y}^{2}+{a}_{\mathrm{0,0}}\\ & & +2\,\delta \,y\left({\xi }^{2}{b}_{\mathrm{2,0}}+{y}^{2}{b}_{\mathrm{0,2}}+{b}_{\mathrm{0,0}}\right)\\ & & +2\,\theta \,\xi \left({\xi }^{2}{c}_{\mathrm{2,0}}+{y}^{2}{c}_{\mathrm{0,2}}+{c}_{\mathrm{0,0}}\right)+{\delta }^{2}+{\theta }^{2}.\end{array}\end{eqnarray}$Without loss of generality, we can choose ${a}_{\mathrm{6,0}}=1$. Plugging (3.9) into (3.1), and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations, and by solving the related system we can express the following parameters:$ \begin{eqnarray}\begin{array}{rclcl}{a}_{\mathrm{0,0}} & = & -\displaystyle \frac{1}{3}\displaystyle \frac{-{\delta }^{2}{a}_{4,2}^{2}{b}_{2,0}^{2}{\gamma }_{3}^{3}+3\,{\delta }^{2}{a}_{4,2}^{3}{\gamma }_{3}^{3}+3\,{\theta }^{2}{a}_{4,2}^{3}{\gamma }_{3}^{3}-3\,{\theta }^{2}{a}_{\mathrm{4,2}}{c}_{0,2}^{2}{\gamma }_{3}^{3}+151875\,{\alpha }^{3}}{{a}_{4,2}^{3}{\gamma }_{3}^{3}},{a}_{\mathrm{0,2}} & = & 1425\,\displaystyle \frac{{\alpha }^{2}}{{a}_{\mathrm{4,2}}{\gamma }_{3}^{2}},\ \end{array}\end{eqnarray}$
$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{0,4}} & = & -\displaystyle \frac{17\,\alpha \,{a}_{\mathrm{4,2}}}{3\,{\gamma }_{3}},\ {a}_{\mathrm{0,6}}=\displaystyle \frac{1}{27}{a}_{4,2}^{3},\ {a}_{\mathrm{2,0}}=-1125\,\displaystyle \frac{{\alpha }^{2}}{{a}_{4,2}^{2}{\gamma }_{3}^{2}},\\ {a}_{\mathrm{2,2}} & = & -90\,\displaystyle \frac{\alpha }{{\gamma }_{3}},\ {a}_{\mathrm{2,4}}=\displaystyle \frac{1}{3}{a}_{4,2}^{2},\ {a}_{\mathrm{4,0}}=-75\,\displaystyle \frac{\alpha }{{a}_{\mathrm{4,2}}{\gamma }_{3}},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{4,2}} & = & -3\,\displaystyle \frac{c-{\gamma }_{1}}{{\gamma }_{3}},\ {b}_{\mathrm{0,0}}=-5\,\displaystyle \frac{{b}_{\mathrm{2,0}}\alpha }{{a}_{\mathrm{4,2}}{\gamma }_{3}},\ {b}_{\mathrm{0,2}}=-\displaystyle \frac{1}{9}{a}_{\mathrm{4,2}}{b}_{\mathrm{2,0}},\\ {b}_{\mathrm{2,0}} & = & {b}_{\mathrm{2,0}},\ {c}_{\mathrm{0,0}}=-3\,\displaystyle \frac{{c}_{\mathrm{0,2}}\alpha }{{a}_{4,2}^{2}{\gamma }_{3}},\ {c}_{\mathrm{0,2}}={c}_{\mathrm{0,2}},\ {c}_{\mathrm{2,0}}=-\displaystyle \frac{{c}_{\mathrm{0,2}}}{{a}_{\mathrm{4,2}}},\end{array}\end{eqnarray*}$
in which ${b}_{\mathrm{2,0}}$ and ${c}_{\mathrm{0,2}}$ are arbitrary values. Thus, the second-order lump solutions of equation (1.5) can be obtained by$ \begin{eqnarray}{\rm{\Psi }}(\xi ,y)=2{\left(\mathrm{ln}{{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta \right)}_{\xi \xi },\end{eqnarray}$where ${{\mathfrak{f}}}_{2}(\xi ,y;\theta ,\delta )$ is given in equation (3.9). It is worth mentioning that this lump displays the following features:$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$By selecting suitable values of parameters, the graphical representation of periodic wave solution is presented in figures 3 and 4 including 3D plot, contour plot, density plot, and 2D plot where three spaces arise at spaces $y=-1$, y=0, and y=1. In figure 3 the rogue wave has one center (δ, θ)=(2, 3), whereas in figure 4 the lump has one center $(\delta ,\theta )=(-2,-3)$.

Figure 3.

New window|Download| PPT slide
Figure 3.The second-order lump (3.12) at $\delta =2,\theta =2,c=3,{b}_{\mathrm{2,0}}=2,{c}_{\mathrm{0,2}}=3$, $\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.


Figure 4.

New window|Download| PPT slide
Figure 4.The second-order lump (3.12) at $\delta =-2,\theta =-2,c=3,{b}_{\mathrm{2,0}}=2,{c}_{\mathrm{0,2}}=3$, $\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.


3.3. Set III: third-order solutions

We commence with three-wave functions based on the statement in step 2 in the previous section, and suppose that equation (1.5) has the rational function of third-order lump solutions. Taking n=2 at (2.5), then (2.5) is expressed as$ \begin{eqnarray}\begin{array}{rcl}{\mathfrak{f}} & = & {{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta )={\chi }_{3}(\xi ,y)+2\delta {{yp}}_{2}(\xi ,y)+2\delta \xi {s}_{2}(\xi ,y)\\ & & +({\theta }^{2}+{\delta }^{2}){\chi }_{1}(\xi ,y)={a}_{\mathrm{0,0}}+{\xi }^{12}\\ & & +2\,\theta \,\xi \left({\xi }^{6}{c}_{\mathrm{6,0}}+{\xi }^{4}{y}^{2}{c}_{\mathrm{4,2}}+{\xi }^{2}{y}^{4}{c}_{\mathrm{2,4}}+{y}^{6}{c}_{\mathrm{0,6}}\right.\\ & & \left.+{\xi }^{4}{c}_{\mathrm{4,0}}+{\xi }^{2}{y}^{2}{c}_{\mathrm{2,2}}+{y}^{4}{c}_{\mathrm{0,4}}+{\xi }^{2}{c}_{\mathrm{2,0}}+{y}^{2}{c}_{\mathrm{0,2}}+{c}_{\mathrm{0,0}}\right)\\ & & +{a}_{\mathrm{0,6}}{y}^{6}+{a}_{\mathrm{4,0}}{\xi }^{4}+{a}_{\mathrm{0,4}}{y}^{4}+{a}_{\mathrm{2,0}}{\xi }^{2}+{a}_{\mathrm{0,2}}{y}^{2}+{a}_{\mathrm{8,2}}{y}^{2}{\xi }^{8}\\ & & +{a}_{\mathrm{6,4}}{y}^{4}{\xi }^{6}+{a}_{\mathrm{8,4}}{y}^{4}{\xi }^{8}+{a}_{\mathrm{10,2}}{y}^{2}{\xi }^{10}+{a}_{\mathrm{4,8}}{y}^{8}{\xi }^{4}+{a}_{\mathrm{6,2}}{y}^{2}{\xi }^{6}\\ & & +{a}_{\mathrm{6,6}}{y}^{6}{\xi }^{6}+{a}_{\mathrm{4,4}}{y}^{4}{\xi }^{4}+{a}_{\mathrm{4,6}}{y}^{6}{\xi }^{4}+{a}_{\mathrm{2,8}}{y}^{8}{\xi }^{2}+{a}_{\mathrm{2,6}}{y}^{6}{\xi }^{2}\\ & & +{a}_{\mathrm{2,10}}{y}^{10}{\xi }^{2}+2\,\delta \,y({\xi }^{6}{b}_{\mathrm{6,0}}+{\xi }^{4}{y}^{2}{b}_{\mathrm{4,2}}+{\xi }^{2}{y}^{4}{b}_{\mathrm{2,4}}\\ & & +{y}^{6}{b}_{\mathrm{0,6}}+{\xi }^{4}{b}_{\mathrm{4,0}}+{\xi }^{2}{y}^{2}{b}_{\mathrm{2,2}}+{y}^{4}{b}_{\mathrm{0,4}}+{\xi }^{2}{b}_{\mathrm{2,0}}+{y}^{2}{b}_{\mathrm{0,2}}+{b}_{\mathrm{0,0}})\\ & & +{a}_{\mathrm{0,8}}{y}^{8}+{a}_{\mathrm{0,10}}{y}^{10}+{a}_{\mathrm{0,12}}{y}^{12}+\left({\delta }^{2}+{\theta }^{2}\right){\chi }_{1}(\xi ,y),\end{array}\end{eqnarray}$where ${\chi }_{1}{(\xi ,y)=(\xi -\theta )}^{2}-\tfrac{c-{\gamma }_{1}}{{\gamma }_{3}}{(y-\delta )}^{2}+\tfrac{3\alpha }{c-{\gamma }_{1}}$. Without loss of generality, we can choose a12,0=1. Plugging (3.13) into (3.1) and setting all the coefficients of the different powers of ${y}^{m}{\xi }^{m}$ to zero, we gain a system of nonlinear algebraic equations, and by solving the related system we arrive at the following parameters:$ \begin{eqnarray}\begin{array}{rcl}\alpha & = & -\displaystyle \frac{{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{\gamma }_{3}}{588},\ c=-\displaystyle \frac{1}{6}{a}_{\mathrm{10,2}}{\gamma }_{3}+{\gamma }_{1},\\ {a}_{\mathrm{0,0}} & = & \displaystyle \frac{\left(9\,150\,625{a}_{10,0}^{5}{a}_{10,2}^{3}+1129430400\,{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+21956126976{\delta }^{2}{b}_{4,2}^{2}\right){a}_{\mathrm{10,0}}}{83013134400{a}_{10,2}^{3}\left({\delta }^{2}+{\theta }^{2}+1\right)},\end{array}\end{eqnarray}$
$ \begin{eqnarray*}\begin{array}{rclcl}{a}_{\mathrm{0,2}} & = & \displaystyle \frac{32896875\,{a}_{10,0}^{5}{a}_{10,2}^{3}+1317668800\,{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+25615481472\,{\delta }^{2}{b}_{4,2}^{2}}{17788528800\,{a}_{10,2}^{2}\left({\delta }^{2}+{\theta }^{2}+1\right)},\,{a}_{\mathrm{0,4}} & = & \displaystyle \frac{334525\,{a}_{10,0}^{4}{a}_{10,2}^{2}}{203297472},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{0,6}} & = & \displaystyle \frac{28535\,{a}_{10,0}^{3}{a}_{10,2}^{3}}{21781872},\ \ {a}_{\mathrm{0,8}}=\displaystyle \frac{1445\,{a}_{10,0}^{2}{a}_{10,2}^{4}}{4148928},\\ {a}_{\mathrm{0,10}} & = & \displaystyle \frac{29\,{a}_{10,2}^{5}{a}_{\mathrm{10,0}}}{381024},\ \ {a}_{\mathrm{0,12}}=\displaystyle \frac{{a}_{10,2}^{6}}{46656},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rclcl}{a}_{\mathrm{2,0}} & = & \displaystyle \frac{2495625\,{a}_{10,0}^{5}{a}_{10,2}^{3}+188238400{\theta }^{2}{a}_{\mathrm{10,2}}{c}_{4,2}^{2}+3659354496\,{\delta }^{2}{b}_{4,2}^{2}}{423536400\,{a}_{10,2}^{3}\left({\delta }^{2}+{\theta }^{2}+1\right)},{a}_{\mathrm{2,2}} & = & \displaystyle \frac{275\,{a}_{10,0}^{4}{a}_{\mathrm{10,2}}}{268912},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{2,4}} & = & -\displaystyle \frac{25\,{a}_{10,0}^{3}{a}_{10,2}^{2}}{57624},\ \ {a}_{\mathrm{2,6}}=\displaystyle \frac{1265\,{a}_{10,0}^{2}{a}_{10,2}^{3}}{74088},\\ {a}_{\mathrm{2,8}} & = & \displaystyle \frac{95\,{a}_{\mathrm{10,0}}{a}_{10,2}^{4}}{21168},\ {a}_{\mathrm{2,10}}=\displaystyle \frac{{a}_{10,2}^{5}}{1296},\ {a}_{\mathrm{4,0}}=-\displaystyle \frac{15125\,{a}_{10,0}^{4}}{806736},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{4,2}} & = & \displaystyle \frac{375\,{a}_{\mathrm{10,2}}{a}_{10,0}^{3}}{9604},\ {a}_{\mathrm{4,4}}=\displaystyle \frac{2675\,{a}_{10,0}^{2}{a}_{10,2}^{2}}{24696},\\ {a}_{\mathrm{4,6}} & = & \displaystyle \frac{365\,{a}_{\mathrm{10,0}}{a}_{10,2}^{3}}{5292},\ {a}_{\mathrm{4,8}}=\displaystyle \frac{5\,{a}_{10,2}^{4}}{432},\ {a}_{\mathrm{6,0}}=\displaystyle \frac{55\,{a}_{10,0}^{3}}{2058},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{a}_{\mathrm{6,2}} & = & \displaystyle \frac{95\,{a}_{\mathrm{10,2}}{a}_{10,0}^{2}}{294},\ {a}_{\mathrm{6,4}}=\displaystyle \frac{55\,{a}_{\mathrm{10,0}}{a}_{10,2}^{2}}{126},\ {a}_{\mathrm{6,6}}=\displaystyle \frac{5\,{a}_{10,2}^{3}}{54},\\ {a}_{\mathrm{8,0}} & = & \displaystyle \frac{15\,{a}_{10,0}^{2}}{196},\ {a}_{\mathrm{8,2}}=\displaystyle \frac{115\,{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}}{98},\ {a}_{\mathrm{8,4}}=\displaystyle \frac{5\,{a}_{10,2}^{2}}{12},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}{a}_{\mathrm{10,0}}={a}_{\mathrm{10,0}},\ {a}_{\mathrm{10,2}}={a}_{\mathrm{10,2}},\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{b}_{\mathrm{0,0}} & = & -\displaystyle \frac{11\,{a}_{10,0}^{3}{b}_{\mathrm{4,2}}}{1372\,{a}_{\mathrm{10,2}}},\ {b}_{\mathrm{0,2}}=\displaystyle \frac{{a}_{10,0}^{2}{b}_{\mathrm{4,2}}}{196},\ {b}_{\mathrm{0,4}}=\displaystyle \frac{{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{b}_{\mathrm{4,2}}}{420},\\ {b}_{\mathrm{0,6}} & = & -\displaystyle \frac{{a}_{10,2}^{2}{b}_{\mathrm{4,2}}}{180},\ {b}_{\mathrm{2,0}}=\displaystyle \frac{57\,{a}_{10,0}^{2}{b}_{\mathrm{4,2}}}{686\,{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{b}_{\mathrm{2,2}} & = & \displaystyle \frac{19\,{a}_{\mathrm{10,0}}{b}_{\mathrm{4,2}}}{49},\ {b}_{\mathrm{2,4}}=\displaystyle \frac{3}{10}{a}_{\mathrm{10,2}}{b}_{\mathrm{4,2}},\ {b}_{\mathrm{4,0}}=-\displaystyle \frac{9\,{a}_{\mathrm{10,0}}{b}_{\mathrm{4,2}}}{7\,{a}_{\mathrm{10,2}}},\\ {b}_{\mathrm{4,2}} & = & {b}_{\mathrm{4,2}},\ {b}_{\mathrm{6,0}}=-6\,\displaystyle \frac{{b}_{\mathrm{4,2}}}{{a}_{\mathrm{10,2}}},\ {c}_{\mathrm{0,0}}=-\displaystyle \frac{5\,{a}_{10,0}^{3}{c}_{\mathrm{4,2}}}{1764\,{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{c}_{\mathrm{0,2}} & = & -\displaystyle \frac{535\,{a}_{10,0}^{2}{c}_{\mathrm{4,2}}}{86436},\ {c}_{\mathrm{0,4}}=-\displaystyle \frac{5\,{a}_{\mathrm{10,0}}{a}_{\mathrm{10,2}}{c}_{\mathrm{4,2}}}{588},\\ {c}_{\mathrm{0,6}} & = & -\displaystyle \frac{5\,{a}_{10,2}^{2}{c}_{\mathrm{4,2}}}{324},\ {c}_{\mathrm{2,0}}=\displaystyle \frac{5\,{a}_{10,0}^{2}{c}_{\mathrm{4,2}}}{294\,{a}_{\mathrm{10,2}}},\\ {c}_{\mathrm{2,2}} & = & \displaystyle \frac{115\,{a}_{\mathrm{10,0}}{c}_{\mathrm{4,2}}}{441},\end{array}\end{eqnarray*}$
$ \begin{eqnarray*}\begin{array}{rcl}{c}_{\mathrm{2,4}} & = & \displaystyle \frac{5\,{a}_{\mathrm{10,2}}{c}_{\mathrm{4,2}}}{54},\ {c}_{\mathrm{4,0}}=-\displaystyle \frac{13\,{a}_{\mathrm{10,0}}{c}_{\mathrm{4,2}}}{147\,{a}_{\mathrm{10,2}}},\\ {c}_{\mathrm{4,2}} & = & {c}_{\mathrm{4,2}},\ {c}_{\mathrm{6,0}}=-\displaystyle \frac{2}{3}\displaystyle \frac{{c}_{\mathrm{4,2}}}{{a}_{\mathrm{10,2}}},\end{array}\end{eqnarray*}$
in which ${b}_{\mathrm{4,2}}$ and ${c}_{\mathrm{4,2}}$ are arbitrary values. Thus, the third-order lump solutions of equation (1.5) can be obtained by$ \begin{eqnarray}{\rm{\Psi }}(\xi ,y)=2{\left(\mathrm{ln}{{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta \right)}_{\xi \xi },\end{eqnarray}$where ${{\mathfrak{f}}}_{3}(\xi ,y;\theta ,\delta )$ is given in equation (3.9). It is worth mentioning that this lump has the following features:$ \begin{eqnarray}\mathop{\mathrm{lim}}\limits_{\xi \longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0},\ \ \ \mathop{\mathrm{lim}}\limits_{y\longrightarrow \pm \infty }{\rm{\Psi }}(\xi ,y)={{\rm{\Psi }}}_{0}.\end{eqnarray}$By selecting suitable values of parameters, the graphical representation of periodic wave solution is presented in figures 57 including 3D plot, contour plot, density plot, and 2D plot where three spaces arise at spaces y=−1, y=0, and y=1. In figure 5 the rogue wave has one center $(\delta ,\theta )=(-2,-3)$, while in figure 6 the lump has one center (δ, θ)=(2, 3), and in figure 7 the rogue wave has one center (δ, θ)=(0, 0).

Figure 5.

New window|Download| PPT slide
Figure 5.The three-order lump (3.16) at $\delta =-2,\theta =-3,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2$, ${b}_{\mathrm{4,2}}=3,{c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.


Figure 6.

New window|Download| PPT slide
Figure 6.The three-order lump (3.16) at $\delta =2,\theta =3,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2,{b}_{\mathrm{4,2}}=3$, ${c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.


Figure 7.

New window|Download| PPT slide
Figure 7.The three-order lump (3.16) at $\delta =0,\theta =0,c=2,{c}_{\mathrm{4,2}}=2,{b}_{\mathrm{2,0}}=2$, ${b}_{\mathrm{4,2}}=3,{c}_{\mathrm{0,2}}=3\alpha =1.2,{\gamma }_{1}=1,{\gamma }_{3}=-2,{{\rm{\Psi }}}_{0}=1$.


4. Application of SIVP for equation (1.5)

By utilizing the wave transformation $\xi =k(x+y-{ct})$ in equation (1.5) one can arrive at a nonlinear ordinary differential equation as follows:$ \begin{eqnarray}\begin{array}{l}{k}^{2}(\alpha +\beta ){\rm{\Psi }}\unicode{x02057}+6k(\alpha +\beta ){\rm{\Psi }}^{\prime} {\rm{\Psi }}^{\prime\prime} \\ \quad +\,({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}-c){\rm{\Psi }}^{\prime\prime} =0.\end{array}\end{eqnarray}$Based on the semi-inverse variational principle [6163], and by multiplying equation (4.1) with ${\rm{\Psi }}^{\prime} $ and integrating, we obtain the stationary integral$ \begin{eqnarray}\begin{array}{rcl}J & = & {\displaystyle \int }_{-\infty }^{\infty }\left(2k(\alpha +\beta ){\left({\rm{\Psi }}^{\prime} \right)}^{3}-\displaystyle \frac{1}{2}{k}^{2}(\alpha +\beta ){\left({\rm{\Psi }}^{\prime\prime} \right)}^{2}\right.\\ & & \left.+\displaystyle \frac{1}{2}({\gamma }_{1}+{\gamma }_{2}+{\gamma }_{3}-c){\left({\rm{\Psi }}^{\prime} \right)}^{2}+{k}^{2}(\alpha +\beta ){\rm{\Psi }}^{\prime} {\rm{\Psi }}\prime\prime\prime \right){\rm{d}}\xi .\end{array}\end{eqnarray}$

4.1. Case I

Using the solitary wave function as follows:$ \begin{eqnarray}u(\xi )=A\ {\rm{sech}} \left(B\xi \right).\end{eqnarray}$Thus, the stationary integral changes to$ \begin{eqnarray}\begin{array}{rcl}J & = & \displaystyle \frac{1}{30}{A}^{2}B\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}\right.\\ & & \left.-12\,{kAB}\alpha -12\,{kAB}\beta -5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5\,{\gamma }_{3}\right),\end{array}\end{eqnarray}$SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=0\end{eqnarray}$and$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial B}=0,\end{eqnarray}$and arrive at the following two nonlinear algebraic systems:$ \begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{15}{AB}\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}-12\,{kAB}\alpha -12\,{kAB}\beta \right.\\ \quad \left.-\,5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5\,{\gamma }_{3}\right)\\ \quad +\,\displaystyle \frac{1}{30}{A}^{2}B\left(-12\,B\alpha \,k-12\,B\beta \,k\right)=0,\end{array}\end{eqnarray}$$ \begin{eqnarray}\begin{array}{l}\displaystyle \frac{1}{30}{A}^{2}\left(-21\,{B}^{2}\alpha \,{k}^{2}-21\,{B}^{2}\beta \,{k}^{2}-12\,{kAB}\alpha \right.\\ \quad \left.-\,12\,{kAB}\beta -5\,c+5\,{\gamma }_{1}+5\,{\gamma }_{2}+5{\gamma }_{3}\right)\\ \quad +\,\displaystyle \frac{1}{30}{A}^{2}B\left(-42\,B\alpha \,{k}^{2}-42B\beta \,{k}^{2}\right.\\ \quad -\,12\,A\alpha \,k-12\,A\beta \,k=0.\end{array}\end{eqnarray}$By solving the above equations, one can recover a relation between these two parameters from (4.7) and (4.8) as$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{1}{3}\displaystyle \frac{\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\sqrt{21}}{\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{21}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$The domain of definition of the above relations will be as$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$Lastly, the solitary wave solution acquired by means of SIVP will be as$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{1}{3}\displaystyle \frac{\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\sqrt{21}}{\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {\rm{sech}} \\ \times \,\left[\pm \displaystyle \frac{1}{21}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$

4.2. Case II

We use the solitary wave function as follows:$ \begin{eqnarray}u(\xi )=A\ {{\rm{sech}} }^{2}(B\xi ).\end{eqnarray}$Thus, the stationary integral changes to$ \begin{eqnarray}J=-\displaystyle \frac{\left(240\,{B}^{2}\alpha \,{k}^{2}+240\,{B}^{2}\beta \,{k}^{2}+70\,{kAB}\alpha +70\,{kAB}\beta +28\,c-28\,{\gamma }_{1}-28\,{\gamma }_{2}-28\,{\gamma }_{3}\right){A}^{2}B}{105}.\end{eqnarray}$SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=-\displaystyle \frac{\left(70B\alpha k+70B\beta k\right){A}^{2}B}{105}-\displaystyle \frac{\left(480{B}^{2}\alpha {k}^{2}+480{B}^{2}\beta {k}^{2}+140{kAB}\alpha +140{kAB}\beta +56c-56{\gamma }_{1}-56\,{\gamma }_{2}-56{\gamma }_{3}\right){AB}}{105}=0\end{eqnarray}$and$ \begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial J}{\partial B} & = & -\displaystyle \frac{\left(480\,B\alpha \,{k}^{2}+480\,B\beta \,{k}^{2}+70\,A\alpha \,k+70\,A\beta \,k\right){A}^{2}B}{105}\\ & & -\displaystyle \frac{\left(240\,{B}^{2}\alpha \,{k}^{2}+240\,{B}^{2}\beta \,{k}^{2}+70\,{kAB}\alpha +70\,{kAB}\beta +28\,c-28\,{\gamma }_{1}-28\,{\gamma }_{2}-28\,{\gamma }_{3}\right){A}^{2}}{105}=0.\end{array}\end{eqnarray}$By solving the above equations, one can recover a relation between these two parameters from (4.14) and (4.15) as$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$The domain of definition of the above relations will be as$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$Lastly, the bright wave solution acquired by means of SIVP will be as$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {{\rm{sech}} }^{2}\\ \times \,\left[\pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$

4.3. Case III

Suppose the dark soliton wave solution takes the following form:$ \begin{eqnarray}u(\xi )=A\ {\tanh }^{2}(B\xi ).\end{eqnarray}$Thus, the stationary integral changes to$ \begin{eqnarray}J=-\displaystyle \frac{2\,{A}^{2}B\left(-120\,{B}^{2}{{ck}}^{2}+35\,{kABc}-14\,S\right)}{105}.\end{eqnarray}$SIVP notes that the soliton amplitude and its inverse width are found according to the coupled system given below as$ \begin{eqnarray}\displaystyle \frac{\partial J}{\partial A}=\displaystyle \frac{2\,{A}^{2}B\left(-120\,{B}^{2}\alpha \,{k}^{2}-120\,{B}^{2}\beta \,{k}^{2}+35\,{kAB}\alpha +35\,{kAB}\beta -14\,c+14\,{\gamma }_{1}+14\,{\gamma }_{2}+14\,{\gamma }_{3}\right)}{105}=0\end{eqnarray}$and$ \begin{eqnarray}\begin{array}{rcl}\displaystyle \frac{\partial J}{\partial B} & = & \displaystyle \frac{2\,{A}^{2}\left(-120\,{B}^{2}\alpha \,{k}^{2}-120\,{B}^{2}\beta \,{k}^{2}+35\,{kAB}\alpha +35\,{kAB}\beta -14\,c+14\,{\gamma }_{1}+14\,{\gamma }_{2}+14\,{\gamma }_{3}\right)}{105}\\ & & +\displaystyle \frac{2\,{A}^{2}B\left(-240\,B\alpha \,{k}^{2}-240\,B\beta \,{k}^{2}+35\,A\alpha \,k+35A\beta \,k\right)}{105}=0.\end{array}\end{eqnarray}$By solving the above equations, one can recover a relation between these two parameters from (4.21) and (4.22) as$ \begin{eqnarray}\begin{array}{rcl}A & = & \pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}},\\ B & = & \pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)k}.\end{array}\end{eqnarray}$The domain of definition of the above relations will be as$ \begin{eqnarray}\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)\gt 0.\end{eqnarray}$Lastly, the dark wave solution acquired by the help of SIVP will be as$ \begin{eqnarray}\begin{array}{l}{\rm{\Psi }}(x,y,t)=\pm \displaystyle \frac{\left(16\,c-16\,{\gamma }_{1}-16\,{\gamma }_{2}-16\,{\gamma }_{3}\right)\sqrt{21}}{35\,\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}\ {\tanh }^{2}\\ \times \,\left[\pm \displaystyle \frac{1}{30}\displaystyle \frac{\sqrt{21}\sqrt{\left(\alpha +\beta \right)\left(c-{\gamma }_{1}-{\gamma }_{2}-{\gamma }_{3}\right)}}{\left(\alpha +\beta \right)}(x+y-{ct})\right].\end{array}\end{eqnarray}$

5. Conclusion

In this article, we obtained multiple lump solutions and solitary, bright, and dark soliton solutions for the generalized Bogoyavlensky–Konopelchenko equation. The multiple lump solutions method contains first-order, second-order, and third-order wave solutions. At the critical point, the second-order derivative and Hessian matrix for only one point was investigated, and the lump solution for the first-order rouge wave solution obtained one maximum value. These results are beneficial for the study of gas, plasma, optics, acoustics, heat transfer, fluid dynamics, and classical mechanics. All calculations in this paper have been made using Maple.


Reference By original order
By published year
By cited within times
By Impact factor

Dehghan M Manafian J Saadatmandi A 2011 Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics
Int. J. Numer. Methods Heat Fluid Flow 21 736 753

DOI:10.1108/09615531111148482 [Cited within: 1]

Dehghan M Manafian J Saadatmandi A 2010 Solving nonlinear fractional partial differential equations using the homotopy analysis method
Numer. Methods Partial Differ. 26 448 479

DOI:10.1002/num.20460 [Cited within: 1]

Dehghan M Manafian J 2009 The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method
Zeitschrift für Naturforschung A 64a 420 430

DOI:10.1515/zna-2009-7-803 [Cited within: 1]

Sindi C T Manafian J 2017 Wave solutions for variants of the KdV-Burger and the K(n,n)-Burger equations by the generalized G’/G-expansion method
Math. Method Appl. Sci. 40 4350 4363

DOI:10.1002/mma.4309 [Cited within: 1]

Manafian J Lakestani M 2016 Application of ${\tan }(\phi /2)$-expansion method for solving the Biswas-Milovic equation for Kerr law nonlinearity
Optik 127 2040 2054

DOI:10.1016/j.ijleo.2015.11.078 [Cited within: 1]

Seadawy A R Manafian J 2018 New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod
Results in Physics 8 1158 1167

DOI:10.1016/j.rinp.2018.01.062 [Cited within: 1]

Manafian J 2018 Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations
Comput. Math. Appl. 76 1246 1260

DOI:10.1016/j.camwa.2018.06.018 [Cited within: 1]

Manafian J Lakestani M 2020 N-lump and interaction solutions of localized waves to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation
J. Geom. Phys. 150 103598

DOI:10.1016/j.geomphys.2020.103598

Manafian J Murad M A S Alizadeh A Jafarmadar S 2020 M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation
Eur. Phys. J. Plus 135 167

DOI:10.1140/epjp/s13360-020-00109-0

Ma W X Zhou Y 2018 Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
J. Differ. Equ. 264 2633 2659

DOI:10.1016/j.jde.2017.10.033

Ma W X 2019 A search for lump solutions to a combined fourthorder nonlinear PDE in (2+1)-dimensions
J. Appl. Anal. Comput. 9 1319 1332

DOI:10.11948/2156-907X.20180227

Ma W X 2019 Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions
Front. Math. China 14 619 629

DOI:10.1007/s11464-019-0771-y

Ma W X 2019 Long-time asymptotics of a three-component coupled mKdV system
Mathematics 7 573

DOI:10.3390/math7070573

Manafian J Mohammadi-Ivatlo B Abapour M 2019 Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation
Appl. Math. Comput. 13 13 41

DOI:10.1016/j.amc.2019.03.016

Ilhan O A Manafian J Shahriari M 2019 Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation
Comput. Math. Appl. 78 2429 2448

DOI:10.1016/j.camwa.2019.03.048

Ilhan O A Manafian J 2019 Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics
Mod. Phys. Lett. B 33 1950277

DOI:10.1142/S0217984919502774

Ma W X Zhou Y Dougherty R 2016 Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations
Int. J. Mod. Phys. B 30 1640018

DOI:10.1142/S021797921640018X

J Bilige S Gao X Bai Y Zhang R 2018 Abundant lump solution and interaction phenomenon to Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation
J. Appl. Math. Phys. 6 1733 1747

DOI:10.4236/jamp.2018.68148

Manafian J Ilhan O A Alizadeh A 2020 Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction solutions
Phys. Scr. 95 065203

DOI:10.1088/1402-4896/ab68be [Cited within: 1]

He J H 2019 A modified Li-He’s variational principle for plasma
Int. J. Numer. Methods Heat Fluid Flow

DOI:10.1108/HFF-06-2019-0523 [Cited within: 1]

He J H 2019 Lagrange crisis and generalized variational principle for 3D unsteady flow
Int. J. Numer. Methods Heat Fluid Flow 30 1189 1196

DOI:10.1108/HFF-07-2019-0577 [Cited within: 1]

Chen S S Tian B Liu L Yuan Y Q Zhang C R 2019 Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system
Chaos Solitons Fractals 118 337 346

DOI:10.1016/j.chaos.2018.11.010 [Cited within: 2]

Du X X Tian B Wu X Y Yin H M Zhang C R 2018 Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electronpositron- ion plasma
Eur. Phys. J. Plus 133 378

DOI:10.1140/epjp/i2018-12239-y [Cited within: 1]

Ray S Saha 2017 On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky–Konopelchenko equation in wave propagation
Comput. Math. Appl. 74 1158 1165

DOI:10.1016/j.camwa.2017.06.007 [Cited within: 1]

Zhao X H Tian B Xie X Y Wu X Y Sun Y Guo Y J 2018 Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth
Waves Random Complex 28 356 366

DOI:10.1080/17455030.2017.1348645 [Cited within: 1]

Abdullahi R A 2016 The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions
Comput. Math. Appl. 71 1248 1258

DOI:10.1016/j.camwa.2016.02.005 [Cited within: 1]

Ma W X Zhu Z 2012 Solving the (3+1)-dimensional generalized kp and bkp equations by the multiple exp-function algorithm
Appl. Math. Comput. 218 11871 11879

DOI:10.1016/j.amc.2012.05.049 [Cited within: 1]

Baskonus H M Bulut H 2016 Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics
Waves Random Complex Media 26 201 208

DOI:10.1080/17455030.2015.1132860 [Cited within: 1]

Sulaiman T A Nuruddeen R I Zerrad E Mikail B B 2019 Dark and singular solitons to the two nonlinear Schrödinger’s equations
Optik 186 423 430

DOI:10.1016/j.ijleo.2019.04.023

Inc M Aliyu A I Yusuf A Baleanu D 2018 Optical solitary waves, conservation laws and modulation instabilty analysis to nonlinear Schrödinger’s equations in compressional dispersive Alfvan waves
Optik 155 257 266

DOI:10.1016/j.ijleo.2017.10.109 [Cited within: 1]

Bogoyavlenskii O I 1990 Breaking solitons in 2 + 1-dimensional integrable equations
Russian Math. Surveys 45 1 86

DOI:10.1070/RM1990v045n04ABEH002377 [Cited within: 1]

Kudryasho N Pickering A 1998 Rational solutions for Schwarzian integrable hierarchies
J. Phys. A: Math. Gen. 31 9505 9518

DOI:10.1088/0305-4470/31/47/011 [Cited within: 1]

Clarkson P A Gordoa P R Pickering A 1997 Multicomponent equations associated to non-isospectral scattering problems
Inverse Problems 13 1463 1476

DOI:10.1088/0266-5611/13/6/004 [Cited within: 1]

Estevez P G Prada J 2004 A generalization of the sine-Gordon equation (2+1)-dimensions
J. Nonlinear Math. Phys. 11 168 179

DOI:10.2991/jnmp.2004.11.2.3 [Cited within: 1]

Zahran E H M Khater M M A 2016 Modified extended tanh-function method and its applications to the Bogoyavlenskii equation
Appl. Math. Model. 40 1769 1775

DOI:10.1016/j.apm.2015.08.018 [Cited within: 1]

Abadi S A M Naja M 2012 Soliton solutions for (2+1)-dimensional breaking soliton equation: three wave method
Int. J. Appl. Math. Res. 1 141 149

DOI:10.14419/ijamr.v1i2.32 [Cited within: 1]

Xin X P Liu X Q Zhang L L 2010 Explicit solutions of the Bogoyavlensky-Konoplechenko equation
Appl. Math. Comput. 215 3669 3673

DOI:10.1016/j.amc.2009.11.005 [Cited within: 1]

Prabhakar M V Bhate H 2003 Exact solutions of the Bogoyavlensky–Konoplechenko equation
Lett. Math. Phys. 64 1 6

DOI:10.1023/A:1024909327151 [Cited within: 1]

Chen S T Ma W X 2019 Exact Solutions to a Generalized Bogoyavlensky–Konopelchenko equation via Maple Symbolic Computations
Complexity 2019 8787460

DOI:10.1155/2019/8787460 [Cited within: 1]

Liu Y Wen X Y Wang D S 2019 Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation
Comp. Math. Appl. 78 1 19

DOI:10.1016/j.camwa.2019.03.005 [Cited within: 1]

Liu Y Wen X Y Wang D S 2019 The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation
Comp. Math. Appl. 77 947 966

DOI:10.1016/j.camwa.2018.10.035 [Cited within: 1]

Wang D S Hu X H Liu W M 2010 Localized nonlinear matter waves in two-component Bose–Einstein condensates with time- and space-modulated nonlinearities
Phys. Rev. A 82 023612

DOI:10.1103/PhysRevA.82.023612 [Cited within: 1]

Wang D S Song S W Xiong B Liu W M 2011 Quantized vortices in a rotating Bose–Einstein condensate with spatiotemporally modulated interaction
Phys. Rev. A 84 053607

DOI:10.1103/PhysRevA.84.053607 [Cited within: 1]

Wang D S Zhang D J Yang J 2010 Integrable properties of the general coupled nonlinear Schrodinger equations
J. Math. Phys. 51 023510

DOI:10.1063/1.3290736 [Cited within: 1]

He J H 2019 Generalized variational principles for buckling analysis of circular cylinders
Acta Mech. 231 899 906

DOI:10.1007/s00707-019-02569-7 [Cited within: 1]

He J H 2020 A fractal variational theory for one-dimensional compressible flow in a microgravity space
Fractals 28 2050024

DOI:10.1142/S0218348X20500243 [Cited within: 1]

He J H 2020 Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves
J. Appl. Comput. Mech. 6 735 740

[Cited within: 1]

He J H Sun C 2019 A variational principle for a thin film equation
J. Math. Chem. 57 2075 2081

DOI:10.1007/s10910-019-01063-8 [Cited within: 1]

Liu J F 2009 He’s variational approach for nonlinear oscillators with high nonlinearity
Comput. Math. Appl. 58 2423 2426

DOI:10.1016/j.camwa.2009.03.074 [Cited within: 1]

Nawaz Y Arif M S Bibi M Naz M Fayyaz R 2019 An effective modificationof He’s variational approachto a nonlinear oscillator
J. Low Freq. Noise Vib. 38 1013 1022

DOI:10.1177/1461348419829372 [Cited within: 1]

He J H 2007 Variational approach for nonlinear oscillators
Chaos, Solitons Fract. 34 1430 1439

DOI:10.1016/j.chaos.2006.10.026 [Cited within: 1]

He J H 2019 The simplest approach to nonlinear oscillators
Results in Physics 15 102546

DOI:10.1016/j.rinp.2019.102546 [Cited within: 1]

Kovacic I Rakaric Z Cveticanin L 2010 A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities
Appl. Math. Computat. 217 3944 3954

DOI:10.1016/j.amc.2010.09.058 [Cited within: 1]

Ain Q T He J H 2019 On two-scale dimension and its applications
Thermal Science 23 1707 1712

DOI:10.2298/TSCI190408138A [Cited within: 1]

He J H Ji F Y 2019 Two-scale mathematics and fractional calculus for thermodynamics
Therm. Sci. 23 2131 2133

DOI:10.2298/TSCI1904131H [Cited within: 1]

Zhaqilao 2018 A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems
Comput. Math. Appl. 75 3331 3342

DOI:10.1016/j.camwa.2018.02.001 [Cited within: 3]

Liu W Zhang Y 2019 Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation
Appl. Math. Let. 98 184 190

DOI:10.1016/j.aml.2019.05.047 [Cited within: 1]

Zhang H Y Zhang Y F 2019 Analysis on the M-rogue wave solutions of a generalized (3+1)-dimensional KP equation
Appl. Math. Let. 102 106145

DOI:10.1016/j.aml.2019.106145 [Cited within: 2]

Clarkson P A Dowie E 2017 Rational solutions of the Boussinesq equation and applications to rogue waves
Trans. Math. Appl. 1 1 26

DOI:10.1093/imatrm/tnx003 [Cited within: 1]

Wang C J 2016 Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation
Nonlinear Dynam. 84 697 702

DOI:10.1007/s11071-015-2519-x [Cited within: 1]

He J H 2006 Some asymptotic methods for strongly nonlinear equations
Int. J. Modern Phys. B 20 1141 1199

DOI:10.1142/S0217979206033796 [Cited within: 1]

He J H 2020 A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives
Int. J. Numerical Meth. Heat and Fluid Flow

DOI:10.1108/HFF-01-2020-0060

Ji F Y He C H Zhang J J He J H 2020 A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar
Appl. Math. Model. 82 437 448

DOI:10.1016/j.apm.2020.01.027 [Cited within: 1]

相关话题/Multiple rogue solitary