删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Dispersive Solitary Wave Solutions of Strain Wave Dynamical Model and Its Stability

本站小编 Free考研考试/2022-01-02

Muhammad Arshad,1,*, Aly R. Seadawy,2,?, Dian-Chen Lu,2,?, Asghar Ali1,3 Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
Department of Mathematics, University of Education, Multan Campus, Pakistan

Corresponding authors: * E-mail:muhammad.arshad18@yahoo.com? E-mail:aly742001@yahoo.com? E-mail:dclu@ujs.edu.cn

Received:2019-04-15Online:2019-10-9


Abstract
In the materials of micro-structured, the propagation of wave modeling should take into account the scale of various microstructures. The different kinds solitary wave solutions of strain wave dynamical model are derived via utilizing exp\((-\phi(\xi))\)-expansion and extended simple equation methods. This dynamical equation plays a key role in engineering and mathematical physics. Solutions obtained in this work include periodic solitary waves, Kink and anti-Kink solitary waves, bell-shaped solutions, solitons, and rational solutions. These exact solutions help researchers for knowing the physical phenomena of this wave equation. The stability of this dynamical model is examined via standard linear stability analysis, which authenticate that the model is stable and their solutions are exact. Graphs are depicted for knowing the movements of some solutions. The results show that the current methods, by the assist of symbolic calculation, give an effectual and direct mathematical tools for resolving the nonlinear problems in applied sciences.
Keywords: exp\((-\phi(\xi))\)-expansion method;improved simple equation method;strain wave equation;solitary waves;periodic solutions


PDF (5589KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Muhammad Arshad, Aly R. Seadawy, Dian-Chen Lu, Asghar Ali. Dispersive Solitary Wave Solutions of Strain Wave Dynamical Model and Its Stability. [J], 2019, 71(10): 1155-1162 doi:10.1088/0253-6102/71/10/1155

1 Introduction

In the past two decades, the search for solutions of diverse types of nonlinear partial differential equations (NLPDEs) have attracted the attention of many scientists. NLPDEs are often utilized for describing complex nonlinear models in the fields of plasma physics, optical fibers, biology, chemistry, and other non-linear sciences. NLPDEs are broadly utilized in applied mathematics, so it is necessary to find different solutions for different types of NLPDEs. Various scholars have designed different effective methods, such as power system method, modified and extended simple equation techniques, expansion methods, decomposition method, reduced differential transform method, direct algebraic technique, homotopy analysis technique, Lie-group symmetry technique, F-expansion technique, mapping technique, first integral scheme, theta and tanh function methods, inverse scattering scheme, extended tanh-function scheme, homogeneous equilibrium and Jacobi elliptic function methods and so on.[1-22]

NLPDEs also describe the mathematical model of wave dissemination in solids of micro-structured, which should take into account numerous scales of microstructures. If scale dependence engrosses dispersion effect and material is nonlinear, dispersion and nonlinear effects may be balanced, leading to solitary waves. In addition to mathematical and physical model equations, the existence and occurrence of solitary waves in complex physical problems must be analyzed accurately enough. Microstructure materials such as alloys, grains, ceramics and functionally gradient materials have been widely used. The modeling of waves dissemination in this material should take into account different micro-structural scales.[1-3, 23] In addition to mathematical and physical model equations, the occurrence of waves in complex physical models should be sufficiently correct. Recently, this turns into much gorgeous for obtaining the analytical solutions of NLPDEs via computer algebra, which is helpful for complex and tedious algebraic computation. In mathematical physics, the approximate and exact solutions of NLPDEs, especially the estimation of traveling wave solutions, play a significant part in the theory of solitons.[24] In micro-structured solids, there are numerous studies anywhere the governing models of waves have been developed and exact solutions in waves form are scrutinized.[25-26] The modeling in mathematical form of engineering and physics problems are inherent via NLPDEs, so it is very significant for studying the analytical solutions of NLPDEs. Analytical solutions of such equations provide knowledge concerning the structures of these models.

Some analytical methods to solve nonlinear equations are mentioned in the introduction. However, a key method called Lie algebra method is missing. Three seminal works are: a Lie algebra approach to susceptible-infected-susceptible epidemics, analytical solution for an in-host viral infection model with time-inhomogeneous rates, Lie algebraic discussion for affinity based information diffusion in social networks.[31-37]

In this paper, we stanched our exertion in constructing novel solitary wave solutions for strain wave model in solids of micro-structured[29] via employing the influential exp\((-\phi(\xi))\)-expansion[27] and improved simple equation methods.[28] Some researchers have been utilized other techniques for obtaining the traveling wave solutions of this model, for example, generalized \( G'/G\)-expansion,[26] functional variable and Kudryashov technique.[30] The governing micro strain wave model[26, 29-30] in the solids of micro-structured has the form as

$$ \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \epsilon \alpha_1 \frac{\partial^2 u^2}{\partial x^2} - \beta \alpha_2 \frac{\partial^3 u}{\partial t \partial x^2 } + \delta \alpha_3 \frac{\partial^4 u}{\partial x^4} \!-\! \left( \delta \alpha_4\! -\! \beta^2 \alpha_7 \right)\! \frac{\partial^4 u }{\partial t^2 \partial x^2}\! +\! \beta \delta\! \left(\! \alpha_5 \frac{\partial^5 u }{\partial t \partial x^4}\! +\! \alpha_6 \frac{\partial^5 u }{\partial t^3 \partial x^2}\! \right)\!=\!0, $$
in above model, \(\epsilon\) and \(\delta\) represent the elastic strains and ratio among wave length and size of micro-structure, \(\beta\) illustrates the dissipation influence and \(\alpha_{i} (i=0, 1, 2, 3, \ldots, 7)\) are nonzero real numbers.

The aspire of this paper is to construct the new solitary wave solutions of strain wave model (1) for describing the dissemination of waves in solids of micro-structured through modified improved simple equation and exp(\(-\phi(\xi)\))-expansion methods. These solutions have key applications in solids of micro-structured and other areas of sciences.

2 Formation of Solitary Wave Solutions

In this segment, we construct the solitary wave solutions of model (1) in micro-structured solids.

2.1 Exp\boldmath\((-\phi(\xi))\)-expansion Method

The traveling wave solutions of Eq. (1) takes the form

$$ u(x,t)\!=\!X (\xi)\! =\! \sum _{j=0}^N B_j \left( \exp(-\phi(\xi) \right) ^j,\quad \xi\!=\! k x \!-\!\omega t, $$
where \(\phi\) gratifies the below equation

$$ \frac{\text{d}\phi}{\text{d} \xi}= \lambda + \exp\left( -\phi(\xi)\right) + \mu \exp\left( \phi(\xi)\right),$$
in above equations, the \(B_j, k, \mu\) and \(\lambda\) are real constants, \(\omega\) is speed of wave and N is positive integer. The equation (1) reduces into ODE by using Eq. (2) as

$$ \beta \delta k^2 \omega \left(\alpha _6 \omega ^2\!+\!\alpha _5 k^2\right) X^{(v)} \!-\! k^2 \left(\alpha _3 \delta k^2\!-\!\omega ^2 \left(\alpha _4 \delta \!-\!\alpha _7 \beta ^2\right)\right) \nonumber\\ \times X^{(iv)}\!-\! \alpha _2 \beta k^2 \omega X^{\prime\prime\prime}\!\!-\!\left(\omega ^2\!-\!k^2\right) X^{\prime\prime}\!\! +\! \alpha _1 k^2 \epsilon\left( X^2\right)^{\prime\prime}\!=\!0.$$
Integrating Eq. (4) twice, we got

$$ \beta \delta k^2 \omega \left(\alpha _6 \omega ^2\!+\!\alpha _5 k^2\right) X^{\prime\prime\prime}\!-\!k^2 \left(\alpha _3 \delta k^2\!-\!\omega ^2 \left(\alpha _4 \delta \!-\!\alpha _7 \beta ^2\right)\right) \times X^{\prime\prime}\!-\! \alpha _2 \beta k^2 \omega X' \!-\!\left(\omega ^2\!-\!k^2\right) X\!+\! \alpha _1 k^2 \epsilon X^2 \!+\! A \!=\!0,$$
where A is constant of integration. On Eq. (4), we got N=3 by using homogeneous balance principle and the solution of Eq. (4) can be written as

$$ X(\xi) = A_0 + A_1 \exp(-\phi(\xi) ) + A_2 \left( \exp(-\phi(\xi) ) \right)^2 +\; A_3 \left( \exp(-\phi(\xi) ) \right)^3 . $$
The system of equations in \( B_{0}, B_{1}, B_2, B-3, \mu , \lambda, k, \omega\) are obtained by substitute equations Eqs. (6) and (3) into Eq. (5) and taking the coefficients of exp \( (-\phi(\zeta))^l\) to zero. The solution set is obtained by solving this system of equations as

$$ B_0 = \frac{\omega ^ 2 - \alpha _2 \beta \lambda k^2 \omega - k^2}{2 \alpha _1 k^2 \epsilon }, B_1 = -\frac{\alpha _2 \beta \omega }{\alpha _1 \epsilon }, B_2 = B_3 = 0,\nonumber\\ A = \frac{\left(k^2-\omega ^2\right)^2-\alpha _2^2 \beta ^2 k^4 \omega ^2 \left(\lambda ^2-4 \mu \right)}{4 \alpha _1 k^2 \epsilon },\nonumber\\ \delta = \frac{\alpha _7 \beta ^2 \omega ^2}{\alpha _4 \omega ^2-\alpha _3 k^2},\quad \alpha _6 =-\frac{\alpha _5 k^2}{\omega ^2}. $$
The following types solitary waves of Eq. (1) from solution (7) are constructed as

\[ \textbf Type I: For \mu \ne 0 {\rm and} \lambda^2-4 \mu > 0,\]

$$ u_1(x,t)= \frac{1}{2 \alpha _1 \epsilon } \left( \alpha _2 \beta \omega \left(\frac{4 \mu }{\sqrt{\lambda ^2-4 \mu } \tanh \left(({\sqrt{\lambda ^2-4 \mu }}/{2}) (\xi+\xi_o ) \right)+\lambda }-\lambda \right)+\frac{\omega ^2}{k^2}-1 \right). $$
\[ \textbf Type II: For \mu \ne 0 {\rm and} \lambda ^2-4 \mu < 0,\]

$$ u_2(x,t)= \frac{1}{2 \alpha _1 \epsilon }\left( \alpha _2 \beta \omega \left(\frac{4 \mu }{\lambda -\sqrt{4 \mu -\lambda ^2} \tan \left(({\sqrt{4 \mu -\lambda ^2}}/{2}) (\xi+\xi_o ) \right)}-\lambda \right)+\frac{\omega ^2}{k^2}-1 \right) .$$
\[ \textbf Type III: For \mu = 0, \lambda \ne 0, {\rm and} \lambda ^2-4 \mu > 0,\]

$$ u_3(x,t)= \frac{1}{2 \alpha _1 \epsilon } \left(\frac{\omega ^2}{k^2} -\alpha _2 \beta \lambda \omega \coth \left(\frac{\lambda}{2} (\xi+\xi_o )\right)-1 \right) .$$
\[ \textbf Type IV: For \mu \ne 0, \lambda \ne 0, {\rm and} \lambda ^2-4 \mu = 0,\]

$$ u_4(x,t)=-\frac{(k^2-\omega^2 ) (1 + \lambda (\xi+\xi_o ))+\alpha _2 \beta \lambda k^2 \omega }{2 \alpha _1 k^2 \epsilon (\lambda (\xi+\xi_o )+1)}.$$
\[ \textbf Type V: For $$\mu = 0, \lambda = 0, {\rm and} \lambda ^2-4 \mu = 0,\]

$$ u_5(x,t)= -\frac{\alpha _2 \beta k^2 \omega (\lambda (\xi + \xi_o )+2)+(\xi +\xi_o ) (k^2 - \omega^2 ) }{2 \alpha _1 k^2 \epsilon (\xi + \xi_o )}. $$

2.2 Improved Simple Equation Method}

Supposing the traveling wave solutions of Eq. (1) has as

$$ u(x,t) = X (\xi) = \sum_{i=-N}^{N} B_j \phi^{j}(\zeta),\quad \xi = k x - \omega t,$$
where \(\phi\) satisfies the following equation

$$ \frac{\text{d} \phi}{\text{d} \xi} = \rho_0 + \rho_1 \phi(\xi ) + \rho_2 \phi^2 (\xi ) + \rho_3 \phi^3(\xi ),$$
in above equations, the \(B_j, k, \rho_i (i=0,1,2,3)\) and \(\lambda\) are real constants, \(\omega\) is speed of wave and \(N\) is positive integer. Equation (1) reduces into ODE by using Eq. (13) as

$$ \beta \delta k^2 \omega \left(\alpha _6 \omega ^2+\alpha _5 k^2\right) X^{(v)} - k^2 (\alpha _3 \delta k^2-\omega ^2 (\alpha _4 \delta \qquad -\, \alpha _7 \beta ^2)) X^{(iv)} - \alpha _2 \beta k^2 \omega X^{\prime\prime\prime}-\left(\omega ^2-k^2\right) X^{\prime\prime} \qquad + \,\alpha _1 k^2 \epsilon\left( X^2\right)^{\prime\prime} = 0\,.$$
Integrating Eq. (15) twice, we got

$$ \beta \delta k^2 \omega \left(\alpha _6 \omega ^2 + \alpha _5 k^2\right) X^{\prime\prime\prime} - k^2 (\alpha _3 \delta k^2- \omega ^2 (\alpha _4 \delta \qquad -\alpha _7 \beta ^2)) X^{\prime\prime} - \alpha _2 \beta k^2 \omega X' -\left(\omega ^2-k^2\right) X \qquad +\, \alpha _1 k^2 \epsilon X^2 + A =0\,,$$
where \(A\) is integration constant. We got \(N=3\) by using homogeneous balance principle on Eq. (16) and the solution of Eq. (16) has as

$$ X(\xi)= \frac{B_{-3}}{\phi^3(\xi )} + \frac{B_{-2}}{\phi(\xi )} + \frac{B_{-1}}{\phi(\xi )} + B_0 + B_1 \phi(\xi ) +\, B_2 \phi^2 (\xi ) + B_3 \phi^3(\xi ). $$
The system of equations in \( B_{j} (j=-3, -2, \ldots, 3)\), \( \rho_j (j=0, 1, 2, 3)\), \(k\), \(\omega\) are obtained by substitute Eq. (17) and (14) into Eq. (16) and taking the coefficients of \((\phi(\xi))^l\) to zero. The solutions families are obtained via resolving this system as

First Family In this family, we consider the \(\rho_{0}=\rho_{2}=0\),

$$ B_{-3} = B_{-2} =B_{-1} = 0,\quad B_0 = \frac{2 \alpha _2 \beta k^2 \rho _1 \omega -k^2+\omega ^2}{2 \alpha _1 k^2 \epsilon }, B_1 = 0,\quad B_2 = \frac{2 \alpha _2 \beta \rho _3 \omega }{\alpha _1 \epsilon }, \quad B_3 =0, A = \frac{\left(k^2-\omega ^2\right)^2-4 \alpha _2^2 \beta ^2 k^4 \rho _1^2 \omega ^2}{4 \alpha _1 k^2 \epsilon }.$$
Solitary wave solutions of Eq. (1) from solution (18) are attained as

$$ u_{11}(x,t)= \frac{1}{2 \alpha _1 \epsilon }\left( \frac{\omega ^2}{k^2} - 2 \alpha _2 \beta \rho _1 \omega \left(1 + \frac{2}{\rho _3 e^{2 \rho _1 (\xi+\xi_o )}-1}\right)-1 \right) ,\quad\rho_1 > 0.$$
$$ u_{12}(x,t)= \frac{1}{2 \alpha _1 \epsilon } \left( 2 \alpha _2 \beta \rho _1 \omega \left(\frac{2}{\rho _3 e^{2 \rho _1 (\xi+\xi_o ) }+1}-1\right)+\frac{\omega ^2}{k^2}-1 \right) ,\quad\rho_1 < 0. $$
Second Family In this family, we consider \(\rho_{1}=\rho_{3}=0\)

$$ B_{-3} = B_{-2} = B_{-1} = 0, B_0 = \frac{\omega ^2-k^2}{2 \alpha _1 k^2 \epsilon }, B_1 = \frac{\alpha _2 \beta \rho _2 \omega }{\alpha _1 \epsilon },\quad B_2 = B_3 = 0, A = \frac{4 \alpha _2^2 \beta ^2 k^4 \rho _0 \rho _2 \omega ^2+\left(k^2-\omega ^2\right)^2}{4 \alpha _1 k^2 \epsilon }.$$
$$ B_{-3} = B_{-2} = 0,\quad B_{-1} = -\frac{\alpha _2 \beta \rho _0 \omega }{\alpha _1 \epsilon }, \quad B_0 = \frac{\omega ^2-k^2}{2 \alpha _1 k^2 \epsilon }, \quad B_1 =B_2 B_3 = 0, A = \frac{4 \alpha _2^2 \beta ^2 k^4 \rho _0 \rho _2 \omega ^2+\left(k^2-\omega ^2\right)^2}{4 \alpha _1 k^2 \epsilon }.$$
$$ \qquad \quad \qquad B_{-3} = B_{-2} = 0, B_{-1} = -\frac{\alpha _2 \beta \rho _0 \omega }{\alpha _1 \epsilon },\quad B_0 = \frac{\omega ^2-k^2}{2 \alpha _1 k^2 \epsilon },\quad B_1 = \frac{\alpha _2 \beta \rho _2 \omega }{\alpha _1 \epsilon },\quad B_2 = B_3 = 0, \qquad \quad \qquad A = \frac{16 \alpha _2^2 \beta ^2 k^4 \rho _0 \rho _2 \omega ^2+\left(k^2-\omega ^2\right)^2}{4 \alpha _1 k^2 \epsilon }. $$
From solutions (21) and (22), the exact solutions of Eq. (1) are attained as

$$ u_{21}(x,t)= \frac{2 \alpha _2 \beta k^2 \sqrt{\rho _0 \rho _2} \omega \tan \left( \sqrt{\rho _0 \rho _2} (\xi+\xi_o )\right)-k^2+\omega ^2}{2 \alpha _1 k^2 \epsilon },\quad \rho_0 \rho > 0. $$
$$ u_{22}(x,t)=-\frac{2 \alpha _2 \beta k^2 \sqrt{-\rho _0 \rho _2} \omega \tanh \left( \sqrt{-\rho _0 \rho _2}(\xi+\xi_o )\right)+k^2-\omega ^2}{2 \alpha _1 k^2 \epsilon },\quad \rho_0 \rho_2 <0. $$
$$ u_{23}(x,t)= \frac{\omega ^2- k^2 -2 k^2 \alpha _2 \beta \omega \sqrt{\rho _0 \rho _2} \cot \left( \sqrt{\rho _0 \rho _2}(\xi+\xi_o )\right)}{2 \alpha _1 k^2 \epsilon },\quad \rho_0 \rho > 0.$$
$$ u_{24}(x,t)=\frac{-2 \alpha _2 \beta k^2 \sqrt{-\rho _0 \rho _2} \omega \coth \left( \sqrt{-\rho _0 \rho _2}(\xi+\xi_o )\right)-k^2+\omega ^2}{2 \alpha _1 k^2 \epsilon },\quad \rho_0 \rho_2 <0. $$
More general solitary wave solutions can be attained of Eq. (1) from solution (23).

Third Family In this family, we consider

$$\rho_0 = \rho_3 = 0,B_{-3} = B_{-2} = B_{-1} = 0,\quad B_0 = \frac{\alpha _2 \beta k^2 \rho _1 \omega -k^2+\omega ^2}{2 \alpha _1 k^2 \epsilon }, \quad B_1 = \frac{\alpha _2 \beta \rho _2 \omega }{\alpha _1 \epsilon }, \quad B_2 = B_3 = 0, A = \frac{\alpha _2^2 \left(-\beta ^2\right) k^4 \rho _1^2 \omega ^2+k^4-2 k^2 \omega ^2+\omega ^4}{4 \alpha _1 k^2 \epsilon }.$$
The solitary wave solutions of (1) from solution (28) are obtained as

$$ u_{31}(x,t)=\frac{1}{2 \alpha _1 \epsilon } \left( \frac{\omega ^2}{k^2} -\frac{\alpha _2 \beta \rho _1 \omega \left(\rho _2 e^{ \rho _1 (\xi+\xi_o )}+1\right)}{\rho _2 e^{ \rho _1 (\xi+\xi_o )}-1}-1 \right), \quad \rho_1>0. $$
$$ u_{32}(x,t)=\frac{1}{2 \alpha _1 \epsilon }\left(\frac{\omega ^2}{k^2} -\frac{\alpha _2 \beta \rho _1 \omega \left(\rho _2 e^{ \rho _1 (\xi+\xi_o )}-1\right)}{\rho _2 e^{ \rho _1 (\xi+\xi_o ) }+1}-1 \right) , \quad \rho_1<0.$$
Third Family \(\rho_{3}=0\),

$$ B_{-3} = B_{-2} = B_{-1} = 0, \quad B_0 = \frac{\alpha _2 \beta k^2 \rho _1 \omega -k^2+\omega ^2}{2 \alpha _1 k^2 \epsilon },\quad B_1 = \frac{\alpha _2 \beta \rho _2 \omega }{\alpha _1 \epsilon },\quad B_2 = B_3 = 0,\nonumber\\ A = \frac{\left(k^2-\omega ^2\right)^2-\alpha _2^2 \beta ^2 k^4 \left(\rho _1^2-4 \rho _0 \rho _2\right) \omega ^2}{4 \alpha _1 k^2 \epsilon }.$$
$$ B_{-3} = B_{-2} = 0, \quad B_{-1} = -\frac{\alpha _2 \beta \rho _0 \omega }{\alpha _1 \epsilon }, \quad B_0 = -\frac{\alpha _2 \beta k^2 \rho _1 \omega +k^2-\omega ^2}{2 \alpha _1 k^2 \epsilon }, \quad B_1 = B_2 = B_3 = 0,\nonumber\\ A = \frac{\left(k^2-\omega ^2\right)^2-\alpha _2^2 \beta ^2 k^4 \left(\rho _1^2-4 \rho _0 \rho _2\right) \omega ^2}{4 \alpha _1 k^2 \epsilon }.$$
The solitary wave solutions from solutions sets (31) and (32) of Eq. (1) are obtained as

$$ u_{41}(x,t)=\frac{\alpha _2 \beta k^2 \sqrt{4 \rho _0 \rho _2-\rho _1^2} \omega \tan \left(({\sqrt{4 \rho _0 \rho _2-\rho _1^2}}/{2}) (\xi+\xi_o ) \right)-k^2+\omega ^2}{2 \alpha _1 k^2 \epsilon }, \quad 4 \rho_0 \rho_2 > \rho_1^2. $$
$$ u_{42}(\xi)=\frac{\alpha _2 \beta k^2 \omega}{2 \alpha _1 k^2 \epsilon } \left(\frac{4 \rho _0 \rho _2}{\rho _1-\sqrt{4 \rho _0 \rho _2-\rho _1^2} \tan \left(({\sqrt{4 \rho _0 \rho _2-\rho _1^2}}/{2}) (\xi+\xi_o)\right)}-\rho _1\right) + \frac{\omega ^2 - k^2}{2 \alpha _1 k^2 \epsilon},\quad 4 \rho_0 \rho_2 > \rho_1^2.$$

3 Modulation Instability

Several nonlinear equations showing an instability that directs to modulation of the study state as an outcome of interface among the effects of dispersive and nonlinear. The linear stability analysis[13, 23] is used to gain the modulation instability of strain wave model. The study state solution of this model has as

$$ u(x,t) = \sqrt{P} + \psi(x,t) e^{ \varphi (t)},\quad \varphi(t)= P \gamma \lambda t, $$
in above, optical power \(P\) is normalized. We check progression of the perturbations \(\psi(x, t)\) by utilizing the analysis linear stability. Substituting Eq. (35) into Eq. (1) and linearizing it, we have

$$ 2 \gamma \lambda P \frac{\partial \psi }{\partial t} + \frac{\partial^2 \psi }{\partial^2 t} + \left( \alpha _6 \beta \gamma ^3 \delta \lambda ^3 P^3+\alpha _7 \beta ^2 \gamma ^2 \lambda ^2 P^2-\alpha _4 \gamma ^2 \delta \lambda ^2 P^2-\alpha _2 \beta \gamma \lambda P-2 \alpha _1 \sqrt{P} \epsilon -1 \right) \frac{\partial^2 \psi }{\partial x^2} \qquad + \left( 3 \alpha _6 \beta \gamma ^2 \delta \lambda ^2 P^2 -\alpha _2 \beta +2 \alpha _7 \beta ^2 \gamma \lambda P-2 \alpha _4 \gamma \delta \lambda P \right) \frac{\partial^3 \psi }{\partial x^2 \partial t} + \left( \alpha _7 \beta ^2-\alpha _4 \delta +3 \alpha _6 \beta \gamma \delta \lambda P\right) \frac{\partial^4 \psi }{\partial x^2 \partial t^2} \qquad + \alpha _6 \beta \delta \frac{\partial^5 \psi }{\partial x^2 \partial t^3} + \alpha _5 +\beta \delta \frac{\partial^5 \psi }{\partial x^4 \partial t} + \delta \left(\alpha _3+\alpha _5 \beta \gamma \lambda P\right) \frac{\partial^4 \psi }{\partial x^4} + \gamma ^2 \lambda ^2 P^2 \psi =0.$$
Assume the solution of Eq. (36) in the form as

$$ \psi (x,t)= \Gamma e^{ \left(k x + \omega t \right)},$$
in above, the \(k\) and \(\omega\) are wave number and frequency in normalized form of perturbations. Using Eq. (37) into Eq. (36), we attain the dispersion relation (DR) \(\omega(k)\), which is defined for all \(k\) and this confirm that steady state is stable stable against wave numbers perturbations. The graph of DR is depicted in Fig. 4.

4 Results Discussion and Physical Explanation of Solutions

In this work, we constructed solitary wave solutions of strain wave dynamical model via two analytical techniques, namely, exp(\(\phi(\xi)\))-expansion and improved simple equation methods. The authors in Refs. [19-20, 26, 29] constructed the exact solutions of Eq. (1) in special case at \(\beta=0\). Therefore, the constructed solutions are novel and not existed in literature. In Fig. 1: the solutions (9) and (10) represent anti-kink solitary wave (Fig. 1(a)) and periodic solitary wave (Fig. 1(d)) by giving particular values to parameters, their one-dimensional and contour

New window|Download| PPT slide
Fig. 1Dissimilar shapes of wave solutions (8) and (9) are plotted.



plots are depicted in Fig. 1(b), Fig. 1(c), and Fig. 1(e), Fig. 1(f) at same values of parameters. In Fig. 2, the solutions (19) and (20) represent bright-dark solitary wave (Fig. 2(a) and anti-kink soliton (Fig. 2(d)) through granting special values to parameters, and their one dimensionals and contour plots are depicted in Fig. 2(b), Fig. 2(c), and Fig. 2(e), Fig. 2(f) at same values of parameters. In Fig. 3, the solutions (25) and (27) signify dark-bright solitary wave ((Fig. 4(a)) and kink soliton (Fig. 4(d)) through granting special values to parameters, and their one dimensionals and contour plots are depicted in Fig. 4(b), Fig. 4(c), and Fig. 4(e), Fig. 4(f) at same values of parameters. In Fig. 4, the graph of dispersion relation is shown.

New window|Download| PPT slide
Fig. 2Dissimilar shapes of first family solutions are plotted.



New window|Download| PPT slide
Fig. 3Dissimilar shapes of first family solutions are plotted.



New window|Download| PPT slide
Fig. 4The DR \(\omega = \omega (k)\) among k and \(\omega\) of perturbations is shown.



5 Conclusion

In this article, the exp \((-\phi(\xi))\)-expansion and extended simple equation methods have successfully employed and solitary waves solutions in diverse types of strained wave dynamical are obtained. These approaches produce the new solutions that we think other researchers have missed. The constructed waves solutions are helpful to researchers and have important applications in mathematical physics, engineering etc. The kinds of solitary waves vary with the values of arbitrary parameters. The stability of this dynamical model is examined via standard linear stability analysis, which authenticate that the model is stable and their solutions are exact. Graphs are depicted for knowing the movements of some solutions. This paper shows that these are sufficient to find more new exact results of NLPDEs in engineering and mathematical physics. The solution can be used for further analysis of different cases by physicists or engineers.

Reference By original order
By published year
By cited within times
By Impact factor

A. C. Eringen, Microcontinuum Field Theories.I. Foundations and Solids,Springer, New York (1990).
[Cited within: 2]

R. Phillips , Crystals, Defects and Microstructures Modelling Across Scales,Cambridge University Press, Cambridge(2001).


M. Arshad, A. R. Seadawy, D. Lu, J. Wang , Results in Phys. 6(2016) 1136.
[Cited within: 1]

M. Arshad, A. R. Seadawy, D. Lu, J. Wang , Chin. J. Phys. 55(2017) 780.


A. R. Seadawy , Phys. Plasmas 21(2014) 052107.


A. R. Seadawy , Physica A 439(2015) 124.


A. Ali, A. R. Seadawy, D. Lu , Optik 145(2017) 79.


F. Demontis , Theor. Math. Phys. 168(2011) 886.


I. Ahmed, A. R. Seadawy, D. Lu , International Journal of Modern Physics B 33(2019) 1950019.


M. A. Helal and A. R. Seadawy , Computers and Mathematics with Applications 64(2012) 3557.


G. W. Wang, T. Z. Xu, S. Johnson, A. Biswas , Asterophys space Sci. 349(2014) 317.


X. Yu, Y. T. Gao, Z. Y. Sun, Y. Liu , Physica Scripta 81(2010) 045402.


A. R. Seadawy, D. Lu, M. Arshad , Commun. Theor. Phys. 69(2018) 676.
[Cited within: 1]

E. G. Fan, J. Phys. A , Math. Gen. 35(2002) 6853.


D. Lu, A. R. Seadawy, M. Arshad, J. Wang , Results in Physics 7(2017) 899.


A. R. Seadawy , Appl. Math. Sci. 6(2012) 4081.


S. Dinarvand, S. Khosravi, A. Doosthoseini, M. M. Rashidi , Advan. Theor. Appl. Mech. 1(2008) 327.


A.R. Seadawy , Appl. Math. Inf. Sci. 10(2016) 209.


H. Wang and S. Zheng , Optik 148(2017) 215.


M. Mirzazadeh, Y. Yildirim, E. Yasar , et al., Optik 154 ( 2018) 551.


M.A. Helal and A.R. Seadawy , Physica Scripta 80(2009) 035004.


N. Nasreen, D. Lu, M. Arshad , Optik 161(2018) 221.
[Cited within: 1]

A. R. Seadawy, M. Arshad, D. Lu , Eur. Phys. J. Plus 132(2017) 162.
[Cited within: 2]

A. M. Wazwaz, Partial Differential Equations: Methods and Applications}, Balkema, Rotterdam ( 2002).
[Cited within: 1]

J.A Leto . and S. R. Choudhury, Commun. Nonlin. Sci. Numer. Simul. 14(2009) 1999.
[Cited within: 1]

M. Nur Alam, M. A. Akbar ,S.T. Mohyud-Din, Alexandria Engineering J. 53(2014) 233.
[Cited within: 3]

A. R. Seadawy and D. Lu , Results in Physics 6(2016) 590.
[Cited within: 1]

D. Lu, A. R. Seadawy, M. Arshad , Optik 140(2017) 136.
[Cited within: 1]

M.G Hafez and .M. A. Akbar, Ain Shams Eng. J. 6(2015) 683.
[Cited within: 2]

Z. Ayati, K. Hosseini, M. Mirzazadeh , Nonlinear Eng. 6(2017) 25.
[Cited within: 2]

Y. Shang , Open Phys. 15(2017) 705.
[Cited within: 1]

Y. Shang , Acta Physica Polonica B 46(2015) 1567.


Y. Shang , Electronic Journal of Differential Equations 2012 ( 2012) 17.


A. R. Seadawy , European Physical Journal Plus 132(2017) 518.


K. U. Tariq and A. R. Seadawy , Results in Physics 7(2017) 1143.


A. R. Seadawy and K. El-Rashidy , The Pramana - Journal of Physics 87(2016) 20.


A. R. Seadawy , International Journal of Computational Methods 15(2018) 1850017.
[Cited within: 1]

闂備胶鎳撻悺銊╁礉閹烘梹瀚婚柣鏃傚劋鐎氭岸鏌涘▎宥呭姎闁轰讲鏅犻幃璺衡槈鏉堚晛甯ㄧ紓浣介哺缁诲牆鐣峰璺哄耿闁哄洢鍨婚崣鎰版煟閻樺弶鎼愬褌绮欓崺銏ゆ嚃閳哄倸鐨梺鍛婃处閸撴岸鎮橀幇鐗堚拺闁告挆鍐у闁汇埄鍨伴顓熺閸涘﹥缍囨い鎰╁灩楠炲姊洪崗鐓庡姢闁搞垼灏妵鎰版晸閿燂拷40%闂備礁婀辩划顖炲礉閺嶎厼鍨傛慨妯块哺鐏忓孩鎱ㄥΟ鍨厫閻忓浚浜弻銊モ槈閾忣偄顏�
闂備浇顫夋禍浠嬪礉瀹€鈧划璇差吋閸ャ劌鐨┑顔角归崺鏍焊椤忓牊鐓涘璺猴工閺嗙喐绻涙径妯哄籍濠碘剝鎸冲畷鎺戔攽閹邦剚顔曞┑鐐差嚟婵绱為埀顒勬煏閸℃鏆g€规洩缍侀、娑㈡倷閳轰椒澹曞┑顔矫壕顓犵不閺嶎灐鐟扳堪閸曨偆顑勬繛瀵稿Т閻楀繒妲愰弮鍫濈闁绘ê鐏氶幆锝夋⒒娓氬洤浜濋柡灞诲妿濞嗐垽鎮欑€电硶鏋栭梺缁樺灦钃遍柟鐤含缁辨帡寮埀顒勬偡閿旂偓鏆滅憸鐗堝笧瀹撲線鏌涢…鎴濇珮闁告艾鎳庨湁闁兼祴鏅涜ⅴ闂侀€炲苯澧梺鑺ュ⒊P濠电偞娼欓崥瀣嚌妤e啫绠熼柟鎯版閻忚櫕绻濋崹顐e暗缂佲偓婢舵劖鐓熼柍褜鍓欐俊浠嬫煕閳哄倻娲撮柡灞芥噹椤繂鐣烽崶鈺冩毇闂佽崵濮村ú銈堛亹閻愬搫鑸规い鎺戝€归崑姗€鏌曟繛褍瀚弳鐘绘⒑閸涘﹤绗掓俊顐f濡懘鍩¢崨顔惧弰闂佺粯鍔﹂崜娆愬緞瀹ュ鐓欓悗娑欋缚婢ь剟鏌熼惂鍝ョМ妤犵偛閰f俊鐑藉Ω閵夛妇浜峰┑鐐村灦濮婄懓顭垮鈧獮鍐ㄎ旈崨顔芥珫閻庡厜鍋撻柛鎰劤濞堢偓绻涚€电ǹ顎撶紓宥佸亾闂侀潧妫楅崯鎾箠閵忕姷鏆嬮柡澶庢硶閹拷40%闂備礁婀辩划顖炲礉閺嶎厼鍨傛慨妯挎硾杩濋梺绋挎湰缁诲秹宕甸敃鈧湁闁绘瑥鎳愮粔顒勬煏閸℃鏆熼柟宄扮秺椤㈡ê鈹戦崶褜浼嗛梻浣告惈閻楁粓宕滃☉銏″仧妞ゆ牗绋撻々鐑芥偣娴e摜锛嶇紒澶婄仢闇夋繝褏濮撮崯顖炲箚閸岀偞鐓ユ繛鎴炃圭€氱増绻涢悡搴☆劉缂佸倸绉归、鏇㈠閻樼數袣9闂備胶顢婇崺鏍綘闂侀€炲苯澧柛濠冩倐閹啴濮€閵堝懐顦梺绯曞墲濞茬喖鎮¢埡鍛拺闁告挆鍐у闁汇埄鍨遍幐铏繆鐎涙ɑ濯撮悷娆忓闂傤垶姊虹涵鍛牚闁稿骸宕湁婵せ鍋撻柟顔ㄥ洤鐐婇柍鍝勫暞閹綁姊洪幐搴b槈闁兼椿鍨甸妵鎰板磼閻愯尙顦梺鍝勵槹椤戞瑩宕濋崨瀛樼厸鐎规挻鍝庨崐銈夊疮閸儲鐓曠憸搴g矙韫囨稑鐒垫い鎴e劵閸忓本绻涢崨顐㈠闁诡垱妫冮弫鍐╂媴缁嬭法浠梻浣告啞閻ㄦ粍鎷呴幓鎺嶅婵炶揪缍侀弲鑼姳閹惰姤鐓曟俊銈勭閹兼悂鏌嶈閸忔稓绮堟担鍦洸闁哄洨鍠撻埞宥夊箳閹惰棄鐒垫い鎴濈仢閸婃構缂傚倷绀侀張顒€顪冮挊澹╂盯宕稿Δ鈧繚婵炶揪缍€濞咃綁宕i埀顒佺箾閹寸偞鐓ョ紒銊︽そ閸┾偓妞ゆ垶瀵х粊浼存煟椤忓懏灏﹂柟顔芥そ閺佹劙宕堕埡鍌涘劘闂備礁鎲¢懝鍓р偓姘煎墴婵$敻宕堕鍌氱ウ闂佸憡鍔栬ぐ鍐煀闁秵鐓忛柛鈽嗗幗鐎氾拷
相关话题/Dispersive Solitary Solutions