删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

High-Order Lump-Type Solutions and Their Interaction Solutions to a (3+1)-Dimensional Nonlinear Evol

本站小编 Free考研考试/2022-01-02

Tao Fang1, Hui Wang,1,2,??, Yun-Hu Wang1,3, Wen-Xiu Ma2,4,5,6 1 College of Art and Sciences, Shanghai Maritime University, Shanghai 201306, China
2 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
3 Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
4 Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
5 College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao 266590, China
6 Department of Mathematical Sciences, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa

Corresponding authors: ? E-mailhwang@shmtu. edu. cn

Received:2018-12-31Online:2019-08-1
Fund supported:* Supported by the National Natural Science Foundation of China under Grant .Nos. 11571008
the National Natural Science Foundation of China under Grant.Nos. 51679132
National Science Foundation under Grant.No. DMS-1664561
and the Shanghai Science and Technology Committee under Grant .No. 17040501600


Abstract
By means of the Hirota bilinear method and symbolic computation, high-order lump-type solutions and a kind of interaction solutions are presented for a (3+1)-dimensional nonlinear evolution equation. The high-order lump-type solutions of the associated Hirota bilinear equation are presented, which is a kind of positive quartic-quadratic-function solution. At the same time, the interaction solutions can also be obtained, which are linear combination solutions of quartic-quadratic-functions and hyperbolic cosine functions. Physical properties and dynamical structures of two classes of the presented solutions are demonstrated in detail by their graphs.
Keywords: high-order lump-type solutions;interaction solutions;Hirota bilinear method


PDF (19427KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Tao Fang, Hui Wang, Yun-Hu Wang, Wen-Xiu Ma. High-Order Lump-Type Solutions and Their Interaction Solutions to a (3+1)-Dimensional Nonlinear Evolution Equation *. [J], 2019, 71(8): 927-934 doi:10.1088/0253-6102/71/8/927

1 Introduction

The investigation of rational solutions on nonlinear evolution equations (NLEEs) has attracted much attention from mathematicians, physicists, and many scientists in other fields. Among these rational solutions,[1] lump solutions and rogue wave solutions have been found in many integrable systems. [2-7] Recently, the study of lump solutions, which rationally localized in all directions in the space, becomes a hot topic in soliton theory. [8-22] Over the past decades, many powerful methods have been developed to find the lump solutions of NLEEs, such as the Hirota bilinear method,[23] the long wave limit approach,[3] and the nonlinear superposition formulae. [24] Among these methods, the Hirota bilinear method is a direct method, which can be used to obtain the exact solutions for NLEEs once its corresponding bilinear form is given. By taking the function $f$ in the bilinear equation as a positive quadratic function, Ref. [8] obtained the lump solutions of the KPI equation, which can be reduced to the ones in Refs. [3,25]. Then, this method is widely used to find lump solutions or lump-type solutions for generalized fifth-order KdV equation, Boussinesq equation, (4+1)-dimensional Fokas equation and so on. [11-21] References [26-44] further extended this method to find interaction solutions for integrable and non-integrable system.

In this paper, we focus on the following (3+1)-dimensional NLEE

$$3u_{xz}-(2u_t+u_{xxx}-2uu_x)_y+2(u_x\partial_x^{-1}u_y)_x=0\,, $$
where the inverse operator $\partial_x^{-1}$ is defined as $(\partial_x^{-1} f )(x) = \int_{-\infty}^{x} f(x'){\rm d}x'$ under the decaying condition at infinity and $\partial_x = \partial / \partial_x$ with the condition

$\partial_x\partial_x^{-1} = \partial_x^{-1}\partial_x = 1$. This equation was first introduced in Ref. [45] studied the algebraic-geometrical solutions. Based on the constructed Wronskian determinant of solutions for a system of four linear differential equations, $N$-soliton solution and its Wronskian form are given in Ref. [46]. The linear superposition principle of Eq. (1) has also discussed in Ref. [47]. The Darboux transformation and the solutions of multiple soliton interactions were studied in Ref. [48]. Positon, negaton, soliton and their interaction solutions, multiple soliton solutions and multiple singular soliton solutions are explicitly obtained by using the Hirota's direct method in Refs. [49-50]. Reference [7] constructed its rouge waves and rational solutions by a simple symbolic computation approach. Recently, $M$-lump solutions of Eq. (1) and the interaction solutions between stripe solitons and lumps are discussed in Ref. [19]. To the best of our knowledge, the high-order lump-type solutions by taking the function $f$ in the bilinear equation as a kind of positive quartic-quadratic-functions, and the interaction solutions by taking the function $f$ as a combination of the positive quartic-quadratic-functions and hyperbolic cosine functions have not been studied so far. The aim of this paper is to discuss the high-order lump-type solutions and the interaction solutions to the (3+1)-dimensional NLEE (1). Through the dependent variable transformation

$$u = -3[\,\ln f(x,y,z,t)]_{xx}\,, $$
Eq. (1) is transformed into the Hirota bilinear form

$$(D_yD_x^3-3D_xD_z+2D_yD_t)f\cdot f=0\,, $$
where the derivatives $D_yD_x^3$, $D_xD_z$, and $D_yD_t$ are the bilinear operators defined by[23]

$$D^{n_1}_{x_1}\cdots D^{n_l}_{x_l}F \cdot G\!=\!(\partial_{x_1}\!-\partial_{x'_1})^{n_1}\!\cdots(\partial_{x_l} -\partial_{x'_l})^{n_l}F(x_1,\ldots,x_l) \\ \quad \times \,G(x'_1,\ldots,x'_l)|_{x'_1=x_1,\ldots,x'_l=x_l}\,, $$
and the corresponding bilinear form of Eq. (3) equals to

$$6(f_{xz}f\!-\!f_xf_z)-2(f_{xxxy}f\!-\!f_{xxx}f_y)+6(f_{xxy}f_x-6f_{xx}f_{xy}) \\ \quad -\,4(f_{yt}f-4f_{y}f_t)=0\,. $$
The structure of this paper is as follows. In Sec. 2, high-order lump-type solutions are constructed by using the Hirota bilinear method, which are obtained by taking function $f$ in Eq. (3) as a kind of positive quartic-quadratic-functions. In Sec. 3, a kind of interaction solutions are derived by assuming function $f$ in Eq. (3) as a combination of positive quartic-quadratic-functions and hyperbolic cosine functions. Finally, some conclusions will be given in Sec. 4.

2 High-Order Lump-Type Solutions for

Eq. (1)

In this section, we will construct high-order lump-type solutions of Eq. (1) by taking $f$ in Eq. (3) as a combination of positive quartic-quadratic-functions

$$f=s^4+g^2+h^2+a_{16}\,, $$
with

$$s=a_1x+a_2y+a_3z+a_4t+a_5\,,\\ g=a_6x+a_7y+a_8z+a_9t+a_{10}\,,\\ h=a_{11}x+a_{12}y+a_{13}z+a_{14}t+a_{15}\,, $$
where the real parameters $a_i (1\leq i \leq 16) $ will be determined later. Substituting ansatz (6) with (7) into Eq. (3) with a direct symbolic computation, it generates the following results

$$a_1=a_4=0\,,\quad a_7=-\frac{a_{11}a_{12}}{a_6}\,,\quad a_8=-\frac{a_3a_{11}a_{12}}{a_2a_6}\,,\\ a_9=\frac{3a_3a_6}{2a_2}\,,\quad a_{13}=\frac{a_3a_{12}}{a_2}\,,\quad a_{14}=\frac{3a_3a_{11}}{2a_2}\,,\\ a_{15}=\frac{a_2a_6a_{10}a_{11}+a_5a_{11}^2a_{12}+a_5a_6^2a_{12}}{a_2a_6^2}\,, $$
which need to satisfy constraint conditions as follows

$$a_2a_6\neq 0\,, \quad a_{16} > 0\,, $$
to ensure the corresponding solution $f$ is well defined. With the constraint conditions (9) and transformation (2), the solution (6) can be obtained as follows

$$u=\frac{12(a_6g+a_{11}h)^2}{f^2}-\frac{6(a_6^2+a_{11}^2)}{f}\,, $$
where

$$f=(a_2y+a_3z+a_5)^4+g^2+h^2+a_{16}\,,\\ g=a_6x-\frac{a_{11}a_{12}}{a_6}y-\frac{a_3a_{11}a_{12}}{a_2a_6}z+\frac{3a_3a_6}{2a_2}t+a_{10}\,,\\ h=a_{11}x+a_{12}y+\frac{a_3a_{12}}{a_2}z+\frac{3a_3a_{11}}{2a_2}t\\ \quad \;\, +\frac{a_2a_6a_{10}a_{11} +a_5a_{11}^2a_{12}+a_5a_6^2a_{12}}{a_2a_6^2}\,. $$
Case 1 By taking $y=0$, the solution (10) can be reduced to the following form

$$u=\frac{12(a_6g+a_{11}h)^2}{f^2}-\frac{6(a_6^2+a_{11}^2)}{f}\,, $$
with

$$2 f=(a_3z+a_5)^4+g^2+h^2+a_{16}\,,\\ g=a_6x-\frac{a_3a_{11}a_{12}}{a_2a_6}z+\frac{3a_3a_6}{2a_2}t+a_{10}\,,\\ h=a_{11}x+\frac{a_3a_{12}}{a_2}z+\frac{3a_3a_{11}}{2a_2}t\\ \quad\;\; +\frac{a_2a_6a_{10}a_{11} +a_5a_{11}^2a_{12}+a_5a_6^2a_{12}}{a_2a_6^2}\,. $$
It is easy to calculate that there are three critical points to solution (12), which reads

$$(x_{u_1},z_{u_1})=\Bigl(-\frac{3a_{3}a_{6}^{2}t+2a_{10}a_{2}a_{6}+2a_{11}a_{12}a_{5}}{2a_{6}^{2}a_{2}}, -\frac{a_{5}}{a_{3}}\Bigr),\\ (x_{u_2},z_{u_2})=\Bigl(\frac{-3a_{11}^{2}a_{3}a_{6}^{2}t-3a_{3}a_{6}^{4}t-2a_{10}a_{11}^{2}a_{2}a_{6} -2a_{10}a_{2}a_{6}^{3}-2a_{11}^{3}a_{12}a_{5}-2a_{12}a_{11}a_{5}a_{6}^{2}}{2a_{6}^{2}a_{2}(a_{11}^{2} +a_{6}^{2})}\\ \quad\quad\quad\quad\quad+\frac{2\sqrt{3a_{11}^{2}a_{16}a_{2}^{2}a_{6}^{4}+3a_{16}a_{2}^{2}a_{6}^{6}}}{2a_{6}^{2}a_{2}(a_{11}^{2}+a_{6}^{2})}, -\frac{a_{5}}{a_{3}}\Bigr),\\ (x_{u_3},z_{u_3})=\Bigl(\frac{-3a_{11}^{2}a_{3}a_{6}^{2}t-3a_{3}a_{6}^{4}t-2a_{10}a_{11}^{2}a_{2}a_{6} -2a_{10}a_{2}a_{6}^{3}-2a_{11}^{3}a_{12}a_{5}-2a_{12}a_{11}a_{5}a_{6}^{2}}{2a_{6}^{2}a_{2}(a_{11}^{2} +a_{6}^{2})}\\ \quad\quad\quad\quad\quad-\frac{2\sqrt{3a_{11}^{2}a_{16}a_{2}^{2}a_{6}^{4}+3a_{16}a_{2}^{2}a_{6}^{6}}}{2a_{6}^{2}a_{2} (a_{11}^{2}+a_{6}^{2})},-\frac{a_{5}}{a_{3}}\Bigr). $$
In order to show the physical properties and structures of solutions (12) more clearly, we select the parameters as

$a_2=1,a_3=0. 2,a_5=0,a_6=1,a_{10}=1,a_{11}=1,a_{12}=5,a_{16}=1$, which yields

$$u=\frac{24(-16z^2\!+\!9. 6xt\!+\!1. 44t^2\!-\!0. 0128z^4\!+\!16x^2\!-\!8)}{(0. 72t^2\!+\!8x^2\!+\!8z^2\! +\!4. 8xt\!+\!0. 0064z^4\!+\!4)^2}, $$
and the corresponding three critical points can be further calculated as follows

$$(x_{u_1},z_{u_1})=(-0. 3t,0)\,,$$
$$(x_{u_2},z_{u_2})=\Bigl(-0. 3t+\frac{\sqrt{6}}{2},0\Bigr),$$
$$(x_{u_3},z_{u_3})=\Bigl(-0. 3t-\frac{\sqrt{6}}{2},0\Bigr). $$
It is easy to found that solution (15) has a local minimum value $u_{\rm min} = -12$ at $(-0. 3t, 0)$ and a local maximum value $u_{\rm max} = 1. 5$ at $(-0. 3t+({\sqrt{6}}/{2}),0)$ and $(-0. 3t-({\sqrt{6}}/{2}),0)$, which can be clearly observed from Fig. 1. Figure 2 is the corresponding density-plots in the $(x, z)$-plane when $t =-10, 0, 10$, respectively.

Fig. 1

New window|Download| PPT slide
Fig. 1(Color online) Evolution plots of the solution (15). (a) $t=-10$, (b) $t=0$, (c) $t=10$.



Fig. 2

New window|Download| PPT slide
Fig. 2(Color online) Corresponding density plots for Fig. 1. (a) $t=-10$, (b) $t=0$, (c) $t=10$.



it Case 2 By taking $z=0$, the solution (10) can be reduced to the following form

$$u=\frac{12(a_6g+a_{11}h)^2}{f^2}-\frac{6(a_6^2+a_{11}^2)}{f}\,,$$
where

$$f=(a_2y+a_5)^4+g^2+h^2+a_{16}\,,\quad g=a_6x-\frac{a_{11}a_{12}}{a_6}y+\frac{3a_3a_6}{2a_2}t+a_{10}\,,\\ h=a_{11}x+a_{12}y+\frac{3a_3a_{11}}{2a_2}t+\frac{a_2a_6a_{10}a_{11}+a_5a_{11}^2a_{12} +a_5a_6^2a_{12}}{a_2a_6^2}\,. $$
It is easy to find that solution (17) also has three critical points

$$(x_{u_1},y_{u_1})=\Bigl(-\frac{3a_{3}a_{6}^{2}t+2a_{10}a_{2}a_{6}+2a_{11}a_{12}a_{5}}{2a_{6}^{2}a_{2}}, -\frac{a_{5}}{a_{2}}\Bigr),\\ (x_{u_2},y_{u_2})=\Bigl(\frac{-3a_{11}^{2}a_{3}a_{6}^{2}t-3a_{3}a_{6}^{4}t-2a_{10}a_{11}^{2}a_{2} a_{6}-2a_{10}a_{2}a_{6}^{3}-2a_{11}^{3}a_{12} a_{5}-2a_{12}a_{11}a_{5}a_{6}^{2}}{2a_{6}^{2}a_{2}(a_{11}^{2}+a_{6}^{2})}\\ \quad\quad\quad\quad\quad+\frac{2\sqrt{3a_{11}^{2}a_{16}a_{2}^{2}a_{6}^{4}+3a_{16}a_{2}^{2}a_{6}^{6}}}{2a_{6}^{2}a_{2} (a_{11}^{2}+a_{6}^{2})},-\frac{a_{5}}{a_{2}}\Bigr),\\ (x_{u_3},y_{u_3})=\Bigl(\frac{-3a_{11}^{2}a_{3}a_{6}^{2}t-3a_{3}a_{6}^{4}t-2a_{10}a_{11}^{2} a_{2}a_{6}-2a_{10}a_{2}a_{6}^{3}-2a_{11}^{3}a_{12}a_{5}-2a_{12}a_{11}a_{5} a_{6}^{2}}{2a_{6}^{2}a_{2}(a_{11}^{2}+a_{6}^{2})}\\ \quad\quad\quad\quad\quad-\frac{2\sqrt{3a_{11}^{2}a_{16}a_{2}^{2}a_{6}^{4}+3a_{16}a_{2}^{2}a_{6}^{6}}}{2a_{6}^{2}a_{2} (a_{11}^{2}+a_{6}^{2})}, -\frac{a_{5}}{a_{2}}\Bigr). $$
By taking the corresponding parameters as $a_2=1,a_3=0. 2,a_5=0,a_6=1,a_{10}=1,a_{11}=1,a_{12}=5,a_{16}=1$, solution (17) with (18) can be reduced to the following form

$$u=\frac{384(-80y^4+225t^2+600xt+400x^2-100y^2-80)}{(16y^4+45t^2+120xt+80x^2+20y^2+16) (180t^2+320x^2+80y^2+480xt+64y^4+64)}\,,$$
and the corresponding three critical points reads

$$ (x_{u_1},y_{u_1})=(-0. 75t,0),$$
$$(x_{u_2},y_{u_2})=\Big(-0. 75t+\frac{\sqrt{15}}{5},0\Big),$$
$$(x_{u_3},y_{u_3})=\Big(-0. 75t-\frac{\sqrt{15}}{5},0\Big), $$
which point $(-0. 75t,0)$ corresponds to a local minimum value $u_{\rm min} = -30$, and points $(-0. 75t\pm ({\sqrt{15}}/{5}),0)$ correspond to a local maximum value $u_{\rm max} = 3. 75$.

For the corresponding $3$D-plots and density-plots, see Figs. 3 and 4.

Fig. 3

New window|Download| PPT slide
Fig. 3(Color online) Evolution plots of the solution (20). (a) $t=-10$, (b) $t=0$, (c) $t=10$.



Fig. 4

New window|Download| PPT slide
Fig. 4(Color online) Corresponding density plots for Fig. 3. (a) $t=-10$, (b) $t=0$, (c) $t=10$.



Case 3 When $x = 0$ and $a_5=0$, one can see that $g$ and $h$ in Eq. (11) satisfy, which means expression (6) can be rewritten as $f=s^4+(1+\alpha^2)h^2+a_{16}$. $g = -({a_{11}}/{a_6})h$ Unfortunately, $f=s^4+(1+\alpha^2)h^2+a_{16}$ will lead to solution $u$ is not localized in all directions in space. [13,41]

By choosing appropriate parameters with $a_2=2$, $a_3=1$, $a_5=0$, $a_6=2$, $a_{10}=0$, $a_{11}=1$, $a_{12}=1$, $a_{16}=1$, $x=0$, one can simplify solution (10) to the following form

$$u=\frac{480(-256y^4-512y^3Z-384y^2z^2-128yz^3-16z^4+45t^2-20y^2-20yz-5z^2-16)} {(256y^4+512y^3Z+384y^2z^2+128yz^3+16z^4+45t^2+20y^2+20yz+5z^2+16)^2}\,,$$
which corresponding $3$D-plots and density-plots can be seen in Figs. 5 and 6.

Fig. 5

New window|Download| PPT slide
Fig. 5(Color online) Evolution plots of the solution (22). (a) $t=-10$, (b) $t=0$, (c) $t=10$.



Fig. 6

New window|Download| PPT slide
Fig. 6(Color online) Corresponding density plots for Fig. 5. (a) $t=-10$, (b) $t=0$, (c) $t=10$.



3 A Kind of Interaction Solutions for Eq. (1)

In order to find the interaction solutions to Eq. (1), the function $f$ in Eq. (3) may be taken as the following form

$$f=s^4+g^2+h^2+q+a_{16},$$
with

$$s=a_1x+a_2y+a_3z+a_4t+a_5\,,\\ g=a_6x+a_7y+a_8z+a_9t+a_{10}\,,\\ h=a_{11}x+a_{12}y+a_{13}z+a_{14}t+a_{15}\,,\\ q=k\cosh(k_1x+k_2y+k_3z+k_4t)\,,$$
where the real parameters $a_i (1\leq i \leq 16) $ and $ k, k_j (1\leq j\leq 4) $ are all to be determined later.

Substituting ansatz (23) with (24) into Eq. (3), we obtain

$$a_1=a_4=a_5=a_6=a_9=a_{11}=a_{14}=k_2=k_3=0\,, \\ a_7=\frac{a_2a_8}{a_3}\,,\quad a_{12}=\frac{a_2a_{13}}{a_3}\,,\quad k_4=-\frac{k_1(a_2k_1^2-3a_3)}{2a_2}\,, $$
which need to satisfy the following constraint conditions

$$a_2a_3\neq 0\,,\quad a_{16} > 0\,,\quad k > 0\,,$$
to ensure the corresponding solution $u$ is positive, analytical and localized in all directions in the ($x,y,z$)-plane. With the conditions (25) and (26), the solution of Eq. (1) can be obtained as follows

$$u=-\frac{3kk_1^2(s^4+g^2+h^2)\cosh(\xi)+3k^2k_1^2}{[s^4+g^2+h^2+k\cosh(\xi)]^2}\,, $$
with

$$s = a_2y+a_3z\,,\quad g = \frac{a_2a_8}{a_3}y+a_8z+a_{10}\,,\quad h = \frac{a_2a_{13}}{a_3}y+a_{13}z+a_{15}\,,\quad \xi = k_1x-\frac{k_1(a_2k_1^2-3a_3)}{2a_2}t\,. $$
Case 1 Taking $a_2=0. 5,a_3=2,a_8=1,a_{10}=0,a_{13}=1,a_{15}=0,a_{16}=2,k=5,k_{1}=2,y=0$, solution (27) can be reduced to the following form

$$u=-\frac{960(16\cosh(8t+2x)z^4+2\cosh(8t+2x)z^2+2\cosh(8t+2x)+5)} {(64z^4+8z^2+20\cosh(8t+2x)+8)^2}\,,$$
which corresponding $3$D-plots and density-plots can be seen in Figs. 7 and 8.

Case 2 By selecting the parameters as $a_2=1,a_3=2,a_8=4,a_{10}=0,a_{13}=2,a_{15}=0,a_{16}=1,k=4,k_{1}=2,z=0$, solution (27) can be rewritten as

$$u=-\frac{48(\cosh(2t+2x)y^4+5\cosh(2t+2x)y^2+\cosh(2t+2x)+4)} {(y^4+5y^2+4\cosh(2t+2x)+1)^2}\,,$$
which corresponding $3$D-plots and density-plots can be seen in Figs. 9 and 10. From Figs. 7, 8, 9, and 10, it can be clearly seen that the above two types of solutions (29) and (30) can be regarded as "soliton" solutions.

Fig. 7

New window|Download| PPT slide
Fig. 7(Color online) Evolution plots of the solution (27). (a) $t=-5$, (b) $t=0$, (c) $t=5$.



Fig. 8

New window|Download| PPT slide
Fig. 8(Color online) Corresponding density plot for Fig. 7. (a) $t=-5$, (b) $t=0$, (c) $t=5$.



Fig. 9

New window|Download| PPT slide
Fig. 9(Color online) Evolution plots of the solution (30). (a) $t=-15$, (b) $t=0$, (c) $t=15$.



Fig. 10

New window|Download| PPT slide
Fig. 10(Color online) Corresponding density plot for Fig. 9. (a) $t=-15$, (b) $t=0$, (c) $t=15$.



Case 3 By choosing appropriate parameters with $a_2=0. 5,a_3=1,a_8=2,a_{10}=0,a_{13}=2,a_{15}=0,a_{16}=2,k=5,k_{1}=2,x=0$, solution (27) reads

$$u=\frac{-60(0. 0625y^4+0. 5y^3z+1. 5y^2z^2+2yz^3+z^4+2y^2+8yz+8z^2)\cosh(2t)-300} {(0. 0625y^4+0. 5y^3z+1. 5y^2z^2+2yz^3+z^4+2y^2+8yz+8z^2+5\cosh(2t)+2)^2}. $$
Figures 11 and 12 show the interaction phenomenon, which is induced by the twin-strip solitons for solution (31). Figures 11(a) and 12(a) show there are two stripe solitions at the time $t=-3$, and when $t=0$, the two stripes solitons disappear and one stripe soliton appears which has much more energy and higher peak that one can see in Figs. 11(b) and 12(b), as time goes by, the twin-strip solitons start appearing which can be seen in Figs. 11(c) and 12(c). In fact, in expression (28), $h=\beta g$ when $a_{13}=\beta a_8$, $a_{15}=\beta a_{10}$, which means the function $f$ in Eq. (23) could be rewritten as $f=s^4+(1+\beta^2)g^2+\cosh(\gamma t)$ under $x=0$. From Sec. 2, the function $f=s^4+(1+\beta^2)g^2$ yields lump-type solution along the direction of $x=0$. It is obvious that when $t=0$ there is no $\cosh(\gamma t)$ but only lump-type soliton, and when $t\neq 0$, there are twin-stripe solitons.

Fig. 11

New window|Download| PPT slide
Fig. 11(Color online) Evolution plots of the solution (31). (a) $t=-3$, (b) $t=0$, (c) $t=3$.



Fig. 12

New window|Download| PPT slide
Fig. 12(Color online) Corresponding density plot for Fig. 11. (a) $t=-3$, (b) $t=0$, (c) $t=3$.



4 Conclusions

In summary, by using the means of the Hirota direct method and symbolic computation, the high-order lump-type solutions (10) and their interaction solutions (27) to the (3+1)-dimensional nonlinear evolution equation (1) are studied. By taking the function $f$ in Hirota bilinear equation (3) as a kind of positive quartic-quadratic-functions, the high-order lump-type solutions (10) are constructed which the dynamic mechanism can be seen in Figs. 1-6. Furthermore, when we take the $f$ as a combination of positive quartic-quadratic-functions and hyperbolic cosine functions, the interaction solutions (27) are presented, and their corresponding dynamic physical properties are vividly showed in Figs. 7-12.

Conflict of Interest

The authors declare that they have no conflict of interest.

Reference By original order
By published year
By cited within times
By Impact factor

J. Wei, X. Wang, X. G. Geng, Commun. Nonlinear Sci. Numer. Simulat. 59(2018) 1.
[Cited within: 1]

M. J Ablowitz and J. Satsuma., J. Math. Phys. 19(1978) 2180.
[Cited within: 1]

J. Satsuma and M. J. Ablowitz, J. Math. Phys. 20(1979) 1496.
[Cited within: 2]

N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373 (2009) 675.


W. Chang, J. M. Soto-Crespo, A. Ankiewicz, N. Akhmediev, Phys. Rev. A 79 (2009) 1039.


Y. Ohta and J. Yang, Phys. Rev. E 86 (2012) 036604.


Q. L. Zha, Phys. Lett. A 377 (2013) 3021.
[Cited within: 2]

W. X. Ma, Phys. Lett. A 379 (2015) 1975.
[Cited within: 2]

W. X. Ma, Y. Zhou, D. Rachael, Int. J. Mod. Phys. B 30 (2016) 1640018



W. X. Ma, Z. Y. Qin, X. , Nonlinear Dyn. 84(2016) 923.


L. Cheng and Y. Zhang, Mod. Phys. Lett. B 31 (2017) 1750224

[Cited within: 1]

Y. Zhang, H. H. Dong, X. E. Zhang, H. W. Yang, Comput. Math. Appl. 73(2017) 246.


W. X. Ma and Y. Zhou, J. Differ. Equa. 264(2018) 2633.
[Cited within: 1]

L. Kaur and A. M. Wazwaz, Phys. Scr. 93(2018) 075203.


S. Manukure, Y. Zhou, W. X. Ma, Comput. Math. Appl. 75(2018) 2414.


X. L. Yong, W. X. Ma, Y. H. Huang, Y. Liu, Comput. Math. Appl. 75(2018) 3414.


S. T. Chen and W. X. Ma, Comput. Math. Appl. 76(2018) 1680.


S. T. Chen and W. X. Ma, Front. Math. China 13 (2018) 525.


Y. Zhang, Y. P. Liu, X. Y. Tang, Comput. Math. Appl. 76(2018) 592.
[Cited within: 1]

J. Q. Lü, S. Bilige, and T. Chaolu , Nonlinear Dyn. 91(2018) 1669.


X. , J. P. Wang, F. H. Lin, and X. W. Zhou, Nonlinear Dyn. 91(2018) 1249.
[Cited within: 1]

H. Wang, Y. H. Wang, W. X. Ma, T. Chaolu, Mod. Phys. Lett. B 32 (2018) 1850376.
[Cited within: 1]

R. Hirota, The Direct Method in Soliton Theory
Cambridge University Press, New York(2004).

[Cited within: 2]

X. B. Hu and H. W. Tam, Phys. Lett. A 276 (2000) 65.
[Cited within: 1]

S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, V. B. Matveev Phys. Lett. A 63 (1977) 205.
[Cited within: 1]

X. E. Zhang and Y. Chen, Commun. Nonlinear Sci. Numer. Simulat. 52(2017) 24.
[Cited within: 1]

X. E. Zhang, Y. Chen, Y. Zhang, Comput. Math. Appl. 74(2017) 2341.


X. E. Zhang, Y. Chen, X. Y. Tang, Comput. Math. Appl. 76(2018) 1938.


Y. Tang, S. Tao, Q. Guan, Comput. Math. Appl. 72(2016) 2334.


Z. L. Zhao, Y. Chen, B. Han, Mod. Phys. Lett. B 31 (2017) 1750157



Y. N. Tang, S. Q. Tao, M. L. Zhou, Q. Guan, Nonlinear Dyn. 89(2017) 429.


J. Y. Yang, W. X. Ma, Z. Y. Qin, Anal. Math. Phys. 8(2018) 427.


T. C. Kofane, M. Fokou, A. Mohamadou, E. Yomba, Eur. Phys. J. Plus. 132(2017) 465.


J. B. Zhang and W. X. Ma, Comput. Math. Appl. 74(2017) 591.


H. Q. Zhao and W. X. Ma, Comput. Math. Appl. 74(2017) 1399.


W. X. Ma, X. L. Yong, H. Q. Zhang, Comput. Math. Appl. 75(2018) 289.


W. X. Ma, J. Geom. Phys. 133(2018) 10.


M. Jia, S. Y. Lou, Lump, arXiv: 1803. 01730.


Y. H. Wang, H. Wang, H. H. Dong, et al., Nonlinear Dyn. 92(2018) 487.


H. Wang, Appl. Math. Lett. 85(2018) 27.


T. Fang and Y. H. Wang, Comput. Math. Appl. 76(2018) 1476.
[Cited within: 1]

T. Fang and Y. H. Wang, Anal. Math. Phys. doi.org/10.1007/s13324-018-0255-3, 2018.


J. G. Liu, Appl. Math. Lett. 86(2018) 36.


Z. Y. Ma, J. C. Chen, J. X. Fei, Comput. Math. Appl. 76(2018) 1130.
[Cited within: 1]

X. G. Geng, J. Phys. A: Math. Gen. 36(2003) 2289.
[Cited within: 1]

X. G. Geng and Y. L. Ma, Phys. Lett. A 369 (2007) 285.
[Cited within: 1]

W. X. Ma and E. G. Fan, Comput. Math. Appl. 61(2011) 950.
[Cited within: 1]

Q. L. Zha and B. Li, Mod. Phys. Lett. B 22 (2018) 2945.
[Cited within: 1]

Q. L. Zha and B. Li, Mod. Phys. Lett. B 23 (2009) 2971.
[Cited within: 1]

A. M. Wazwaz, Appl. Math. Comput. 215(2009) 1548.
[Cited within: 1]

闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐粶缂佲偓婢跺绻嗛柕鍫濇噺閸e湱绱掗悩闈涒枅闁哄瞼鍠栭獮鎴﹀箛闂堟稒顔勯梻浣告啞娣囨椽锝炴径鎰﹂柛鏇ㄥ灠濡﹢鏌涢…鎴濇灀闁圭ǹ鍟村娲川婵犲孩鐣烽悗鍏夊亾闁归棿绀佺粻鏍ㄤ繆閵堝懏鍣洪柡鍛叀楠炴牜鈧稒岣跨粻姗€鏌i埡浣规崳缂佽鲸鎸婚幏鍛槹鎼淬倗鐛ラ梻渚€娼荤紞鍥╃礊娴e壊鍤曞┑鐘崇閸嬪嫰鏌i幘铏崳妞は佸洦鈷戦柛蹇氬亹閵堟挳鏌¢崨顔剧疄闁诡噯绻濆畷鎺楁倷缁瀚肩紓鍌欑椤戝牆鈻旈弴銏″€块柛褎顨嗛悡娆撴煕閹存瑥鈧牜鈧熬鎷�2濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閹喖姊洪崘鍙夋儓妞ゆ垵娲ㄧ划娆掔疀濞戞瑢鎷洪梺闈╁瘜閸樺ジ宕濈€n偁浜滈柕濞垮劜椤ャ垻鈧娲滈弫濠氬春閳ь剚銇勯幒鎴濐仾闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工閹冲孩绂掓潏鈹惧亾鐟欏嫭绀冩俊鐐扮矙瀵偊骞樼紒妯轰汗閻庤娲栧ú銈夌嵁濡ゅ懏鈷掑〒姘e亾婵炰匠鍛床闁割偁鍎辩壕褰掓煛瀹擃喒鍋撴俊鎻掔墢閹叉悂寮崼婵婃憰闂佹寧绻傞ˇ顖炴倿濞差亝鐓曢柟鏉垮悁缁ㄥジ鏌涢敐鍕祮婵﹨娅i幏鐘诲灳閾忣偅顔勯梻浣规偠閸庢粓宕惰閺嗩亪姊婚崒娆戝妽閻庣瑳鍛床闁稿本顕㈠ú顏勵潊闁靛牆鎳愰敍娑㈡⒑閸︻厼鍔嬫い銊ユ閸╂盯骞嬮敂鐣屽幈濠电娀娼уΛ妤咁敂閳哄懏鐓冪憸婊堝礈濞嗘垹绀婂┑鐘叉搐缁犳牠姊洪崹顕呭剱缂傚秴娲弻宥夊传閸曨偂绨藉┑鐐跺亹閸犳牕顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹
濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏″€峰┑鐘插閸犳劗鈧箍鍎卞Λ娆撳矗韫囨稒鐓忛柛顐g箥濡插綊鏌嶉柨瀣伌闁哄本绋戦埥澶婎潨閸繀绱g紓鍌欑劍椤ㄥ棛鏁Δ浣衡攳濠电姴娴傞弫鍐煥濠靛棙澶勯柛鎺撶☉椤啴濡堕崘銊т痪濠碘槅鍋勯崯顖炲箞閵娾晛鐒垫い鎺戝閻撳繘鏌涢锝囩畺闁挎稑绉垫穱濠囶敃閵忕媭浼冮梺鍝勭焿缁查箖骞嗛弮鍫晬婵犲﹤鎲涢敐澶嬧拺闁告縿鍎辨牎闂佺粯顨堟慨鎾偩閻戣棄顫呴柕鍫濇噽椤旀帒顪冮妶鍡樷拻闁哄拋鍋婂畷銏ゅ箹娴e厜鎷洪梺鍛婄☉閿曘儳绮堢€n偆绠惧ù锝呭暱濞诧箓宕愰崼鏇熺叆婵犻潧妫欓ˉ鎾趁瑰⿰鍕煉闁哄瞼鍠撻埀顒佺⊕宀h法绮婚弽褜鐔嗛悹鍝勬惈椤忣偆绱掓潏銊ョ闁逞屽墾缂嶅棙绂嶇捄浣曠喖鍩€椤掑嫭鈷戠紒顖涙礃閺夊綊鏌涚€n偅灏い顏勫暣婵″爼宕卞Δ鈧ḿ鎴︽⒑缁嬫鍎愰柟鐟版喘瀵顓奸崶銊ョ彴闂佸搫琚崕鍗烆嚕閺夊簱鏀介柨鐔哄Х閻e搫霉濠婂啰鍩g€殿喛顕ч濂稿醇椤愶綆鈧洭姊绘担鍛婂暈闁圭ǹ顭烽幃鐑藉煛娴g儤娈惧銈嗙墬缁嬫垿顢氶柆宥嗗€垫繛鎴烆仾椤忓懐顩叉い鏍ㄥ焹閺€浠嬫煟閹邦剙绾ч柍缁樻礀闇夋繝濠傚缁犵偟鈧鍠楅悡锟犮€佸Δ鍛妞ゆ巻鍋撻柍褜鍓欓悥濂稿蓟閿濆绠涙い鏃囧Г濮e嫰姊虹涵鍛棄闁稿﹤娼″璇测槈閵忕姈褔鏌涢妷顔句虎闁靛繈鍊栭ˉ鍡楊熆鐠轰警鍎戠紒鈾€鍋撳┑鐘垫暩婵挳宕愰幖浣告辈闁挎繂妫庢禍婊堝箹濞n剙鐒烘繛鍫熸礋閺屾洟宕惰椤忣參鏌涢埡鍐ㄤ槐妞ゃ垺锕㈤幃娆忣啅椤旇崵妫繝鐢靛У椤旀牠宕归柆宥呯闁规儼妫勯拑鐔兼煥閻斿搫孝闁绘劕锕弻宥嗘姜閹殿喖濡介梺璇茬箣缁舵艾顫忓ú顏勫窛濠电姴瀚崰娑㈡⒑缁嬫鍎愰柟鐟版搐椤繒绱掑Ο璇差€撻梺鍛婄缚閸庤櫕顨欏┑鐘垫暩閸嬫﹢宕犻悩璇插耿闁归偊浜濋惈蹇涙⒒娴h櫣甯涢柛鏃€顨婂顐﹀传閵壯傜瑝闂佸搫鍟悧濠囨偂濞嗘挻鐓欐い鏍ф閼活垰鈻撻崼鏇熲拺鐎规洖娲ㄧ敮娑欐叏婵犲倻绉烘鐐茬墦婵℃悂濡锋惔锝呮灁闁归濞€楠炴捇骞掑┑鍥ㄧグ闂傚倸鍊烽悞锕傚箖閸洖纾圭憸蹇曞垝婵犳艾绠婚悹鍥蔼閹芥洟姊虹紒妯活梿婵炲拑缍侀幆灞解枎閹惧鍘电紓浣割儏閻忔繈顢楅姀銈嗙厵妞ゆ梻鏅幊鍥ㄦ叏婵犲嫬鍔嬮悗鐢靛帶閳诲酣骞嬮悩妯荤矌缁辨挻鎷呴崫鍕戯綁鏌eΔ浣圭妞ゃ垺宀搁弫鎰緞濡粯娅囬梻浣稿暱閻忓牓寮插⿰鍫熷€靛┑鐘崇閳锋垹鎲搁悧鍫濈瑨濞存粈鍗抽弻娑樜熼崫鍕ㄦ寖缂備緡鍠楅悷鈺佺暦閻旂⒈鏁嶆繛鎴炲笚鐎氬ジ姊绘担鍛婅础閺嬵亝绻涚€电ǹ鍘撮柛鈹垮劜瀵板嫰骞囬鐘插箰闂備礁澹婇崑鎺楀磻閸曨剚娅犻悗鐢电《閸嬫挾鎲撮崟顒傤槬缂傚倸绉撮敃銉︾┍婵犲偆娼扮€光偓婵犲唭顏勨攽閻樻剚鍟忛柛銊ゅ嵆婵″爼骞栨担姝屾憰濠电偞鍨惰彜婵℃彃鐗婇幈銊ノ旈埀顒勬偋婵犲洤鏋侀柛鎾楀懐锛濇繛杈剧到閹碱偅鐗庨梺姹囧焺閸ㄦ娊宕戦妶澶婃槬闁逞屽墯閵囧嫰骞掗崱妞惧闂備浇顕х换鎴︽嚌妤e啠鈧箓宕归鍛缓闂侀€炲苯澧存鐐插暢椤﹀湱鈧娲栧畷顒勬箒闂佸搫顦扮€笛囧窗濡皷鍋撶憴鍕閺嬵亪鎽堕弽顬″綊鏁愭径瀣彸闂佹眹鍎烘禍顏勵潖缂佹ɑ濯村〒姘煎灡閺侇垶姊虹憴鍕仧濞存粠浜滈~蹇旂鐎n亞顦板銈嗙墬缁嬫帒鈻嶉弽顓熲拺闁告繂瀚埢澶愭煕濡湱鐭欓柟顔欍倗鐤€婵炴垶鐟ч崢閬嶆⒑閺傘儲娅呴柛鐕佸灣缁牓鍩€椤掆偓椤啴濡惰箛鏇炵煗闂佸搫妫欑粩绯村┑鐘垫暩婵兘寮崨濠冨弿濞村吋娼欓崹鍌炴煕閿旇骞樼紒鈧繝鍌楁斀闁绘ê寮堕幖鎰版煟閹烘垹浠涢柕鍥у楠炴帒顓奸崼婵嗗腐闂備焦鍓氶崹鍗灻洪悢鐓庤摕闁哄洢鍨归獮銏′繆閵堝倸浜鹃梺鍝勬4缂嶄線寮婚敍鍕勃闁告挆鍕灡婵°倗濮烽崑鐐垫暜閿熺姷宓侀悗锝庡枟閸婂鏌涢埄鍐夸緵婵☆値鍐f斀闁挎稑瀚禍濂告煕婵犲啰澧遍柡渚囧櫍閹瑩宕崟顓犲炊闂備礁缍婇崑濠囧窗濮樿埖鍎楁繛鍡楃箚閺€浠嬫煟濡搫绾у璺哄閺屾稓鈧綆鍋勬慨宥夋煛瀹€瀣М濠殿喒鍋撻梺闈涚箚閸撴繂袙閸曨垱鐓涘ù锝呮憸婢э附鎱ㄦ繝鍕笡闁瑰嘲鎳愮划娆撳箰鎼粹檧鍋撻姘f斀闁绘﹩鍠栭悘顏堟煥閺囨ê鐏╅柣锝囧厴椤㈡稑鈽夊鍡楁闂佽瀛╃粙鎺楁晪婵炲瓨绮犻崹璺侯潖濞差亜宸濆┑鐘插閻e灚绻濆▓鍨仴濡炲瓨鎮傞獮鍡涘籍閸繍娼婇梺鎸庣☉鐎氼喛鍊存繝纰夌磿閸嬫垿宕愰弽顓炵婵°倕鎳庣粣妤呭箹濞n剙鐏い鈺傚絻铻栭柨婵嗘噹閺嗙偤鏌i幘瀵告创闁哄本鐩俊鐑芥晲閸涱収鐎撮梻浣圭湽閸斿秹宕归崸妤€钃熼柨婵嗩槹閸嬪嫰鏌涘▎蹇fЧ闁绘繃妫冨铏光偓鍦У椤ュ銇勯敂鐐毈闁绘侗鍠栬灒闁兼祴鏅濋ˇ鈺呮⒑缂佹◤顏勭暦椤掑嫷鏁嗛柕蹇娾偓鑼畾闂佺粯鍔︽禍婊堝焵椤掍胶澧悡銈嗙節闂堟稒顥戦柡瀣Ч閺岋繝宕堕埡浣锋喚缂傚倸鍊瑰畝鎼佹偂椤愶箑鐐婇柕濞р偓濡插牓鎮楅悷鐗堝暈缂佽鍟存俊鐢稿礋椤栨氨顔掑┑掳鍊愰崑鎾绘煕閻曚礁鐏︽い銏$懇閺佹捇鏁撻敓锟�20婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳顭烽弻锝呂熷▎鎯ф缂備胶濮撮悘姘跺Φ閸曨喚鐤€闁圭偓鎯屽Λ鈥愁渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灥瀹曨剟宕滈幍顔剧=濞达絽鎼牎闂佹悶鍔屽ḿ鈥愁嚕婵犳艾围闁糕剝锚瀵潡姊鸿ぐ鎺戜喊闁稿繑锕㈠畷鎴﹀箻濠㈠嫭妫冮崺鈧い鎺戝閻撴繈鏌¢崘銊у妞ゎ偄鎳橀弻锝呂熼悜姗嗘¥闂佺娅曢幑鍥Χ椤忓懎顕遍柡澶嬪灩椤︺劑姊洪崘鍙夋儓闁挎洏鍎甸弫宥夊川椤栨粎锛濋梺绋挎湰閻熝囁囬敂濮愪簻闁挎棁顕ч悘锔姐亜閵忊€冲摵妞ゃ垺锕㈡慨鈧柣姗€娼ф慨锔戒繆閻愵亜鈧牕顔忔繝姘;闁规儳顕弧鈧梺閫炲苯澧撮柡灞芥椤撳ジ宕ㄩ銈囧耿闂傚倷鑳剁划顖氼潖婵犳艾鍌ㄧ憸鏂款嚕閸涘﹦鐟归柍褜鍓熷濠氬即閵忕娀鍞跺┑鐘茬仛閸旀牗鏅ラ梻鍌欒兌鏋Δ鐘叉憸缁棁銇愰幒鎴f憰濠电偞鍨崹褰掑础閹惰姤鐓忓┑鐐茬仢閸旀碍銇勯鐔告珚婵﹦鍎ょ€电厧鈻庨幋鐘虫缂傚倸鍊哥粔鎾晝椤忓牏宓侀柛鎰╁壆閺冨牆绀冮柍杞扮劍閻庮參姊绘担鍛婂暈婵炶绠撳畷锝嗘償閵娿儲杈堥梺璺ㄥ枔婵敻鍩涢幋锔界厱婵犻潧妫楅顏呫亜閵夛箑鐏撮柡灞剧〒閳ь剨缍嗛崑鍛暦鐏炵偓鍙忓┑鐘插暞閵囨繄鈧娲﹂崑濠傜暦閻旂厧鍨傛い鎰癁閸ャ劉鎷洪梺鍛婄☉閿曘儵鍩涢幇鐗堢厽婵°倕鍟埢鍫燁殽閻愭彃鏆i柡浣规崌閹晠鎼归锝囧建闂傚倷绀侀幉鈥趁洪敃鍌氱婵炲棙鎸婚崑鐔访归悡搴f憼闁抽攱鍨垮濠氬醇閻旀亽鈧帞绱掗悩鍐插摵闁哄本鐩獮妯尖偓闈涙憸閻ゅ嫰姊虹拠鈥虫灀闁逞屽墯閺嬪ジ寮告惔銊︾厵闂侇叏绠戦弸銈嗐亜閺冣偓濞叉ḿ鎹㈠┑瀣潊闁挎繂妫涢妴鎰渻閵堝棗鐏ユ俊顐g〒閸掓帡宕奸妷銉у姦濡炪倖甯掔€氼參宕愰崹顐ょ闁割偅绻勬禒銏$箾閸涱厾效闁哄矉绻濋崺鈧い鎺戝绾偓闂佺粯鍨靛Λ妤€鈻撻锔解拺闁告稑锕ユ径鍕煕鐎n偄娴€规洏鍎抽埀顒婄秵閸犳鎮¢弴銏$厸闁搞儯鍎辨俊鍏碱殽閻愮摲鎴炵┍婵犲洤鐭楀璺猴功娴煎苯鈹戦纭锋敾婵$偠妫勯悾鐑筋敃閿曗偓缁€瀣亜閹邦喖鏋庡ù婊勫劤闇夐柣妯烘▕閸庢粎绱撳鍡欏ⅹ妞ゎ叀娉曢幑鍕倻濡粯瀚抽梻浣呵圭换鎴犲垝閹捐钃熸繛鎴欏焺閺佸啴鏌ㄥ┑鍡橆棤妞わ负鍔戝娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幘鎼濠电偞鍨堕〃鍛此夊杈╃=闁稿本鐟ㄩ崗灞解攽椤旂偓鏆╅柡渚囧櫍閸ㄩ箖骞囨担鍦▉濠电姷鏁告慨鐢告嚌妤e啯鍊峰┑鐘叉处閻撱儲绻濋棃娑欘棡闁革絿枪椤法鎲撮崟顒傤槹濠殿喖锕ュ浠嬪箠閿熺姴围闁告侗鍠氶埀顒佸劤閳规垿鎮欓幓鎺旈獓闂佹悶鍔屽ḿ锟犵嵁婵犲伣鏃堝礃閳轰胶锛忛梺鑽ゅ仦缁嬪牓宕滃┑瀣€跺〒姘e亾婵﹨娅e☉鐢稿川椤斿吋閿梻鍌氬€哥€氼剛鈧碍婢橀悾鐑藉即閵忕姷顓洪梺鎸庢濡嫰鍩€椤掑倹鏆柡灞诲妼閳规垿宕卞☉鎵佸亾濡や緡娈介柣鎰缂傛氨绱掓潏銊ユ诞闁诡喒鏅涢悾鐑藉炊瑜夐幏浼存⒒娴e憡鎯堝璺烘喘瀹曟粌鈹戦崱鈺佹闂佸憡娲﹂崑鈧俊鎻掔墛缁绘盯宕卞Δ浣侯洶婵炲銆嬮幏锟�
相关话题/Order Solutions Their