删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Small phenomenology on gluon evolution through the BFKL equation in light of a constraint in multi-

本站小编 Free考研考试/2022-01-02

闂傚倸鍊烽懗鍫曞箠閹剧粯鍋ら柕濞炬櫅缁€澶愭煙閻戞ɑ鈷愰悗姘煼閺岋綁寮崒姘闁诲孩纰嶅畝鎼佸蓟濞戞ǚ鏋庣€广儱鎳庢慨搴ㄦ⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闁哄鐗冮弲娑氭暜閵娧呯=濞达絼绮欓崫铏圭磼鐠囪尙澧曢柣锝呭槻椤繄鎹勯崫鍕偓鍧楁⒑閸濆嫭鍌ㄩ柛銊ヮ煼瀹曪綁骞囬悧鍫㈠幗闂佺粯锚瀵爼骞栭幇顒夌唵鐟滃瞼鍒掑▎鎾虫槬闁靛繈鍊栭崵鍐煃閸濆嫬鈧悂鎯冮锔解拺闁告稑锕ユ径鍕煕閹炬潙鍝洪柟顔斤耿楠炲洭鎮ч崼姘闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊ゅ嵆椤㈡岸顢橀悢渚锤闂佸憡绋戦敃銉х礊閸ャ劊浜滈柟鎵虫櫅閻忊晜顨ラ悙宸剶婵﹥妞藉畷妤呮偂鎼粹€承戦梻浣规偠閸ㄨ偐浜搁鍫澪﹂柟鎵閺呮悂鏌ㄩ悤鍌涘40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼崸妤€鎽甸柣蹇撶箰鐎涒晠骞堥妸銉庣喖宕归鎯у缚闂佽绻愬ù姘椤忓牆钃熼柕濞垮劗濡插牓鏌ц箛锝呬簻妞ゅ骏鎷�
闂傚倸鍊峰ù鍥綖婢跺顩插ù鐘差儏缁€澶屸偓鍏夊亾闁逞屽墰閸掓帞鎷犲顔兼倯闂佹悶鍎崝宀勬儍椤愨懇鏀芥い鏃囶潡瑜版帒鏄ラ柡宥庡亗閻掑﹥銇勮箛鎾跺闁绘挻绋戦…璺ㄦ崉閻氭潙浼愰梺鍝勬閸犳劗鎹㈠☉娆忕窞婵☆垰鎼猾宥嗙節绾版ê澧查柟绋垮暱閻g兘骞掗幋鏃€鏂€闂佸綊鍋婇崜姘额敊閺囩偐鏀介柣鎰▕閸ょ喎鈹戦姘煎殶缂佽京鍋ら崺鈧い鎺戝閻撳繘鏌涢埄鍐炬當闁哄棴绲块埀顒冾潐濞测晝绱炴笟鈧妴浣糕槈閵忊€斥偓鐑芥煃鏉炵増顦峰瑙勬礀閳规垿顢欓惌顐簽婢规洟顢橀悩鍏哥瑝闂佸搫绋侀悘鎰版偡閹靛啿鐗氶梺鍛婃处閸嬪棝顢栭崟顒傜閻庣數枪瀛濋梺缁橆殔缁绘帒危閹版澘绫嶉柛顐g箘椤撴椽姊虹紒妯忣亪鎮樺璺虹畾闁挎繂顦伴埛鎺戙€掑顒佹悙濞存粍绻堥弻锛勪沪鐠囨彃顬嬪┑鐐叉閸ㄤ粙骞冨▎鎴斿亾閻㈢數銆婇柡瀣墵濮婅櫣绱掑Ο铏逛桓闁藉啴浜堕弻鐔兼偪椤栨瑥鎯堢紓浣介哺鐢€愁嚕椤曗偓閸┾偓妞ゆ帒瀚崑锟犳煥閺冨倸浜鹃柡鍡樼矌閹叉悂鎮ч崼婵堫儌閻庤鎸风欢姘跺蓟濞戔懇鈧箓骞嬪┑鍥╁蒋闂備礁鎲¢懝楣冨箠鎼淬劍绠掗梻浣稿悑缁佹挳寮插☉婧惧彺闂傚倷绶氶埀顒傚仜閼活垱鏅堕鐐粹拺闁兼亽鍎遍埛濂濆┑鐘垫暩閸嬬偛岣垮▎鎾宠Е閻庯綆鍠楅崵灞轿旈敐鍛殭缂佺姷鍠栭弻鐔煎箚閻楀牜妫勯梺璇茬箺濞呮洜鎹㈠┑瀣瀭妞ゆ劧绲介弳妤冪磽娴f彃浜炬繝銏e煐閸旀牠鎮¢悢鍏肩厓鐟滄粓宕滃▎鎰箚濞寸姴顑嗛悡鏇㈡煃閸濆嫬鈧煤閹绢喗鐓涢悘鐐跺Г閸h銇勯锝囩畵闁伙絿鍏樺畷鍫曞煛閸愨晜鐦掗梻鍌欐祰瀹曞灚鎱ㄩ弶鎳ㄦ椽濡堕崼娑楁睏闂佺粯鍔曢幖顐︽嚋鐟欏嫨浜滈柟鐑樺灥閳ь剙缍婂畷鎴濐潨閳ь剟寮婚弴鐔虹鐟滃秶鈧凹鍣e鎶芥偐缂佹ǚ鎷洪梺鍛婄☉閿曘倗绮幒鎾茬箚妞ゆ劧绲鹃ˉ鍫熶繆椤愩垺鍤囬柛鈺嬬節瀹曘劑顢欓幆褍鍙婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鍔曠欢鐐碘偓骞垮劚椤︿即鎮″▎鎾村€垫繛鎴炵憽缂傛艾顭胯閸撶喖寮婚悢鍏煎剬闁告縿鍎宠ⅵ婵°倗濮烽崑娑㈡煀閿濆棔绻嗛柣鎴f鎯熼梺闈涱檧婵″洦绂嶅畡鎵虫斀闁绘劖娼欓悘锔芥叏婵犲嫭鍤€妞ゎ厼鐏濋~婊堝焵椤掑嫮宓侀柛鎰╁壆閺冨牆宸濇い鏃囧Г閻濐偊鏌f惔鈥冲辅闁稿鎹囬弻娑㈠箛椤撶偛濮㈠┑鐐茬墢閸嬫挾鎹㈠☉姘e亾閻㈢櫥褰掝敁閹惧墎纾界€广儰绀佹禍楣冩⒒娓氣偓濞佳兾涘Δ鍛柈闁圭虎鍠栫粻鐘绘煏韫囨洖啸闁哄棗顑夐弻鈩冨緞鎼淬垻銆婇梺璇″櫙閹凤拷40%闂傚倸鍊风粈浣革耿鏉堚晛鍨濇い鏍仜缁€澶愭煛瀹ュ骸骞栭柛銊ュ€归幈銊ノ熼幐搴c€愰弶鈺傜箞濮婅櫣绮欓幐搴㈡嫳缂備浇顕х粔鐟扮暦閻㈠憡鏅濋柍褜鍓熷﹢渚€姊虹紒妯兼噧闁硅櫕鍔楃划鏃堫敆閸曨剛鍘梺绯曞墲椤ㄥ懘寮抽悢鍏肩厵鐎瑰嫭澹嗙粔鐑樸亜閵忊埗顏堝煘閹达箑鐐婄憸婊勫閸℃稒鈷掑ù锝呮啞閹牓鏌eΔ浣虹煉鐎规洘绮岄埥澶愬閳ュ厖鎴锋俊鐐€栭悧妤冪矙閹炬眹鈧懘鎮滈懞銉ヤ化婵炶揪绲介幗婊堟晬瀹ュ洨纾煎璺猴功娴犮垽妫佹径瀣瘈鐟滃繑鎱ㄩ幘顔肩柈妞ゆ牜鍋涚粻姘舵煕瀹€鈧崑鐐烘偂閵夛妇绠鹃柟瀵稿€戦崷顓涘亾濮樺崬顣肩紒缁樼洴閹剝鎯旈埥鍡楀Ψ缂傚倷绀侀崐鍝ョ矓瑜版帇鈧線寮撮姀鐙€娼婇梺缁樶缚閺佹瓕鈪�9闂傚倸鍊烽懗鍫曘€佹繝鍥ф槬闁哄稁鍓欑紞姗€姊绘笟鈧埀顒傚仜閼活垱鏅堕鈧弻娑欑節閸愨晛鈧劙鏌熼姘殻濠殿喒鍋撻梺闈涚墕閹虫劙藝椤愶附鈷戠紒顖涙礀婢у弶绻涢懠顒€鏋涢柟顕嗙節閸╋繝宕ㄩ瑙勫闂備礁鎲¢幐鍡涘礃瑜嶉ˉ姘舵⒑濮瑰洤鐒洪柛銊╀憾楠炴劙鎼归锛勭畾闁诲孩绋掕摫濠殿垱鎸抽幃宄扳枎韫囨搩浠奸梻鍌氬亞閸ㄨ泛顫忛搹瑙勫厹闁告侗鍨伴悧姘舵⒑缁嬪潡顎楃€规洦鍓熷﹢浣糕攽椤斿浠滈柛瀣崌閺岀喖顢欓妸銉︽悙闁绘劕锕弻宥夊传閸曨偅娈查梺璇″灲缂嶄礁顫忓ú顏勭閹艰揪绲哄Σ鍫ユ⒑閸忓吋銇熼柛銊ф暬婵$敻骞囬弶璺紲闂佺粯鍔樼亸娆撍囬锔解拺闁告繂瀚峰Σ瑙勩亜閹寸偟鎳囩€规洘绻堝畷銊р偓娑欋缚閸樻悂鎮楃憴鍕鞍闁告繂閰e畷鎰板Χ婢跺﹦鏌堥梺鍓插亖閸庢煡鎮¢弴鐘冲枑閹艰揪绲块惌娆撶叓閸ャ劎鈽夐柣鎺戠仛閵囧嫰骞嬮敐鍛Х闂佺ǹ绻愰張顒傛崲濞戙垹宸濇い鎰╁灩椤姊虹拠鈥崇仭婵☆偄鍟村顐﹀礃閳哄倸顎撶紓浣割儓濞夋洘绂掗銏♀拻濞达絽鎲¢崯鐐烘煟閵婏妇鐭嬮柟宄版嚇楠炴捇骞掑鍜佹婵犵數鍋犻幓顏嗙礊娓氣偓瀵煡鎳犻鍐ㄐ¢梺瑙勫劶婵倝鎮¢弴鐔剁箚闁靛牆瀚ˇ锕傛煙閸忓吋鍊愰柡灞界Х椤т線鏌涜箛鏃傘€掔紒顔肩墛閹峰懘宕烽褎閿ら梻浣告惈濞层劑宕伴幘璇茬厴鐎广儱顦粻鎶芥煙閹増顥夐柣鎺戠仛閵囧嫰骞嬪┑鍫滆檸闂佺ǹ锕ュΣ瀣磽閸屾艾鈧绮堟笟鈧鐢割敆閳ь剟鈥旈崘顔藉癄濠㈠厜鏅滈惄顖氱暦缁嬭鏃堝焵椤掑啰绠芥繝鐢靛仩閹活亞绱為埀顒佺箾閸滃啰绉€规洩缍侀崺鈧い鎺嶈兌缁犻箖鏌熺€电ǹ浠﹂柣鎾卞劤缁辨帡濡搁敂濮愪虎闂佺硶鏂侀崑鎾愁渻閵堝棗鐏﹂悗绗涘懐鐭堝ù鐓庣摠閻撶喐銇勮箛鎾村櫤閻忓骏绠撻弻鐔碱敊閼恒儯浠㈤梺杞扮劍閸旀瑥鐣烽崼鏇炵厸闁稿本绋戦崝姗€姊婚崒娆戭槮闁硅绻濋幊婵嬪礈瑜夐崑鎾愁潩閻撳骸鈷嬫繝纰夌磿閺佽鐣烽崼鏇ㄦ晢闁稿本姘ㄩ妶锕傛⒒娴e憡鍟為柛鏃€鐗為妵鎰板礃椤旂晫鍘愰梻渚囧墮缁夌敻鎮¤箛娑欑厱闁宠棄妫楅獮妤呮倵濮樼偓瀚�
Pragyan Phukan,, Madhurjya Lalung,, Jayanta Kumar Sarma,1HEP laboratory, Department of Physics, Tezpur University, India

First author contact: 1 Author to whom any correspondence should be addressed.
Received:2019-10-9Revised:2019-11-10Accepted:2019-11-26Online:2020-02-05


Abstract
We investigate the impact of so-called kinematic constraint on gluon evolution at small x. Implanting the constraint on the real emission term of the gluon ladder diagram, we obtain an integro-differential form of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation. Later we solve the equation analytically using the method of characteristics. We sketch the Bjorken x and transverse momentum ${k}_{t}^{2}$ dependence of our solution of unintegrated gluon distributions $f(x,{k}_{t}^{2})$ in the kinematic constraint supplemented BFKL equation and contrasted the same with the original BFKL equation. Then we extract the integrated gluon density xg(x, Q2) from unintegrated gluon distributions $f(x,{k}_{t}^{2})$ and compared our theoretical prediction with that of global data fits, namely NNPDF3.1sx and CT14. Finally we illustrate the phenomenological implication of our solution for unintegrated gluon distribution $f(x,{k}_{T}^{2})$ towards exploring high precision HERA DIS data by the theoretical prediction of proton structure functions (F2 and FL).
Keywords: parton evolution equation;gluon distribution function;perturbative QCD


PDF (1022KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Pragyan Phukan, Madhurjya Lalung, Jayanta Kumar Sarma. Small x phenomenology on gluon evolution through the BFKL equation in light of a constraint in multi-Regge kinematics. Communications in Theoretical Physics, 2020, 72(2): 025201- doi:10.1088/1572-9494/ab61ee

1. Introduction

The parton distribution functions (PDFs) serve as a very important tool for the calculation of inclusive cross sections in hadronic collision processes. In perturbative QCD, particularly for moderate values of Bjorken x and large interaction scale Q2, DIS observables are determined by the mass factorization theorem in which the collinear logarithmic singularities arising from gluon splitting are characterized by collinear parton distribution functions. These collinear PDFs are determined by the DGLAP evolution equation [16], which resums the leading ${\alpha }_{s}\mathrm{ln}{Q}^{2}$ contributions associated with a space-like chain of n gluons with strongly ordered successive gluon transverse momentum along the chain. On the other hand, at sufficiently high energies ($\sqrt{S}$) or small x, the leading logarithmic contribution of ${\alpha }_{s}\mathrm{ln}(1/x)$ cannot be neglected along the gluon chain. In this regime, the dominant parton is the gluon and the key ingredient to calculate the scattering observables is the unintegrated gluon distributions (ugd’s) entering through kt factorization formula. The ugd’s are characterised by BFKL evolution [79], which sums the leading ${\alpha }_{s}\mathrm{ln}(1/x)$ contributions, usually written in the form$\begin{eqnarray}\begin{array}{l}-x\displaystyle \frac{\partial f\left(x,{k}_{t}^{2}\right)}{\partial x}=\displaystyle \frac{{\alpha }_{s}{N}_{c}{k}_{t}^{2}}{\pi }{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\\ \quad \times \,\left[\displaystyle \frac{f(x,{k}_{t}^{{\prime} 2})-f\left(x,{k}_{t}^{2}\right)}{| {k}_{t}^{{\prime} 2}-{k}_{t}^{2}| }+\displaystyle \frac{f\left(x,{k}_{t}^{2}\right)}{\sqrt{{k}_{t}^{4}+4{k}_{t}^{{\prime} 4}}}\right],\end{array}\end{eqnarray}$where $f\left(x,{k}_{t}^{2}\right)$ denotes the gluon density unintegrated over the gluon transverse momentum kt and ${k}_{0}^{{\prime} 2}$ is the infrared cutoff of the evolution. To gain insight of (1) we refer to figure 1(a), which shows a chain of sequential gluon emission. The BFKL kernel in (1) corresponds to the sum of the gluon ladder diagram in figure 1(b), which is formed by squaring the amplitude of figure 1(a). The real emission is characterized by the first term in the kernel while the second term corresponds to the diagrams with virtual corrections. The apparent singularity observed at ${k}_{t}^{{\prime} 2}={k}_{t}^{2}$ cancels between real and virtual contributions to ensure that there is no overall singularity in (1).

Figure 1.

New window|Download| PPT slide
Figure 1.(a) Chain of sequential gluon emission, which forms the basis of the BFKL equation. On squaring the amplitude of (a) the ladder (b) is generated, which, when summed, gives the BFKL kernel.


The real emission term in the BFKL kernel interprets the $k^{\prime} \to k+q$ splitting inside the hadron as shown in figure 1(a). In BFKL multi-regge kinematics the longitudinal component of the gluon momentum is strongly ordered ${x}_{1}\ll {x}_{2}.....\ll {x}_{n-1}\ll {x}_{n}$ whereas there is no ordering in the transverse component ${k}_{1t}\sim {k}_{2t}\sim ....\sim {k}_{{\rm{n}}-1t}\sim {k}_{{\rm{n}}t}$ and the virtuality of the gluon comes dominantly from the transverse component of the momentum i.e.$\begin{eqnarray}{k}^{2}=2{k}^{+}{k}^{-}-{k}_{t}^{2}\approx {k}_{t}^{2}.\end{eqnarray}$As a consequence of these BFKL kinematics, so-called kinematic constraint or consistency constraint comes into the picture and it is implemented in different forms:$\begin{eqnarray}{q}_{t}^{2}\lt \displaystyle \frac{{k}_{t}^{2}}{z}\ \ \ \ \ \ \mathrm{LDC}\ [10,13],\end{eqnarray}$$\begin{eqnarray}{q}_{t}^{2}\lt \displaystyle \frac{(1-z){k}_{t}^{2}}{z}\ \ [14],\end{eqnarray}$$\begin{eqnarray}{k}_{t}^{{\prime} 2}\lt \displaystyle \frac{{k}_{t}^{2}}{z}\ \ \ \ \ \ \ \ \mathrm{BFKL}\ [14,15].\end{eqnarray}$The relation (5) can be considered as a special case of (3) owing to the fact that for a fixed value of kt, a high qt2 would imply an equally high ${k}_{t}^{{\prime} 2}$ [10]. Although other constraints exist as a consequence of energy momentum conservation, this bound is considerably tighter than the latter [10].

Our primary goal of this work is to investigate the effect of this kinematic constraint on the small x regime of gluon evolution. Accordingly, we organise the content of the paper as follows. In section 2.1, we first implemented the kinematic constraint to the ordinary BFKL equation and then solved the kinematic constraint supplemented BFKL equation analytically. We adopt the method of characteristics to solve the PDE. In section 2.2, we built up the theoretical foundation in terms of factorization formula to predict DIS structure functions (F2 and FL). Then in section 3 we present the numerical analysis and portray our results for gluon evolution as well as structure functions. First we sketch both the small x and transverse momentum ${k}_{t}^{2}$ dependence of unintegrated gluon distributions $f(x,{k}_{t}^{2})$. Then we extract integrated gluon density xg(x, Q2) from ugd’s and study x and Q2 dependence of xg(x, Q2). Our theoretical predictions for integrated gluon density xg(x, Q2) is compared with that of global data fits NNPDF3.1sx [12] and CT14 [14]. We also investigate the sensitivity of the BFKL intercept in both x and ${k}_{t}^{2}$ evolution of ugd’s $f(x,{k}_{t}^{2})$. Later we sketched our predictions for DIS structure functions (F2 and FL) and contrasted our results with that of HERA DIS data. Finally in section 4 we summarize and outline our conclusion as well as possible future prospects.

2. Theory

2.1. Formulation and analytical solution of kinematic constrained BFKL

Recall that the BFKL equation can be written as an integral equation for unintegrated gluon distributions $f(x,{k}_{t}^{2})$ in the form [15],$\begin{eqnarray}\begin{array}{rcl}f(x,{k}_{t}^{2}) & = & {f}^{(0)}(x,{k}_{T}^{2})+\displaystyle \frac{{\alpha }_{s}}{2\pi }{\displaystyle \int }_{x}^{1}\displaystyle \frac{{\rm{d}}{z}}{z}\\ & & \times {\displaystyle \int }_{{k}_{0}^{{\prime} 2}}{{\rm{d}}{k}}_{t}^{{\prime} 2}\kappa ({k}^{2},{k}_{t}^{{\prime} 2},z)f\left(\displaystyle \frac{x}{z},{k}_{t}^{{\prime} 2}\right),\end{array}\end{eqnarray}$where the inhomogeneous driving term ${f}^{(0)}(x,{k}_{T}^{2})$ depicts gluon-proton coupling. The BFKL kernel is evaluated as$\begin{eqnarray}\begin{array}{l}\kappa ({k}^{2},{k}_{t}^{{\prime} 2},z)f\left(\displaystyle \frac{x}{z},{k}_{t}^{{\prime} 2}\right)\\ \quad =\,2{N}_{c}\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\left[\displaystyle \frac{{\rm{\Theta }}\left(\tfrac{{k}_{t}^{2}}{z}-{k}_{t}^{{\prime} 2}\right)f\left(\tfrac{x}{z},{k}_{t}^{{\prime} 2}\right)-f\left(\tfrac{x}{z},{k}_{t}^{2}\right)}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right.\\ \qquad \left.+\,\displaystyle \frac{f\left(\tfrac{x}{z},{k}_{t}^{2}\right)}{\sqrt{{k}_{t}^{4}+4{k}_{t}^{{\prime} 4}}}\right].\end{array}\end{eqnarray}$The so-called kinematic constraint ${k}_{t}^{{\prime} 2}\lt {k}^{2}/z$ is imposed onto the real-emission part of the kernel (7) through the Heaviside theta function ${\rm{\Theta }}\left(\tfrac{{k}_{t}^{2}}{z}-{k}_{t}^{{\prime} 2}\right)$. The BFKL kernel that we incorporated in (7) is at leading logarithmic 1/x (LLx) accuracy, whereas higher order correction upto NLLx are found to be quite large [16]. Implementation of the constraint in the evolution ensures the participation of only the LLx part of the higher order correction making the theory more realistic, which, in fact, highlights the importance of NLLx correction.

To get an integro differential equation, we differentiate (7) w.r.t. $\mathrm{ln}(1/x)$ and then using properties of Θ and Dirac-δ function, namely ${\rm{\Theta }}^{\prime} (t)=\delta (t)$ and $f(t)\delta (t-a)\,=f(a)\delta (t-a)$, one may show that$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{\partial }{\partial \mathrm{ln}\tfrac{1}{x}}{\displaystyle \int }_{x}^{1}\displaystyle \frac{{\rm{d}}z}{z}{\rm{\Theta }}\left(\displaystyle \frac{{k}_{t}^{2}}{z}-{k}_{t}^{{\prime} 2}\right)f(x,{k}_{t}^{{\prime} 2})\\ \quad \longrightarrow \,{\rm{\Theta }}({k}_{t}^{2}-{k}_{t}^{{\prime} 2})f(x,{k}_{t}^{{\prime} 2})+{\rm{\Theta }}({k}_{t}^{{\prime} 2}-{k}_{t}^{2})f\left(\displaystyle \frac{{k}_{t}^{{\prime} 2}}{{k}_{t}^{2}}x,{k}_{t}^{{\prime} 2}\right).\end{array}\end{eqnarray}$Considering (8), we can express (7) in the following integro-differential form,$\begin{eqnarray}\begin{array}{l}-x\displaystyle \frac{\partial f\left(x,{k}_{t}^{2}\right)}{\partial x}=\displaystyle \frac{{\alpha }_{s}{k}_{t}^{2}{N}_{c}}{\pi }{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\\ \quad \times \,\left[\displaystyle \frac{{\rm{\Theta }}\left({k}_{t}^{2}-{k}_{t}^{{\prime} 2}\right)f\left(x,{k}_{t}^{{\prime} 2}\right)+{\rm{\Theta }}({k}_{t}^{{\prime} 2}-{k}_{t}^{2})f\left(\tfrac{{k}_{t}^{{\prime} 2}}{{k}_{t}^{2}}x,{k}_{t}^{2}\right)}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right.\\ \quad \left.-\,\displaystyle \frac{f(x,{k}_{t}^{2})}{| {k}_{t}^{{\prime} 2}-{k}_{t}^{2}| }+\displaystyle \frac{f\left(x,{k}_{t}^{2}\right)}{\sqrt{{k}_{t}^{4}+4{k}_{t}^{{\prime} 4}}}\right],\end{array}\end{eqnarray}$where we neglect the term $x\tfrac{\partial {f}^{(0)}}{\partial x}$ in (9) as it is much less singular than $x\tfrac{\partial f}{\partial x}$ at small x [8, 17].

In pQCD, the small-x behavior of the parton distribution is modulated by the intercept of an appropriate Regge trajectory. The BFKL dynamic itself is based on the concept of pomeranchuk theorem or pomeron: the Regge-pole carrying the quantum-numbers of the vacuum. The BFKL-pomeron intercept is yielded by$\begin{eqnarray*}{\alpha }_{P}^{{BFKL}}(0)=1+{\lambda }_{\mathrm{BFKL}},\end{eqnarray*}$where ${\lambda }_{\mathrm{BFKL}}=\tfrac{3{\alpha }_{s}}{\pi }4\mathrm{ln}2$ [7, 18]. However, the BFKL hard pomeron should be contrasted with non perturbative description of soft pomeron in the sense that BFKL intercept is potentially large ${\alpha }_{P}^{{BFKL}}(0)\approx 1.5$ (or ${\lambda }_{\mathrm{BFKL}}\sim 0.5$) for αs=0.2 compared to that of soft pomeron (αP(0)=1.08).

The Regge model provides a steep power law parametrization of DIS distribution functions, ${f}_{i}(x,{Q}^{2})\,={A}_{i}({Q}^{2}){x}^{-{\lambda }_{i}}$ (${\rm{i}}=\sum $ (singlet structure function) and g (gluon distribution)) [19, 20]. This motivates us to consider a simple form of Regge factorization as follows,$\begin{eqnarray}f\left(\displaystyle \frac{{k}_{t}^{{\prime} 2}}{{k}_{t}^{2}}x,{k}_{t}^{2}\right)\simeq {x}^{-{\lambda }_{\mathrm{BFKL}}}{\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{{\lambda }_{\mathrm{BFKL}}}{ \mathcal L }({k}_{t}^{2})={\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }f\left(x,{k}_{t}^{2}\right),\end{eqnarray}$where we drop the subscript on λBFKL (referred as λ henceforth). Note that Regge factorization cannot be considered as good ansatz for the entire kinematic domain of x and ${k}_{t}^{2}$ [21] and it is supposed to be valid only if the quantity invariant mass, W $(=\sqrt{{Q}^{2}(1-x)/x})$ is much greater than all other variables. Therefore, we expect the Regge factorization in (10) to be justified if x is small enough, for any value of Q2.

Now considering the Regge factorization (10) and taking ${\rm{\Theta }}(\omega )=1-{\rm{\Theta }}(-\omega )$ we can express (9) as$\begin{eqnarray}\begin{array}{l}-x\displaystyle \frac{\partial f\left(x,{k}_{t}^{2}\right)}{\partial x}\\ \,=\,\displaystyle \frac{{\alpha }_{s}{N}_{c}{k}_{t}^{2}}{\pi }{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}\displaystyle \frac{{\rm{d}}{k}{{\prime} }^{2}}{{k}_{t}^{{\prime} }{}^{2}}\left[{\rm{\Theta }}\left({k}_{t}^{2}-{k}_{t}^{{\prime} 2}\right)\displaystyle \frac{1-{\left(\tfrac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}f\left(x,{k}_{t}^{{\prime} 2}\right)\right.\\ \,+\ \left.{\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }\displaystyle \frac{f\left(x,{k}_{t}^{2}\right)}{\left|{k}_{t}^{{\prime} 2}-{k}^{2}\right|}-\displaystyle \frac{f\left(x,{k}_{t}^{2}\right)}{\left|{k}_{t}^{{\prime} 2}-{k}^{2}\right|}+\displaystyle \frac{f\left(x,{k}_{t}^{2}\right)}{\sqrt{{k}_{t}^{4}+4{k}_{t}^{{\prime} 4}}}\right].\end{array}\end{eqnarray}$The above equation (11) is the integral form of the kinematic constraint improved BFKL equation.

As we have mentioned earlier, transverse gluon momenta in BFKL multi-Regge kinematics pose no ordering and this allows us to write the gluon distribution in Taylor’s expansion series,$\begin{eqnarray}\begin{array}{rcl}f\left(x,{k}_{t}^{{\prime} 2}\right) & = & f\left(x,{k}_{t}^{2}\right)+\displaystyle \frac{\partial f\left(x,{k}_{t}^{2}\right)}{\partial {k}_{t}^{2}}\left({k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right)\\ & & +{ \mathcal O }\left({k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right),\end{array}\end{eqnarray}$where the higher order terms in the series are denoted by ${ \mathcal O }\left({k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right)$. The convergence of the series is inherent because of the no ordering of the transverse momenta ${k}_{t}^{{\prime} }\,-{k}_{t}\simeq 0$ resulting in higher order terms ${ \mathcal O }\left({k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right)\to 0$. This ensures the insignificance of the higher order terms in the series and thereby ${ \mathcal O }\left({k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right)$ can be neglected. Thus this assumption would hold good as long as no ordering condition of the transverse momenta in BFKL kinematics is concerned. This type of series expansion of unintegrated gluon distribution is well supported in the literature [15].

Now neglecting the higher order terms we can express (11) as$\begin{eqnarray}-x\displaystyle \frac{\partial f\left(x,{k}_{t}^{2}\right)}{\partial x}=\xi ({k}_{t}^{2})\displaystyle \frac{\partial f\left(x,{k}_{t}^{2}\right)}{\partial {k}_{t}^{2}}+\zeta ({k}_{t}^{2})f\left(x,{k}_{t}^{2}\right),\end{eqnarray}$where$\begin{eqnarray}\begin{array}{rcl}\xi ({k}_{t}^{2}) & = & \displaystyle \frac{{\alpha }_{s}{N}_{c}}{\pi }{k}_{t}^{2}\left[{\displaystyle \int }_{{k}_{t}^{2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}{\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }\displaystyle \frac{{k}_{t}^{{\prime} 2}-{k}_{t}^{2}}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right.\\ & & \left.+{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}^{{k}_{t}^{2}}\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{{k}_{t}^{{\prime} 2}-{k}_{t}^{2}}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right],\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}\zeta ({k}_{t}^{2})=\displaystyle \frac{{\alpha }_{s}{N}_{c}}{\pi }{k}_{t}^{2}\left[{\displaystyle \int }_{{k}_{t}^{2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}{\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }\displaystyle \frac{1}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right.\\ \quad \left.+\,{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{1}{\sqrt{{k}_{T}^{4}+4{k}_{t}^{{\prime} 4}}}-{\displaystyle \int }_{{k}_{t}^{2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{1}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right].\end{array}\end{eqnarray}$We get rid of the infrared singularities in the integrals ${I}_{1}={\int }_{{k}_{t}^{2}}^{\infty }\tfrac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\tfrac{1}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}$ and ${I}_{2}={\int }_{{k}_{t}^{2}}\tfrac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}{\left(\tfrac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }\tfrac{1}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}$ performing some angular integral prescription. First we consider the following two-fold azimuthal integral with the replacement of the variable ${k}_{t}^{{\prime} }\to {k}_{t}^{{\prime} }+{k}_{t}$ on the r.h.s.,$\begin{eqnarray}\int \displaystyle \frac{{{\rm{d}}}^{2}{k}_{t}^{{\prime} }}{{\left({k}_{t}^{{\prime} }-{k}_{t}\right)}^{2}}\displaystyle \frac{1}{{\left({k}_{t}^{{\prime} }-{k}_{t}\right)}^{2}+{k}_{t}^{{\prime} 2}}=\int \displaystyle \frac{{{\rm{d}}}^{2}{k}_{t}^{{\prime} }}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{1}{{k}_{t}^{{\prime} 2}+{\left({k}_{t}^{{\prime} }+{k}_{t}\right)}^{2}}.\end{eqnarray}$Now recalling the standard trigonometric integral$\begin{eqnarray}{\int }_{0}^{2\pi }\displaystyle \frac{{\rm{d}}\theta }{P+Q\cos \theta }=\displaystyle \frac{2\pi }{\sqrt{{P}^{2}+{Q}^{2}}},\end{eqnarray}$we can express the l.h.s. and r.h.s. of (16) as follows$\begin{eqnarray}\begin{array}{l}\displaystyle \int \displaystyle \frac{{{\rm{d}}}^{2}{k}_{t}^{{\prime} }}{{\left({k}_{t}^{{\prime} }-{k}_{t}\right)}^{2}}\displaystyle \frac{1}{{\left({k}_{t}^{{\prime} }-{k}_{t}\right)}^{2}+{k}_{t}^{{\prime} 2}}\\ \quad =\,\pi \displaystyle \int \displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{1}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}-\pi \displaystyle \int \displaystyle \frac{{\rm{d}}{k}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}\sqrt{4{k}_{t}^{{\prime} 4}+{k}_{t}^{4}}},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}\displaystyle \int \displaystyle \frac{{\rm{d}}{k}_{t}^{{\prime} }{k}_{t}^{{\prime} }{\rm{d}}\theta }{{k}_{t}^{{\prime} 2}(2{k}_{t}^{{\prime} 2}+{k}_{t}^{2}+2{k}_{t}^{{\prime} }{k}_{t}\cos \theta )}\\ \quad =\,2\pi \displaystyle \int \displaystyle \frac{{\rm{d}}{k}_{t}^{{\prime} }{k}_{t}^{{\prime} }}{{k}_{t}^{{\prime} 2}\sqrt{4{k}_{t}^{{\prime} 4}+{k}_{t}^{4}}}=\pi \displaystyle \int \displaystyle \frac{{\rm{d}}{k}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}\sqrt{4{k}_{t}^{{\prime} 4}+{k}_{t}^{4}}}.\end{array}\end{eqnarray}$From (18) and (19) we obtain,$\begin{eqnarray}\int \displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{1}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}=2\int \displaystyle \frac{{\rm{d}}{k}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}\sqrt{4{k}_{t}^{{\prime} 4}+{k}_{t}^{4}}},\end{eqnarray}$which turns out to be well-behaved for both of the integration limits in the integral I1. For moderate ${k}_{t}^{{\prime} 2}$, in particular at ${k}_{{T}_{\min }}^{{\prime} 2}\leqslant {k}_{t}^{{\prime} 2}\leqslant {k}_{t}^{2}$, the longitudinal contribution to the gluon virtuality is negligible, preserving the no ordering condition of transverse momenta ${k}_{t}^{{\prime} 2}\approx {k}_{t}^{2}$ very strictly. In order to make our calculation simple, without altering the underlying physics, we therefore implant a factor ${\left({k}_{t}^{2}/{k}_{t}^{{\prime} 2}\right)}^{\lambda }$ inside the integrals, particularly with integration limit ${k}_{{T}_{\min }}^{{\prime} 2}\leqslant {k}_{t}^{{\prime} 2}\leqslant {k}_{t}^{2}$. In addition, this removes the infrared divergence of the second improper integral I2 lowering the infrared limit down to ${k}_{0}^{{\prime} 2}$.

Now considering these approximations in (14) and (15) and putting I1 in (15) we obtain$\begin{eqnarray}\begin{array}{rcl}\xi ({k}_{t}^{2}) & = & \displaystyle \frac{{\alpha }_{s}{N}_{c}{k}_{t}^{2}}{\pi }\left[{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}^{{k}_{t}^{2}}\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}{\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }\displaystyle \frac{{k}_{t}^{{\prime} 2}-{k}_{t}^{2}}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right.\\ & & \left.+{\displaystyle \int }_{{k}_{t}^{2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}{\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }\displaystyle \frac{{k}_{t}^{{\prime} 2}-{k}_{t}^{2}}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right]\\ & = & \displaystyle \frac{{\alpha }_{s}{N}_{c}{k}_{t}^{2}}{\pi }\displaystyle \frac{1}{\lambda }\left(2-{k}_{t}^{2\lambda }\right)\approx -\displaystyle \frac{{\alpha }_{s}{N}_{c}}{\pi \lambda }{\left({k}_{t}^{2}\right)}^{\lambda +1},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}\zeta ({k}_{t}^{2}) & = & \displaystyle \frac{{\alpha }_{s}{N}_{c}}{\pi }{k}_{t}^{2}\left[{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}^{\infty }{\left(\displaystyle \frac{{k}_{t}^{2}}{{k}_{t}^{{\prime} 2}}\right)}^{\lambda }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{1}{\left|{k}_{t}^{{\prime} 2}-{k}_{t}^{2}\right|}\right.\\ & & \left.-{\displaystyle \int }_{{k}_{0}^{{\prime} 2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{t}^{{\prime} 2}}{{k}_{t}^{{\prime} 2}}\displaystyle \frac{1}{\sqrt{{k}_{t}^{4}+4{k}_{t}^{{\prime} 4}}}\right]\\ & = & \displaystyle \frac{{\alpha }_{s}{N}_{c}}{\pi }\left[\displaystyle \frac{{k}_{t}^{2\lambda }}{\lambda }-{2}^{2-\tfrac{\lambda }{2}}{\lambda }^{-1}{k}_{t}^{2\lambda }{\left(1-\displaystyle \frac{\sqrt{{k}_{t}^{4}+4}}{{k}_{t}^{2}}\right)}^{\lambda /2}\right.\\ & & \left.\times {}_{2}{F}_{1}-\lambda \mathrm{ln}\left(\displaystyle \frac{{k}_{t}^{2}}{2}+\sqrt{1+\displaystyle \frac{{k}_{t}^{4}}{4}}\right)\right]\\ & \approx & \displaystyle \frac{{\alpha }_{s}{N}_{c}}{\pi }\left(\epsilon +\displaystyle \frac{{\left({k}_{t}^{2}\right)}^{\lambda }}{\lambda }\right),\end{array}\end{eqnarray}$where ${}_{2}{F}_{1}$=${}_{2}{{\rm{F}}}_{1}\left(-\tfrac{\lambda }{2},\tfrac{\lambda }{2};1-\tfrac{\lambda }{2};\tfrac{{k}_{t}^{2}+\sqrt{{k}_{t}^{4}+4}}{2{k}_{t}^{2}}\right)$ is a standard hypergeometric function. We have chosen the infrared cutoff ${k}_{0}^{{\prime} 2}=1\ {\mathrm{GeV}}^{2}$ as this suggested a very consistent results towards HERA DIS data for proton structure function F2 in the [22]. From phenomenological studies we have found that the term with hypergeometric function in (22) becomes irrelevant towards change in ${k}_{t}^{2}$ and tend to a constant value $(\approx -4.79)$. For small enough ${k}_{t}^{2}$, this contribution cannot be overlooked since at this range, the ${k}_{t}^{2\lambda }/\lambda $ contribution itself is small. On the other hand, the logarithmic term contribution in (22) is negligible in comparison to the net contribution for the entire ${k}_{t}^{2}$ domain of study. In consequence, the constant contribution from the hypergeometric term can be treated as a small perturbation ϵ to the dominant term ${k}_{t}^{2\lambda }/\lambda $ . We have performed a nonlinear regression technique to reduce the error to a minimum in determination of the constant perturbation parameter ϵ.

Now we are set to solve the PDE (13). To introduce the method of characteristics, let us recast the variables x and t in terms of two new variables S and τ, such that$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{x}}{{\rm{d}}{S}}=x,\end{eqnarray}$$\begin{eqnarray}\displaystyle \frac{{{\rm{d}}{k}}_{t}^{2}}{{\rm{d}}{S}}=\xi ({k}_{t}^{2}),\end{eqnarray}$which are known as characteristic equations. Figure 2 indicates characteristic curves in the x-${k}_{t}^{2}$ plane. Now putting (23) and (24) in (13) we get$\begin{eqnarray}\displaystyle \frac{{\rm{d}}{f}(S,\tau )}{{\rm{d}}{S}}+\zeta (S,\tau )/2f(S,\tau )=0,\end{eqnarray}$which can be solved as$\begin{eqnarray}f(S,\tau )=f(0,\tau ){{\rm{e}}}^{-{\int }_{0}^{S}\zeta \left(S,\tau \right){\rm{d}}{S}}.\end{eqnarray}$

Figure 2.

New window|Download| PPT slide
Figure 2.Characteristic curves in x-${k}_{t}^{2}$ plane.


For the evolution of x, the gluon distribution function varies with x, while ${k}_{t}^{2}$ remains constant. Hence (23) can be used in (25), the solution of which is yielded by$\begin{eqnarray}f(S,\tau )=f(\tau ){\left(\displaystyle \frac{x}{{x}_{0}}\right)}^{\zeta (S,\tau )/2},\end{eqnarray}$where f(S, τ)=f(τ) for S=0, x=x0, provided x0 is chosen small enough to ensure the validity of the BFKL equation.

Replacing the coordinate system ($S,\tau $) to its original one ($x,{k}_{t}^{2}$), we get the x evolution of the unintegrated gluon distribution as$\begin{eqnarray}f(x,{k}_{t}^{2})=f({x}_{0},{k}_{t}^{2}){\left(\displaystyle \frac{x}{{x}_{0}}\right)}^{\zeta ({k}_{t}^{2})/2}.\end{eqnarray}$Similarly the ${k}_{t}^{2}$ evolution of the unintegrated gluon distribution will be$\begin{eqnarray}f(x,{k}_{t}^{2})=f(x,{k}_{0}^{2}){{\rm{e}}}^{-{\int }_{{k}_{0}^{2}}^{{k}_{t}^{2}}\tfrac{\zeta \left({k}_{t}^{2}\right)}{\xi \left({k}_{t}^{2}\right)}{{\rm{d}}{k}}_{t}^{2}}.\end{eqnarray}$In section 3, we present an analysis on the phenomenological aspect of the solutions for x evolution (28) and ${k}_{t}^{2}$ evolution (29) by picking some appropriate initial boundary condition.

2.2. Prediction for HERA DIS structure functions (F2 and FL)

The KC solutions of BFKL equation (28) and (29) can be deliberately used to predict the structure functions ${F}_{i}(x,{Q}^{2})$ at small x via the factorization theorem [23, 24],$\begin{eqnarray}{F}_{{i}}(x,{Q}^{2})={\int }_{x}^{1}\displaystyle \frac{{{\rm{d}}{x}}^{{\prime} }}{{x}^{{\prime} }}\int \displaystyle \frac{{{\rm{d}}{k}}_{T}^{2}}{{k}_{T}^{4}}f\left(\displaystyle \frac{x}{{x}^{{\prime} }},{k}_{T}^{2}\right){F}_{{i}}^{(0)}({x}^{{\prime} },{k}_{T}^{2},{Q}^{2}),\end{eqnarray}$with i=T, L and $\tfrac{x}{{x}^{{\prime} }}$ is the fractional momentum carried by gluon, which splits into the $q\bar{q}$ pair. The relevant diagram is shown in figure 3. The term ${F}_{i}^{(0)}$ characterizes the quark box as well as crossed box contribution in the photon-gluon fusion process as depicted in the upper part of figure 3. The gluon distribution term $f(x/x^{\prime} ,{k}_{T}^{2})$ in (30) represents the sum of the gluon ladder diagrams in the lower part of figure 3 given by BFKL evolution. The explicit formula for ${F}_{{\rm{i}}}^{(0)}({x}^{{\prime} },{k}_{T}^{2},{Q}^{2})$ can be found in [20]. Accordingly, the complete expression for ${F}_{i}(x,{Q}^{2})$ is yielded by$\begin{eqnarray}\begin{array}{rcl}{F}_{T}(x,{Q}^{2}) & = & 2\displaystyle \sum {e}_{q}^{2}\displaystyle \frac{{Q}^{2}}{4{\pi }^{2}}{\displaystyle \int }_{{k}_{0}^{2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{T}^{2}}{{k}_{T}^{4}}{\displaystyle \int }_{0}^{1}{\rm{d}}\beta \displaystyle \int {{\rm{d}}}^{2}{\kappa }_{T}{\alpha }_{s}({\kappa }_{T})\\ & & \times \left\{[{\beta }^{2}+{\left(1-\beta \right)}^{2}]\left[\displaystyle \frac{{\kappa }_{T}^{2}}{{L}_{1}^{2}}-\displaystyle \frac{{\kappa }_{T}({\kappa }_{T}-{k}_{T})}{{L}_{1}{L}_{2}}\right]\right.\\ & & \left.+\displaystyle \frac{{m}_{q}}{{L}_{1}^{2}}-\displaystyle \frac{{m}_{q}^{2}}{{L}_{1}{L}_{2}}\right\}f\left(\displaystyle \frac{x}{{x}^{{\prime} }},{k}_{T}^{2}\right),\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{F}_{L}({k}_{T}^{2},{Q}^{2})=2\displaystyle \sum {e}_{q}^{2}\displaystyle \frac{{Q}^{4}}{{\pi }^{2}}{\displaystyle \int }_{{k}_{0}^{2}}^{\infty }\displaystyle \frac{{{\rm{d}}{k}}_{T}^{2}}{{k}_{T}^{4}}{\displaystyle \int }_{0}^{1}{\rm{d}}\beta \\ \quad \times \,\displaystyle \int {{\rm{d}}}^{2}{\kappa }_{T}{\alpha }_{s}({\kappa }_{T}){\beta }^{2}{\left(1-\beta \right)}^{2}\left(\displaystyle \frac{1}{{L}_{1}^{2}}-\displaystyle \frac{1}{{L}_{1}{L}_{2}}\right)f\left(\displaystyle \frac{x}{{x}^{{\prime} }},{k}_{T}^{2}\right).\end{array}\end{eqnarray}$where the denominators Li are$\begin{eqnarray*}\begin{array}{rcl}{L}_{1} & = & {\kappa }_{T}^{2}+\beta (1-\beta ){Q}^{2}+{m}_{q}^{2},\\ {L}_{2} & = & {\left({\kappa }_{T}-{k}_{T}\right)}^{2}+\beta (1-\beta ){Q}^{2}+{m}_{q}^{2}.\end{array}\end{eqnarray*}$

Figure 3.

New window|Download| PPT slide
Figure 3.Representation of the factorization formula (30) where gluon couples to a virtual photon through the (a) quark box and (b) crossed box diagrams.


In (31) and (32), mq denotes the quark mass and it is taken to be mq=1.28 GeV for charm quark while massless (mq=0) for light quarks (u, d and s). However, our phenomenology is limited for light quark (m = 0) only.

Note that the LLx gluon contribution as of (31) and (32) is not the only contribution to DIS structure functions. Towards higher x, gluonic contribution becomes weak and non BFKL contributions cannot be overlooked. Therefore for better theoretical estimation of structure functions, we must include some non-BFKL contribution ${F}_{i}^{{BG}}$ on the background [18] in addition to the above small x BFKL contribution. A reasonable choice of ${F}_{i}^{{BG}}$ is to treat the ${F}_{i}^{{BG}}$ evolution as x−0.8 in analogy to the soft pomeron with the intercept αP(0)=1.08 i.e.$\begin{eqnarray}{F}_{{\rm{i}}}^{\mathrm{BG}}(x,{Q}^{2})={F}_{{\rm{i}}}({x}_{0},{Q}^{2}){\left(\displaystyle \frac{x}{{x}_{0}}\right)}^{-0.08}.\end{eqnarray}$Accordingly, the resulting structure function would be ${F}_{i}={F}_{i}^{{BFKL}}+{F}_{i}^{{BG}}$. We have sketched a comparison between our theoretical predictions of structure functions with HERA DIS data in section 3.

3. Results and discussion

Recall the well-known solution of the linear BFKL equation [18]$\begin{eqnarray}f(x,{k}_{t}^{2})=\beta \displaystyle \frac{{x}^{-\lambda }\sqrt{{k}_{t}^{2}}}{\sqrt{\mathrm{ln}\tfrac{1}{x}}}\exp \left(-\displaystyle \frac{{\mathrm{ln}}^{2}({k}_{t}^{2}/{k}_{s}^{2})}{2{\rm{\Omega }}\mathrm{ln}(1/x)}\right),\end{eqnarray}$where $\lambda =\tfrac{3{\alpha }_{s}}{\pi }4\mathrm{ln}2,{\rm{\Omega }}=32.1{\alpha }_{s}$ and the nonperturbative parameter ${k}_{s}^{2}=1\ {\mathrm{GeV}}^{2}$ and the normalization constant β∼0.01 [23]. We take (34) as the input distribution for our solutions of x and ${k}_{t}^{2}$ evolution of KC-improved BFKL equation ((28) and (29) respectively). We have plotted the solution for respective x and ${k}_{t}^{2}$ evolution in figures 4 and 5. Our KC-improved BFKL prediction is contrasted with ordinary BFKL evolution (34) to assess the effect of kinematic constraint in gluon evolution. The x evolution of $f(x,{k}_{t}^{2})$ is shown in figure 4 for four ${k}_{t}^{2}$ values, namely $5\ {\mathrm{GeV}}^{2},35\ {\mathrm{GeV}}^{2},50\ {\mathrm{GeV}}^{2}$ and $100\ {\mathrm{GeV}}^{2}$. The input is taken at higher x value x=10−2 and then evolved down to smaller x upto x=10−6 thereby setting the kinematic range of the evolution ${10}^{-6}\leqslant x\leqslant {10}^{-2}$. We observe the singular ${x}^{-\lambda }$ growth of the gluon distribution in both of the evolutions, however the KC-improved BFKL is found to rise slowly compared to ordinary BFKL evolution towards very small x. The suppression in KC-improved BFKL compared to ordinary BFKL is roughly around 10%–30% at x=10−6 for all ${k}_{t}^{2}$ bins, however it is hard to establish any significant distinction between the two for x≥10−3 regime. The ${k}_{t}^{2}$ evolution is studied for the kinematic range $5\ {\mathrm{GeV}}^{2}\leqslant {k}_{t}^{2}\leqslant {10}^{3}\ {\mathrm{GeV}}^{2}$ corresponding to four different values of x as indicated in figure 5. Both KC-improved BFKL and ordinary BFKL forecast similar kinds of growth, however the evolution is slightly suppressed in the case of KC-improved BFKL. At smaller x bins (x=10−5, 10−6), the distinction between the two evolutions becomes more prominent.

Figure 4.

New window|Download| PPT slide
Figure 4.x evolution of unintegrated gluon distribution $f(x,{k}_{T}^{2})$. Our KC solution of BFKL equation is contrasted with that of original BFKL evolution.


Figure 5.

New window|Download| PPT slide
Figure 5.${k}_{t}^{2}$ evolution of unintegrated gluon distribution $f(x,{k}_{t}^{2})$. Our KC solution of BFKL equation is contrasted with that of original BFKL evolution.


The unintegrated gluon distribution is related to the conventional gluon density or the integrated gluon density ${xg}(x,{Q}^{2})$ with the standard relation,$\begin{eqnarray}{xg}(x,{Q}^{2})={\int }_{0}^{{Q}^{2}}\displaystyle \frac{{\rm{d}}{k}_{T}^{2}}{{k}_{T}^{2}}f(x,{k}_{T}^{2}).\end{eqnarray}$Using (35) we have extracted integrated gluon distribution from our KC solution of the BFKL equation, which is sketched in figures 6 and 7. Our predicted integrated gluon density is compared with that of LHAPDF global parameterization groups NNPDF 3.1sx [11] and CT 14 [12]. Both of the LHAPDF datasets include HERA as well as recent LHC data with high precision PDF sensitive measurements.

Figure 6.

New window|Download| PPT slide
Figure 6.x evolution of integrated gluon distribution xg(x, Q2). Our extracted integrated gluon density from the KC solution of the BFKL equation is contrasted with that of global data fits NNPDF3.1sx and CT14.


Figure 7.

New window|Download| PPT slide
Figure 7.Q2 evolution of integrated gluon distribution xg(x, Q2). Our extracted integrated gluon density from KC solution of the BFKL equation is contrasted with that of global data fits NNPDF3.1sx and CT14.


Our prediction of x evolution of integrated gluon distribution xg(x, Q2) is obtained for two Q2 values, namely 35 GeV2 and 100GeV2 while that of Q2 evolution is obtained for two x values, namely x=10−3 and 10−6. Our theory is roughly in agreement with data fits for the entire kinematic range of x and Q2. However at very small x regimes our theory predicts slightly faster growth than that of the data fits. This is expected, as the BFKL equation account for only gluon splitting and gluon fusion corrections are completely overlooked. To entertain the corrections from gluon fusion at very small x regime, one has to consider nonlinear evolution equations, for instance, the Balitsky–Kovchegov equation [26, 27], which is beyond the scope of this literature.

We have also performed an analysis (figures 8(a)–(b)) to check the sensitivity of the BFKL intercept λ on our KC solution of the BFKL equation. We have sketched both the x and ${k}_{t}^{2}$ evolution for three canonical choices of λ viz. λ=0.4, 0.5 and 0.6 corresponding to three αs values 0.15, 0.19 and 0.23. Our solution seems to be very sensitive towards a small change in λ. An apparent 50% change in λ (0.4 to 0.6) suggests at least around 70%–80% magnitude rise in the gluon distribution $f(x,{k}_{T}^{2})$ for x evolution. However, sensitiveness of λ is comparatively weak in case of ${k}_{t}^{2}$ evolution as it is seen in figure (8). For 50% change in λ (0.4 to 0.6) forecasts approximately around 40%–50% rise in $f(x,{k}_{T}^{2})$ for ${k}_{t}^{2}$ evolution.

Figure 8.

New window|Download| PPT slide
Figure 8.BFKL intercept λ sensitivity of ugd’s $f(x,{k}_{t}^{2})$ in x evolution (left) and ${k}_{t}^{2}$ evolution (right).


The small x dependence of the structure functions F2 and FL is shown in figure 910 for four Q2 bins $5\ {\mathrm{GeV}}^{2},15\ {\mathrm{GeV}}^{2},35\ {\mathrm{GeV}}^{2}$ and $45\ {\mathrm{GeV}}^{2}$. The nonperturbative contribution ${F}_{i}^{{BG}}$ is evaluated by choosing x0 at some high x and then taking ${F}_{i}^{{BG}}({x}_{0},{Q}^{2})$ from data [30], which is also listed in the figure caption. The recent HERA data from H1 collaboration [28, 32] and ZEUS collaboration [29] is taken for comparison. The fixed target data from NMC collaboration [30] and BCDMS collaboration [31] available for x>10−2 is also shown. QCD prediction gives a satisfactory agreement with DIS data for both structure functions F2 and FL. Towards large x (≥10−2) the perturbative contribution is insignificant as it merges with nonperturbative ${F}_{i}^{{BG}}$ contribution, while it becomes visibly important for small x (≤10−3 ). Similarly at x>10−3, the size of the longitudinal structure function, FL is negligibly small, while towards very small x (≤10−3), an eventual growth of FL can be seen. This is attributed to the fact that FL directly probes the gluonic content of the proton, which is dominant at small x.

Figure 9.

New window|Download| PPT slide
Figure 9.Prediction for proton structure function F2. Data is taken from HERA (H1 [28] and ZEUS [29]) as well as fixed target experiment (NMC [30] and BCDMS [31]). The background contribution is given by (33) with ${F}_{2}^{{BG}}({x}_{0}=0.1)\approx $ 0.316, 0.384, 0.391 and 0.406 corresponding to four Q2 values, namely $5\ {\mathrm{GeV}}^{2},15\ {\mathrm{GeV}}^{2},35\ {\mathrm{GeV}}^{2}$ and $45\ {\mathrm{GeV}}^{2}$.


Figure 10.

New window|Download| PPT slide
Figure 10.Prediction for proton structure function FL. Data is taken from HERA H1 [32] and ZEUS [29]. The background contribution is given by (33) with ${F}_{L}^{{BG}}({x}_{0}=0.1)\approx 0.057$, 0.063, 0.071 and 0.073 corresponding to four Q2 values, namely 5 $\ {\mathrm{GeV}}^{2}$, 15 $\ {\mathrm{GeV}}^{2}$, 35 $\ {\mathrm{GeV}}^{2}$ and 45 $\ {\mathrm{GeV}}^{2}$.


Although theoretical predictions are somewhat good enough to comply with HERA data at small and moderate Q2 bins ($5\ {\mathrm{GeV}}^{2},15\ {\mathrm{GeV}}^{2}$ and $35\ {\mathrm{GeV}}^{2}$), however, at large Q2 bin ($45\ {\mathrm{GeV}}^{2}$), the theory seems to overestimate the HERA data for both structure functions, forecasting a strong evolution growth. This is in accordance with our expectation, since BFKL evolution is supposed to be meant for semi-hard probes only, thereby a significant growth can be attributed at large Q2. In [9], an extensive study on QCD prediction to the HERA DIS data has been done, but for the modified BFKL equation, which is a nonlinear evolution equation that takes gluon fusion processes into account. However, in that previous work, no significant contribution from gluon shadowing was observed for DIS observables as even the extreme choice of gluon shadowing under study indicated a suppression of only about 10% or less at x=10−3 for F2 structure function. This motivated us to perform similar studies at the linear level as the analytical solution of non-linear evolution equations usually involves a quite complicated form and also needs a bunch of assumptions. On the other hand, comparatively simpler form with less assumptions make our KC solution of linear BFKL equation more realistic and can be readily used for different analysis at least at current collier energies.

4. Conclusion

In conclusion, we have studied the small x behavior of the gluon distribution particularly in the regime ${10}^{-6}\leqslant x\leqslant {10}^{-2}$ and $5\ {\mathrm{GeV}}^{2}\leqslant {k}_{t}^{2}\leqslant {10}^{3}\ {\mathrm{GeV}}^{2}$. In this small x regime, it is necessary to resum the leading logarithmic $\mathrm{ln}(1/x)$ contribution and thereby the importance of unintegrated gluon distribution $f(x,{k}_{t}^{2})$ comes into play. The resummation of leading logarithmic $\mathrm{ln}(1/x)$ is accomplished by the linear BFKL evolution equation. As a consequence of BFKL multi-Regge kinematics, some higher order effects such as kinematic constraint $\theta ({k}^{2}/z-{k}^{{\prime} 2})$ becomes important, which actually ensures the validity of BFKL equation at small x. The major aim of this literature is to explore the effect of kinematic constraint on the small x gluon evolution. Accordingly, in section 2 we have implemented the kinematic constraint on the original BFKL equation and able to obtain an integro-differential form of KC supplemented BFKL equation. Using Regge factorization and Taylor’s expansion series along with the different consequences of BFKL multi-Regge kinematics, we have able to express the KC-improved BFKL equation into an analytically solvable form. Then we have introduced the method of characteristics to solve the PDE and got an approximate analytical solution for both x and ${k}_{t}^{2}$ evolution. In section 3, we have studied the x and ${k}_{t}^{2}$ dependence of the ugd’s $f(x,{k}_{t}^{2})$ for the kinematic domain ${10}^{-6}\leqslant x\leqslant {10}^{-2}$ and $5\ {\mathrm{GeV}}^{2}\leqslant {k}_{t}^{2}\leqslant {10}^{3}\ {\mathrm{GeV}}^{2}$. Our KC solution of the BFKL equation is contrasted with that of the original BFKL equation and a comparatively slower growth of gluon density towards very small x is observed. We have also extracted integrated gluon density xg(x, Q2) from the ugd’s $f(x,{k}_{t}^{2})$ and drawn a comparison between our theory and global data fits, namely NNPDF3.1sx and CT14. A rough agreement between our theory and data is obtained for the full domain of x and ${k}_{t}^{2}$ under study. We have also sketched the sensitiveness of the BFKL intercept λ in gluon evolution taking three canonical choices of λ, namely 0.4, 0.5 and 0.6. A high and moderate sensitivity of $f(x,{k}_{t}^{2})$ towards the parameter λ is seen for x and ${k}_{t}^{2}$ evolution respectively. Finally, starting from the factorization formula, we have sketched a theoretical prediction for proton structure functions (F2 and FL). For comparison we have taken the high precision DIS data from HERA and a satisfactory agreement is found for both of the structure functions. From these phenomenological studies throughout this literature, we have come to a conclusion that the kinematic constraint effect has a significant impact on small x gluon evolution and should be implemented in any realistic analysis of small x physics.

Acknowledgments

Two of us (P.P. and M.L.) acknowledge the Department of Science and Technology (DST), India (grant DST/INSPIRE Fellowship /2017 /IF160770) and the Council of Scientific and Industrial Research (CSIR), New Delhi (grant 09/796(0064)2016-EMR-I) respectively for the financial assistantship.


Reference By original order
By published year
By cited within times
By Impact factor

Dokshitzer Y L 1977 Zh. Eksp. Teor. Fiz 73 1216 (http://jetp.ac.ru/cgi-bin/dn/e_046_04_0641.pdf)
[Cited within: 1]

Altarelli G Parisi G 1977 Nucl. Phys. B 126 298
DOI:10.1016/0550-3213(77)90384-4

Gribov V Lipatov L 1971 Phys. Lett. B 37 78
DOI:10.1016/0370-2693(71)90576-4

Devee M Baishya R Sarma J 2012 Eur. Phys. J. C 72 2036
DOI:10.1140/epjc/s10052-012-2036-8

Devee M Sarma J 2014 Nucl. Phys. B 885 571
DOI:10.1016/j.nuclphysb.2014.06.005

Baishya R Jamil U Sarma J 2009 Phys. Rev. D 79 034030
DOI:10.1103/PhysRevD.79.034030 [Cited within: 1]

Kuraev E A Lipatov L Fadin V S 1977 Zhurnal Ehksperimentalanoj i Teoreticheskoj Fiziki 72 377 (http://inspirehep.net/record/123995?ln=en)
[Cited within: 2]

Balitsky Y Y 1978 Sov. J. Nucl. Phys. 28 22
[Cited within: 1]

Phukan P Lalung M Sarma J 2019 Eur. Phys. J. C 79 507
DOI:10.1140/epjc/s10052-019-7007-x [Cited within: 2]

Kwieciński J Martin A D Sutton P 1996 Zeitschrift für Physik C Particles and Fields 71 585
DOI:10.1007/BF02907019 [Cited within: 2]

Andersson B Gustafson G Samuelsson J 1996 Nucl. Phys. B 467 443
DOI:10.1016/0550-3213(96)00114-9 [Cited within: 1]

Ball R D et al. 2017 Eur. Phys. J. C 77 663
DOI:10.1140/epjc/s10052-017-5199-5 [Cited within: 2]

Deak M Kutak K Li W Staśto A M 2019 Eur. Phys. J. C 79 647
DOI:10.1140/epjc/s10052-019-7171-z

Dulat S Hou T-J Gao J Guzzi M Huston J Nadolsky P Pumplin J Schmidt C Stump D Yuan C-P 2016 Phys. Rev. D 93 033006
DOI:10.1103/PhysRevD.93.033006 [Cited within: 1]

de Oliveira E Martin A Ryskin M 2014 Eur. Phys. J. C 74 3030
DOI:10.1140/epjc/s10052-014-3030-0 [Cited within: 2]

Fadin V S Lipatov L N 1998 Phys. Lett. B 429 127
DOI:10.1016/S0370-2693(98)00473-0 [Cited within: 1]

Ciafaloni M 1988 Nucl. Phys. B 296 49
DOI:10.1016/0550-3213(88)90380-X [Cited within: 1]

Askew A Kwiecinski J Martin A D Sutton P 1994 Phys. Rev. D 49 4402
DOI:10.1103/PhysRevD.49.4402 [Cited within: 3]

Forshaw J R Harriman P Sutton P 1994 Nucl. Phys. B 416 739
DOI:10.1016/0550-3213(94)90552-5 [Cited within: 1]

Kwiecinski J Martin A D Sutton P 1991 Phys. Rev. D 44 2640
DOI:10.1103/PhysRevD.44.2640 [Cited within: 2]

Levin E Tuchin K 2000 Nucl. Phys. B 573 833
DOI:10.1016/S0550-3213(99)00825-1 [Cited within: 1]

Kwiecinski J Martin A D Stasto A 1997 Phys. Rev. D 56 3991
DOI:10.1103/PhysRevD.56.3991 [Cited within: 1]

Catani S Ciafaloni M Hautmann F 1991 Nucl. Phys. B 366 135
DOI:10.1016/0550-3213(91)90055-3 [Cited within: 2]

Collins J C Ellis R K 1991 Nucl. Phys. B 360 3
DOI:10.1016/0550-3213(91)90288-9 [Cited within: 1]

Ruan J Shen Z Yang J Zhu W 2007 Nucl. Phys. B 760 128
DOI:10.1016/j.nuclphysb.2006.10.020

Balitsky I 1996 Nucl. Phys. B 463 99
DOI:10.1016/0550-3213(95)00638-9 [Cited within: 1]

Kovchegov Y V 1999 Phys. Rev. D 60 034008
DOI:10.1103/PhysRevD.60.034008 [Cited within: 1]

Aaron F et al. (H1 collaboration) 2011 Eur. Phys. J. C 71 1579
DOI:10.1140/epjc/s10052-011-1579-4 [Cited within: 2]

Chekanov S et al. (ZEUS collaboration) 2009 Phys. Lett. B 682 8
DOI:10.1016/j.physletb.2009.10.050 [Cited within: 3]

Amaudruz P et al. 1992 Phys. Lett. B 295 159
DOI:10.1016/0370-2693(92)90106-E [Cited within: 3]

Benvenuti A C et al. 1989 Phys. Lett. B 223 485
DOI:10.1016/0370-2693(89)91637-7 [Cited within: 2]

Andreev V (H1 collaboration) et al. 2014 European Physical Journal: C: Particles and Fields.-Berlin 74 2814
DOI:10.1140/epjc/s10052-014-2814-6 [Cited within: 2]

相关话题/Small phenomenology gluon