删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Novel interaction phenomena of the (3【-逻*辑*与-】plus;1)-dimensional Jimbo【-逻*辑*与-】ndash;Miwa equation

本站小编 Free考研考试/2022-01-02

Xiaomin Wang, Sudao Bilige,1Department of Mathematics, Inner Mongolia University of Technology, Hohhote, 010051, China

First author contact: 1Author to whom any correspondence should be addressed.
Received:2019-10-13Revised:2020-01-7Accepted:2020-01-7Online:2020-03-20
Fund supported:National Natural Science Foundation of China.11661060
Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region.NJYT-20-A06
Natural Science Foundation of Inner Mongolia Autonomous Region of China.2018LH01013


Abstract
In this paper, we give the general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. The general interaction solution contains the classical interaction solution. As an example, by using the generalized bilinear method and symbolic computation by using Maple software, novel interaction solutions under certain constraints of the (3+1)-dimensional Jimbo–Miwa equation are obtained. Via three-dimensional plots, contour plots and density plots with the help of Maple, the physical characteristics and structures of these waves are described very well. These solutions greatly enrich the exact solutions to the (3+1)-dimensional Jimbo–Miwa equation found in the existing literature.
Keywords: generalized bilinear equation;interaction solution;dynamical characteristics;(3+1)-dimensional Jimbo–Miwa equation;symbolic computation


PDF (740KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Xiaomin Wang, Sudao Bilige. Novel interaction phenomena of the (3+1)-dimensional Jimbo–Miwa equation*. Communications in Theoretical Physics, 2020, 72(4): 045001- doi:10.1088/1572-9494/ab690c

1. Introduction

In recent years, nonlinear partial differential equations have been widely applied to many natural systems, for instance, in biology, chaos theory and ecology. Moreover, the exact analytical solutions to nonlinear partial differential equations play a key role in several research directions, for example, descriptions of different kinds of waves as an initial condition for simulation processes. Thus, a great deal of attention is paid to this important research area. The various exact solutions to nonlinear evolution equations (NLEEs) can be obtained via some effective methods, such as solitons [16], rogue waves [7, 8], breathers [9], periodic waves [1013], optical solutions [14], lump solutions [15], etc. Recently, based on the Hirota bilinear method, Ma and Zhou introduced a new way to get the lump solutions to NLEEs by using symbolic computation and provided theoretical proof [16, 17]. By using this method, researchers have successfully obtained the lump solutions, lump-type solution and interaction solutions of NLEEs [1850].

In the present paper, we will give the general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. The general interaction contains the classical interaction solution, such as the lump–kink solution and the lump–soliton solution. The rest of the paper is organized as follows. In section 2, we will give the bilinear form and general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. In section 3, by using symbolic computation Maple, we will obtain the novel interaction solutions between the high-order lump-type solution and other functions. In section 4, via three-dimensional plots, contour plots and density plots with the help of Maple, the physical characteristics and structures of these waves are described very well. In section 5, a few of the conclusions and outlook will be given.

2. General interaction solutions to the (3+1)-dimensional Jimbo–Miwa equation

We consider the (3+1)-dimensional Jimbo–Miwa equation [51]$\begin{eqnarray}{u}_{{xxxy}}+3{u}_{y}{u}_{{xx}}+3{u}_{x}{u}_{{xy}}+2{u}_{{yt}}-3{u}_{{xz}}=0.\end{eqnarray}$Equation (1) is the second equation in the well-known Kadomtsev–Petviashvili hierarchy of integrable systems [51, 52], which is used to describe certain interesting (3+1)-dimensional waves in physics. Although Equation (1) is non-integrable, the exact solutions to the Jimbo–Miwa equation have been investigated by using various methods [53, 54]. Recently, researchers studied the solitary wave solutions to Equation (1) in [36]. Based on the bilinear method, we obtained several interaction solutions and the periodic lump wave solutions for Equation (1) [12, 13]. The classes of lump solutions, lump-type solutions, general lump-type solutions and interaction solutions for Equation (1) were presented in [2430].

2.1. Bilinear form

Under the Cole–Hopf transformation:$\begin{eqnarray}u(x,y,z,t)=2{\left[\mathrm{ln}f(x,y,z,t)\right]}_{x},\end{eqnarray}$Equation (1) becomes the generalized bilinear equation$\begin{eqnarray}{{\rm{G}}{\rm{B}}}_{JM}(f):=({D}_{p,x}^{3}{D}_{p,y}+2{D}_{p,y}{D}_{p,t}-3{D}_{p,x}{D}_{p,z})f\cdot f\,=\,0,\end{eqnarray}$where p is an arbitrarily natural number, often a prime number. D is a generalized bilinear differential operator as follows [55],$\begin{eqnarray}\begin{array}{rcl}{D}_{p,{x}_{1}}^{m}{D}_{p,{x}_{2}}^{n}f\cdot f & = & {\left({\partial }_{{x}_{1}}+{\alpha }_{p}{\partial }_{{x}_{1}^{\prime} }\right)}^{m}{\left({\partial }_{{x}_{2}}+{\alpha }_{p}{\partial }_{{x}_{2}^{\prime} }\right)}^{n}f({x}_{1},{x}_{2})\\ & & \times \,f({x}_{1}^{\prime} ,{x}_{2}^{\prime} ){| }_{{x}_{1}^{\prime} ={x}_{1},{x}_{2}^{\prime} ={x}_{2}}\\ & = & \sum _{i=0}^{m}\sum _{j=0}^{n}\left(\displaystyle \genfrac{}{}{0em}{}{m}{i}\right)\left(\displaystyle \genfrac{}{}{0em}{}{n}{j}\right){\alpha }_{p}^{i}{\alpha }_{p}^{j}\\ & & \times \displaystyle \frac{{\partial }^{m+n-i-j}f({x}_{1},{x}_{2})}{\partial {x}_{1}^{m-i}\partial {x}_{2}^{n-j}}\displaystyle \frac{\partial {x}^{i+j}f({x}_{1},{x}_{2})}{\partial {x}_{1}^{i}\partial {x}_{2}^{j}},\end{array}\end{eqnarray}$where $m,n\geqslant 0,{\alpha }_{p}^{s}={\left(-1\right)}^{{r}_{p}(s)}$, if $s\equiv {r}_{p}(s)$ mod p.

When taking p=3, we can obtain the generalized bilinear Jimbo–Miwa equation$\begin{eqnarray}\begin{array}{rcl}{\mathrm{GB}}_{{JM}}(f) & := & ({D}_{3,x}^{3}{D}_{3,y}+2{D}_{3,y}{D}_{3,t}-3{D}_{3,x}{D}_{3,z})f\cdot f\\ & = & 2[3{f}_{{xx}}{f}_{{xy}}+2({f}_{{yt}}f-{f}_{y}{f}_{t})\\ & & +3({f}_{x}{f}_{z}-{f}_{{xz}}f)]=0.\end{array}\end{eqnarray}$

By using transformation (2), Equation (5) is transformed into the following form$\begin{eqnarray}\begin{array}{rcl}{\mathrm{GP}}_{{JM}}(u) & := & \displaystyle \frac{9}{8}{u}^{2}{u}_{x}v+\displaystyle \frac{3}{8}{u}^{3}{u}_{y}+\displaystyle \frac{3}{4}{{uvu}}_{{xx}}+\displaystyle \frac{3}{4}{u}_{x}^{2}v\\ & & +\displaystyle \frac{3}{4}{u}^{2}{u}_{{xy}}+\displaystyle \frac{9}{4}{{uu}}_{x}{u}_{y}\\ & & +\displaystyle \frac{3}{2}{u}_{{xx}}{u}_{y}+\displaystyle \frac{3}{2}{u}_{x}{u}_{{xy}}+2{u}_{{yt}}-3{u}_{{xz}}=0,\end{array}\end{eqnarray}$where uy = vx. Transformation (2) is also a characteristic one in establishing Bell polynomial theories of soliton equations [56], and an accurate relation is$\begin{eqnarray}{\mathrm{GP}}_{{JM}}(u)={\left[\displaystyle \frac{{\mathrm{GB}}_{{JM}}(f)}{{f}^{2}}\right]}_{x}.\end{eqnarray}$Hence, if f solves generalized bilinear Jimbo–Miwa Equation (5), Jimbo–Miwa Equation (6) will be solved.

2.2. General interaction solution

In order to obtain the general interaction solution, we take its main steps as follows:

Step 1. By using the transformation (2), Equation (1) is transformed into generalized bilinear equation (5).

Step 2. To search for general interaction solutions of Equation (1), we suppose that generalized bilinear Jimbo–Miwa equation (5) has the following solution:$\begin{eqnarray}f={a}_{0}+\sum _{i\,=\,1}^{N}{\xi }_{i}^{2{n}_{i}}+\sum _{j\,=\,1}^{M}{m}_{j}{g}_{j}({\eta }_{j}),\end{eqnarray}$where$\begin{eqnarray}{\xi }_{i}={a}_{i0}+\sum _{k\,=\,1}^{4}{a}_{{ik}}{x}_{k},{\eta }_{j}={b}_{j0}+\sum _{k\,=\,1}^{4}{b}_{{jk}}{x}_{k},\end{eqnarray}$where ${a}_{0},\,{a}_{{ik}},\,{b}_{{jk}},\,{m}_{j}\ (i\,=\,1,\cdots ,\,N;j\,=\,1,\cdots ,\,M;k=0\,,1,\cdots ,\,4)$ are arbitrary real constants, and x1=x, x2=y, x3=z, x4=t.

Step 3. By substituting (8), (9) into Equation (5) and collecting all terms with the same order of ${x}_{i},{g}_{j}({\eta }_{j}),{g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $ together, the left-hand side of Equation (3) is converted into another polynomial in ${x}_{i},{g}_{j}({\eta }_{j}),{g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $. Equating each coefficient of these different power terms to zero yields a set of nonlinear algebraic equations for a0, aij, bjk, mj. With the aid of Maple, we solve above nonlinear algebraic equations.

Step 4. By substituting ${a}_{0},{a}_{{ij}},{b}_{{jk}},{m}_{j}$ into (8) and using bilinear transformation (2), we can obtain the general interaction solution (8) of Equation (1).

When choosing ni=1, N=2, M=1 and gj(ηj)=eηj or gj(ηj)=$\cosh $(ηj), the general interaction solution (8) is reduced to the classical interaction solution, such as the lump–kink solution and the lump–soliton solution [2629, 31, 36, 37, 4548].

When choosing ni=1, N=2, M=1 and ${g}_{j}({\eta }_{j})=\cos {\eta }_{j}$ or ${g}_{j}({\eta }_{j})={c}_{1}{{\rm{e}}}^{{\eta }_{j}}+{c}_{2}{{\rm{e}}}^{-{\eta }_{j}}$ or ${g}_{j}({\eta }_{j})=\sinh ({\eta }_{j})$ or ${g}_{j}({\eta }_{j})=\sin ({\eta }_{j})$, we obtain the interaction solutions of [31, 32, 36, 50] respectively.

When mj=0, the general interaction solution (8) is reduced to the general lump-type solution which contains the lump solution, the general lump solution, high-order lump solutions, the lump-type solution, etc [1850].

In step 3, the connection between gj(ηj) and ${g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $ must be considered when we get each coefficient of different power terms to ${g}_{j}({\eta }_{j}),{g}_{j}^{{\prime} }({\eta }_{j}),{g}_{j}^{{\prime\prime} }({\eta }_{j}),\ldots $.

3. Novel interaction solutions

In the section, we will search for novel interaction solutions between the high-order lump-type solution and other functions of the (3+1)-dimensional Jimbo–Miwa equation.

In order to obtain the interaction solution between the high-order lump-type solution and the double-exponential function, the trigonometric function and the hyperbolic function of the (3+1)-dimensional Jimbo–Miwa equation (1), we suppose$\begin{eqnarray}N=3,{n}_{1}=2,{n}_{2}=1,{n}_{3}=1,\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}M & = & 4,{g}_{1}({\eta }_{1})={{\rm{e}}}^{{\eta }_{1}},{g}_{2}({\eta }_{2})={{\rm{e}}}^{-{\eta }_{2}},\\ {g}_{3}({\eta }_{3}) & = & \cos {\eta }_{3},{g}_{4}({\eta }_{4})=\cosh {\eta }_{4}.\end{array}\end{eqnarray}$The interaction solution to the generalized bilinear equation (5) is written in the following form$\begin{eqnarray}\begin{array}{rcl}f & = & {a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{2}{{\rm{e}}}^{-{\eta }_{2}}\\ & & +{m}_{3}\cos {\eta }_{3}+{m}_{4}\cosh {\eta }_{4},\end{array}\end{eqnarray}$where ${\xi }_{i}={a}_{i0}+{a}_{i1}x+{a}_{i2}y+{a}_{i3}z+{a}_{i4}t$ (i=1, 2, 3), ${\eta }_{j}={b}_{j0}+{b}_{j1}x$ + ${b}_{j2}y+{b}_{j3}z$ + ${b}_{j4}t$ (j=1, 2, 3, 4).

By substituting (12) into Equation (5), collecting all terms with the same order of $x,y,z,t,{{\rm{e}}}^{{\eta }_{1}},{{\rm{e}}}^{-{\eta }_{2}},\cos {\eta }_{3},\sin {\eta }_{3},\cosh {\eta }_{4},$ $\sinh {\eta }_{4}$ together, the left-hand side of Equation (5) is converted into another polynomial in $x,y,z,t,{{\rm{e}}}^{{\eta }_{1}},{{\rm{e}}}^{-{\eta }_{2}},\cos {\eta }_{3},\sin {\eta }_{3},$ $\cosh {\eta }_{4},\sinh {\eta }_{4}$. Equating each coefficient of these different power terms to zero yields a set of nonlinear algebraic equations for a0, aij, bjk, mj.

Solving the algebraic equations by using Maple yields the following sets of solutions.

I. Between lumps and three-wave solutions:

When ${m}_{2}={m}_{3}={m}_{4}={m}_{1}\ne 0,{\eta }_{2}={\eta }_{3}={\eta }_{1}$ in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and three-wave solutions $f\,={a}_{0}\,+\,{\xi }_{1}^{4}\,+\,{\xi }_{2}^{2}\,+\,{\xi }_{3}^{2}\,+\,{m}_{1}{{\rm{e}}}^{{\eta }_{1}}\,+\,{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}\,+\,{m}_{1}\cos {\eta }_{1}\,+\,{m}_{1}\cosh {\eta }_{4}$.$\begin{eqnarray}\begin{array}{r}\begin{array}{rcl}{\rm{C}}{\rm{a}}{\rm{s}}{\rm{e}}\,1.1:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{21}},{a}_{14}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=0,\\ {a}_{33} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{21}},{a}_{34}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{{a}_{24}{b}_{11}}{{a}_{21}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}=\displaystyle \frac{{a}_{24}{b}_{41}}{{a}_{21}}.\,({a}_{21}\ne 0)\end{array}\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.2:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\ .\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.3:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=-\displaystyle \frac{2{a}_{12}{a}_{32}{a}_{34}}{3{a}_{13}{a}_{22}},\\ {a}_{23} & = & \displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},{a}_{24}=-\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.4:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}\,=\,\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},\\ {a}_{33} & = & \displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}}.\,({a}_{22}{a}_{31}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.5:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=0,\\ {a}_{23} & = & \displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},{a}_{24}=0,\\ {a}_{30} & = & \displaystyle \frac{{a}_{12}{a}_{20}{a}_{33}}{{a}_{13}{a}_{22}},{a}_{31}=0,{a}_{32}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{13}},{a}_{34}=0,\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},\\ {b}_{42} & = & 0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{Case}}\ 1.6:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & \displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=0,\\ {b}_{13} & = & \displaystyle \frac{2{a}_{34}{b}_{12}}{3{a}_{31}},{b}_{14}=0,\\ {b}_{41} & = & 0,{b}_{43}=\displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}},{b}_{44}=0.({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 1.7:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}={b}_{14}\ .\ ({a}_{13}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 1.8:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{31} & = & 0,{a}_{33}=\displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{a}_{34}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\ .\ ({a}_{12}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 1.9:{a}_{11} & = & 0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{24}=0,{a}_{32}=0,\\ {a}_{33} & = & 0,{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}},({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$where other parameters are arbitrary real constants.

II. Between lumps and breather solutions:

When ${\eta }_{2}={\eta }_{1},{m}_{3}={m}_{2}={m}_{1}\ne 0,{m}_{4}=0$ in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and the breather solutions $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}+{m}_{1}\cos {\eta }_{3}$.$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.1:{a}_{12} & = & 0,{a}_{13}=0,\\ {a}_{14} & = & \displaystyle \frac{3{a}_{11}{a}_{33}}{2{a}_{32}},{a}_{21}\,=\,\displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=0,{a}_{34}=0,\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{b}_{12} & = & 0,{b}_{13}=0,{b}_{14}=\displaystyle \frac{3{a}_{33}{b}_{11}}{2{a}_{32}},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{33}{b}_{31}}{2{a}_{32}}.\ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.2:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},\\ {a}_{14} & = & 0,{a}_{21}=0,{a}_{22}=\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},\\ {a}_{24} & = & 0,{a}_{32}=0,{a}_{33}=0,{b}_{11}=0,\\ {b}_{13} & = & \displaystyle \frac{2{a}_{34}{b}_{12}}{3{a}_{31}},\\ {b}_{14} & = & 0,{b}_{31}=0,{b}_{32}={b}_{12},\\ {b}_{33} & = & \displaystyle \frac{2{a}_{34}{b}_{12}}{3{a}_{31}},{b}_{34}=0.({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.3:{a}_{11} & = & 0,{a}_{14}=0,{a}_{21}\,=\,\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},{a}_{32}=0,{a}_{33}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},\\ {b}_{31} & = & {b}_{11},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.4:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{21}},\\ {a}_{14} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{31}=0,\\ {a}_{33} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{21}},{a}_{34}=0,{b}_{12}=0,\\ {b}_{13} & = & 0,{b}_{14}=\displaystyle \frac{{a}_{24}{b}_{11}}{{a}_{21}},\\ {b}_{31} & = & {b}_{11},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{{a}_{24}{b}_{11}}{{a}_{21}}\ .\ ({a}_{21}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.5:{a}_{11} & = & 0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}\,=\,0,{a}_{21}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{24}\,=\,0,{a}_{32}=0,\\ {a}_{33} & = & 0,{b}_{12}\,=\,0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{31}\,=\,{b}_{11},{b}_{32}=0,\\ {b}_{33} & = & 0,{b}_{34}=\displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}}\,\cdot \,({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 2.6:{a}_{11} & = & 0,{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{31} & = & 0,{a}_{33}=\displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},\\ {a}_{34} & = & 0,{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},{b}_{31}={b}_{11},{b}_{32}=0,\\ {b}_{33} & = & 0,{b}_{34}=\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}},\ ({a}_{12}\ne 0)\end{array}\end{eqnarray}$where other parameters are arbitrary real constants.

III. Between lumps and solitary wave solutions:

When ${\eta }_{2}={\eta }_{1},{m}_{4}={m}_{2}={m}_{1}\ne 0,{m}_{3}=0$ in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and solitary wave solutions $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}+{m}_{1}\cosh {\eta }_{4}$.$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.1:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{21}},{a}_{14}=0,\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=0,{a}_{33}=\displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{21}},\\ {a}_{34} & = & 0,{b}_{11}=\displaystyle \frac{{a}_{21}{b}_{14}}{{a}_{24}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{{a}_{21}{b}_{14}}{{a}_{24}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}={b}_{14}.\ ({a}_{21}{a}_{24}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{2{a}_{12}{b}_{14}}{3{a}_{13}},\\ {b}_{42} & = & 0,{b}_{43}=0,{b}_{44}={b}_{14}.\ ({a}_{13}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.3:{a}_{11} & = & 0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},\\ {a}_{33} & = & \displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},{b}_{11}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},{b}_{42}\,=\,0,\\ {b}_{43} & = & 0,{b}_{44}={b}_{14}.({a}_{22}{a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.4:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{11}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},\\ {b}_{12} & = & 0,{b}_{13}=0,{b}_{41}=\displaystyle \frac{{a}_{31}{b}_{14}}{{a}_{34}},\\ {b}_{42} & = & 0,{b}_{43}=0,{b}_{44}={b}_{14}.\ ({a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 3.5:{a}_{11} & = & 0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{12}=0,{b}_{13}=0,\\ {b}_{14} & = & \displaystyle \frac{{a}_{34}{b}_{11}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}},\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$where other parameters are arbitrary real constants.

In addition to the above results in Case3.1–Case3.5, we can also get the same solutions as in Cases1.1, 1.2, 1.6, 1.8 and the special results of Cases1.3, 1.4, 1.5 when b11=b41, respectively.

IV. Between lumps and cos–cosh solitary wave solutions:

When mi=0(i=1,2), m4=m3 in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and cos–cosh solitary wave solutions $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{3}\cos {\eta }_{3}+{m}_{3}\cosh {\eta }_{4}$.$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 4.1:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},\\ {a}_{14} & = & 0,{a}_{21}=0,{a}_{22}=\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},\\ {a}_{24} & = & 0,{a}_{32}=0,{a}_{33}=0,\\ {b}_{31} & = & 0,{b}_{33}=\displaystyle \frac{2{a}_{34}{b}_{32}}{3{a}_{31}},{b}_{34}=0,{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}},{b}_{44}=0\ .\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 4.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=0,{a}_{34}=0,\\ {b}_{32} & = & 0,{b}_{33}=0,{b}_{34}=\displaystyle \frac{3{a}_{33}{b}_{31}}{2{a}_{32}},\\ {b}_{42} & = & 0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{33}{b}_{41}}{2{a}_{32}}.\ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 4.3:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & 0,{a}_{22}=0,{a}_{23}=0,{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{{a}_{34}{b}_{31}}{{a}_{31}},{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}},\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$where other parameters are arbitrary real constants.

In addition to the above results in Cases4.1–4.3, we can also get the special results of Cases1.2, 1.3, 1.4(b41=b31) and 1.9 when η3=η1, a10=0, respectively.

V. Lump–soliton solutions between lumps and solitary wave solution:

When mi=0(i=1, 2, 3) in (12), solution (12) represents the lump–soliton solutions between the high-order lump-type solution and the solitary wave solution $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{4}\cosh {\eta }_{4}$.$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.1:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{22} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},{a}_{23}=-\displaystyle \frac{{a}_{31}{a}_{33}}{{a}_{21}},\\ {a}_{24} & = & \displaystyle \frac{3{a}_{21}{a}_{33}}{2{a}_{32}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{31}}{{a}_{21}},\\ {a}_{34} & = & \displaystyle \frac{3{a}_{31}{a}_{33}}{2{a}_{32}},{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{{a}_{33}{b}_{42}}{{a}_{32}},{b}_{44}=0.\ ({a}_{21}{a}_{32}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{34}},\\ {a}_{14} & = & 0,{a}_{21}=-\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},{a}_{33}=\displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},\\ {b}_{42} & = & 0,{b}_{43}=0,{b}_{44}=\displaystyle \frac{{a}_{34}{b}_{41}}{{a}_{31}}\ .\ ({a}_{22}{a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.3:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=-\displaystyle \frac{2{a}_{12}{a}_{32}{a}_{34}}{3{a}_{13}{a}_{22}},\\ {a}_{23} & = & \displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},{a}_{24}=-\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},{a}_{33}=\displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{b}_{42}=0,\\ {b}_{43} & = & 0,{b}_{44}=\displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\ .\ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.4:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=-\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},\\ {a}_{23} & = & -\displaystyle \frac{{a}_{13}{a}_{31}{a}_{32}}{{a}_{12}{a}_{21}},{a}_{24}=\displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{a}_{34}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{12}},{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{{a}_{13}{b}_{42}}{{a}_{12}},{b}_{44}=0\ .\ ({a}_{12}{a}_{21}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.5:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=0,{a}_{23}=0,\\ {a}_{24} & = & \displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},{a}_{30}=\displaystyle \frac{2{a}_{12}{a}_{20}{a}_{34}}{3{a}_{13}{a}_{21}},\\ {a}_{31} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},{a}_{32}=0,{a}_{33}=0,{b}_{41}=0,\\ {b}_{43} & = & \displaystyle \frac{{a}_{13}{b}_{42}}{{a}_{12}},{b}_{44}=0.\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.6:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=0,{a}_{34}=0,{b}_{42}\,=\,0,\\ {b}_{43} & = & 0,{b}_{44}=\displaystyle \frac{3{a}_{33}{b}_{41}}{2{a}_{32}}\,\cdot \ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.7:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{42}=0,{b}_{43}=0,\\ {b}_{44} & = & \displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}\,\cdot \ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 5.8:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},\\ {a}_{14} & = & 0,{a}_{21}=0,{a}_{22}=\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},\\ {a}_{24} & = & 0,{a}_{32}=0,{a}_{33}=0,{b}_{41}\,=\,0,\\ {b}_{43} & = & \displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}},{b}_{44}=0,\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$where other parameters are arbitrary real constants.

VI. Between lumps and cos periodic wave solutions:

When mi=0(i=1,2,4) in (12), solution (12) represents the interaction solutions between the high-order lump-type solution and the cos periodic wave solutions $f={a}_{0}+{\xi }_{1}^{4}\,+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{3}\cos {\eta }_{3}$.$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.1:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{22} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},{a}_{23}=-\displaystyle \frac{{a}_{31}{a}_{33}}{{a}_{21}},\\ {a}_{24} & = & \displaystyle \frac{3{a}_{21}{a}_{33}}{2{a}_{32}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{31}}{{a}_{21}},{a}_{34}=\displaystyle \frac{3{a}_{31}{a}_{33}}{2{a}_{32}},\\ {b}_{31} & = & 0,{b}_{33}=\displaystyle \frac{{a}_{33}{b}_{32}}{{a}_{32}},{b}_{34}=0.\ ({a}_{21}{a}_{32}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.2:{a}_{10} & = & 0,{a}_{11}=0,{a}_{12}=\displaystyle \frac{3{a}_{31}{a}_{13}}{2{a}_{34}},{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{22}},{a}_{23}=\displaystyle \frac{2{a}_{22}{a}_{34}}{3{a}_{31}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{30}=\displaystyle \frac{{a}_{20}{a}_{32}}{{a}_{22}},{a}_{33}=\displaystyle \frac{2{a}_{32}{a}_{34}}{3{a}_{31}},\\ {b}_{32} & = & 0,{b}_{33}=0,{b}_{34}=\displaystyle \frac{{a}_{34}{b}_{31}}{{a}_{31}}\,\cdot \ ({a}_{22}{a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.3:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,\\ {a}_{21} & = & -\displaystyle \frac{2{a}_{12}{a}_{32}{a}_{34}}{3{a}_{13}{a}_{22}},{a}_{23}\,=\,\displaystyle \frac{{a}_{13}{a}_{22}}{{a}_{12}},\\ {a}_{24} & = & -\displaystyle \frac{{a}_{32}{a}_{34}}{{a}_{22}},{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{b}_{32}=0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{13}{b}_{31}}{2{a}_{12}}\,\cdot \ ({a}_{12}{a}_{13}{a}_{22}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.4:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=-\displaystyle \frac{{a}_{31}{a}_{32}}{{a}_{21}},\\ {a}_{23} & = & -\displaystyle \frac{{a}_{13}{a}_{31}{a}_{32}}{{a}_{12}{a}_{21}},{a}_{24}=\displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},\\ {a}_{33} & = & \displaystyle \frac{{a}_{13}{a}_{32}}{{a}_{12}},{a}_{34}=\displaystyle \frac{3{a}_{13}{a}_{31}}{2{a}_{12}},{b}_{31}=0,\\ {b}_{33} & = & \displaystyle \frac{{a}_{13}{b}_{32}}{{a}_{12}},{b}_{34}=0.\ ({a}_{12}{a}_{21}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.5:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{24}=\displaystyle \frac{3{a}_{13}{a}_{21}}{2{a}_{12}},\\ {a}_{30} & = & \displaystyle \frac{2{a}_{12}{a}_{20}{a}_{34}}{3{a}_{13}{a}_{21}},{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{31}=0,\\ {b}_{33} & = & \displaystyle \frac{{a}_{13}{b}_{32}}{{a}_{12}},{b}_{34}=0.\ ({a}_{12}{a}_{13}{a}_{21}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.6:{a}_{10} & = & 0,{a}_{11}=0,\\ {a}_{13} & = & \displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}},{a}_{14}=0,{a}_{21}=0,\\ {a}_{22} & = & \displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}},{a}_{24}=0,\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{31}=0,\\ {b}_{33} & = & \displaystyle \frac{2{a}_{34}{b}_{32}}{3{a}_{31}},{b}_{34}=0.\ ({a}_{31}{a}_{34}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.7:{a}_{10} & = & 0,{a}_{11}=0,{a}_{14}=0,{a}_{21}=\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}},\\ {a}_{22} & = & 0,{a}_{23}=0,{a}_{31}=\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}},\\ {a}_{32} & = & 0,{a}_{33}=0,{b}_{32}\,=\,0,{b}_{33}=0,\\ {b}_{34} & = & \displaystyle \frac{3{a}_{13}{b}_{31}}{2{a}_{12}}.\ ({a}_{12}{a}_{13}\ne 0)\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\rm{C}}{\rm{ase}}\ 6.8:{a}_{10} & = & 0,{a}_{11}=0,{a}_{13}=\displaystyle \frac{{a}_{12}{a}_{33}}{{a}_{32}},{a}_{14}=0,\\ {a}_{21} & = & \displaystyle \frac{2{a}_{24}{a}_{32}}{3{a}_{33}},{a}_{22}=0,\\ {a}_{23} & = & 0,{a}_{31}=0,{a}_{34}=0,\\ {b}_{32} & = & 0,{b}_{33}=0,{b}_{34}=\displaystyle \frac{3{a}_{33}{b}_{31}}{2{a}_{32}},\ ({a}_{32}{a}_{33}\ne 0)\end{array}\end{eqnarray}$where other parameters are arbitrary real constants.

These sets of solutions for the parameters generate 33 classes of combination solutions ${f}_{i},1\leqslant i\leqslant 33$ to the generalized bilinear Jimbo–Miwa equation (5), and then the resulting combination solutions present 33 classes of interaction solutions ${u}_{i},1\leqslant i\leqslant 33$ to Equation (1) under transformation (2). Therefore, various kinds of interaction solutions could be constructed explicitly this way.

It is interesting that we can obtain the same solutions to Case 1.1–1.9 when ${g}_{3}({\eta }_{3})=\sin {\eta }_{3},{g}_{4}({\eta }_{4})\,=\sinh {\eta }_{4}$. Due to the lack of space, we omit the expression of interaction solution between the high-order lump-type solution and the periodic cross-kink wave solutions, namely $f={a}_{0}+{\xi }_{1}^{4}+{\xi }_{2}^{2}+{\xi }_{3}^{2}+{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{2}{{\rm{e}}}^{-{\eta }_{2}}+{m}_{3}\sin {\eta }_{3}\,+{m}_{4}\sinh {\eta }_{4}$.

4. Dynamical characteristics

In this section, to analyze the dynamical characteristics of the interaction solutions, we plot various three-dimensional, contour and density plots for the (3+1)-dimensional Jimbo–Miwa equation.

4.1. Three-dimensional and contour plots of the interaction solutions to Case 1.2

As an example, if we substitute the coefficient of Case 1.2 into (12), we can get f1 as follows:$\begin{eqnarray}\begin{array}{rcl}{f}_{1} & = & {a}_{0}+{\left({a}_{10}+{a}_{12}y+{a}_{13}z\right)}^{4}\\ & & +{\left({a}_{20}+\displaystyle \frac{2{a}_{12}{a}_{24}}{3{a}_{13}}x+{a}_{24}t\right)}^{2}\\ & & +{\left({a}_{30}+\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{13}}x+{a}_{34}t\right)}^{2}\\ & & +{m}_{1}{{\rm{e}}}^{{\eta }_{1}}+{m}_{1}{{\rm{e}}}^{-{\eta }_{1}}+{m}_{1}\cos {\eta }_{1}+{m}_{1}\cosh {\eta }_{4},\end{array}\end{eqnarray}$where ${a}_{0},{a}_{10},{a}_{12},{a}_{13}$, ${a}_{20},{a}_{24},{a}_{30},{a}_{34}$, ${b}_{10},{b}_{11},{b}_{40},{b}_{41}$, ${m}_{1}({m}_{1}{a}_{12}{a}_{13}\ne 0)$ are arbitrary real constants, and ${\eta }_{1}\,={b}_{10}+{b}_{11}x+\displaystyle \frac{3{a}_{13}{b}_{11}}{2{a}_{12}}t$, ${\eta }_{4}={b}_{40}+{b}_{41}x+\displaystyle \frac{3{a}_{13}{b}_{41}}{2{a}_{12}}t$.

The function f1 is well defined, positive, analytical and guarantees the localization of u in all directions in the (x, y)-plane. The interaction solution to the (3+1)-dimensional Jimbo–Miwa Equation (1) can be directly obtained via transformation (2)$\begin{eqnarray}u(x,y,z,t)=\displaystyle \frac{2{f}_{{ix}}(x,y,z,t)}{{f}_{i}(x,y,z,t)},\end{eqnarray}$where fi(x, y, z, t) is given in (53).

We choose the following parameters to illustrate the interaction solution (54) between the high-order lump-type solution and the three-wave solutions to the (3+1)-dimensional Jimbo–Miwa equation (1),$\begin{eqnarray}\begin{array}{rcl}{a}_{0} & = & 3,{a}_{10}=6,{a}_{12}=10,{a}_{13}=1.5,{a}_{20}=2,\\ {a}_{24} & = & 5,{a}_{30}=2,{a}_{34}=5,\\ {b}_{10} & = & 1,{b}_{11}=3,{b}_{40}=1,{b}_{41}=3,{m}_{1}=1,z=y.\end{array}\end{eqnarray}$

The physical properties and structures for interaction solution (54) are shown in figure 1. It shows the three-dimensional dynamic graphs and contour plots in the (x, y)-plane when $t=-60,-20,-10,0,10,20,40,60$ respectively. The three-dimensional graphs reflect the localized structures. We can see that the high-order lump-type wave, double exponential function, trigonometric function and hyperbolic function waves react with each other and keep moving forward.

Figure 1.

New window|Download| PPT slide
Figure 1.Three-dimensional plots and contour plots of the wave with the parameters (55) at times t=−60,−20,−10,0,10,20,40,60.


The wave consists of two parts, including a high-order lump-type wave and an other functions wave (double-exponential function, trigonometric function and hyperbolic function). The lump wave moves in one direction to the other with the variable t. The amplitude of the lump changes with the variable t, and especially when t=0, the energy and amplitude of the lump–soliton reaches the maximum. This phenomenon is very strange and analogous to rogue waves. The process of interaction changes the amplitudes, shapes and velocities of both waves. This type of interaction solutions provide a method to forecast the appearance of rogue waves, such as financial rogue waves, optical rogue waves and plasma rogue waves, through analyzing the relations between the lump wave part and the soliton wave part.

4.2. Three-dimensional, contour and density plots of the interaction solutions to Case 4.1

If we substitute the coefficient of Case 4.1 into (12), we can get f2 as follows:$\begin{eqnarray}\begin{array}{rcl}{f}_{2} & = & {a}_{0}+{\left({a}_{12}y+\displaystyle \frac{2{a}_{12}{a}_{34}}{3{a}_{31}}z\right)}^{4}\\ & & +{\left({a}_{20}+\displaystyle \frac{3{a}_{23}{a}_{31}}{2{a}_{34}}y+{a}_{23}z\right)}^{2}\\ & & +{\left({a}_{30}+{a}_{31}x+{a}_{34}t\right)}^{2}+{m}_{1}\cos ({b}_{30}+{b}_{32}y\\ & & +\displaystyle \frac{2{a}_{34}{b}_{32}}{3{a}_{31}}z)+{m}_{1}\cosh ({b}_{40}+{b}_{42}y+\displaystyle \frac{2{a}_{34}{b}_{42}}{3{a}_{31}}z),\end{array}\end{eqnarray}$where ${a}_{0},{a}_{12},{a}_{20},{a}_{23},{a}_{30},{a}_{31},{a}_{34},{b}_{30},{b}_{32},{b}_{40},{b}_{42}({m}_{1}{a}_{31}{a}_{34}\,\ne 0)$ are arbitrary real constants. By substituting (56) into (2), we get interaction solution (54) to (3+1)-dimensional Jimbo–Miwa Equation (1).

We choose the following parameters to illustrate the interaction solution (54) between the high-order lump-type solution and the cos–cosh solitary wave solutions of the (3+1)-dimensional Jimbo–Miwa equation (1),$\begin{eqnarray}\begin{array}{rcl}{a}_{0} & = & -1,{a}_{12}=1,{a}_{20}=-1,{a}_{23}=-2,\\ {a}_{30} & = & 3,{a}_{31}=-1,{a}_{34}=2,\\ {b}_{30} & = & 1,{b}_{32}=2,{b}_{40}=1.5,{b}_{42}=-2,{m}_{1}=6,z=y.\end{array}\end{eqnarray}$

The physical properties and structures of the interaction solution (54) are shown in figure 2. It shows the three-dimensional dynamic graphs A1, B1, C1, corresponding contour maps A2, B2, C2 and density plots A3, B3, C3 in the (x, y)-plane when t=−20, 0, 20, respectively. The three-dimensional graphs reflect the localized structures, and the density plots show the energy distribution. We can see that the high-order lump-type wave, trigonometric function and hyperbolic function wave react with each other and keep moving forward.

Figure 2.

New window|Download| PPT slide
Figure 2.Three-dimensional plots, contour plots and density plots of the wave with the parameters (57) at times t=−20 (A1,A2,A3), t=0 (B1,B2,B3), t=20 (C1,C2,C3).


5. Conclusion

In this paper, we gave the form of general interaction solution to the (3+1)-dimensional Jimbo–Miwa equation. The general interaction solution contained classical interaction solutions, such as the lump–kink solution and the lump–soliton solution. As an example, by using the generalized bilinear method and symbolic computation software Maple, we successfully construct novel interaction solutions between the high-order lump-type solution and other functions of the (3+1)-dimensional Jimbo–Miwa equation, such as, three-wave solutions, breather solutions, solitary wave solutions, cos–cosh solitary wave solutions, lump–soliton solutions and cos periodic wave solutions. Three-dimensional plots, contour plots and density plots of these waves may be observed in figures 12, respectively. We can find the physical structure and characteristics of the interactions between high-order lump-type solutions and other function waves.

The new interaction solutions obtained in this paper will greatly expand the exact solutions to the (3+1)-dimensional Jimbo–Miwa equation in the existing literature [36, 12, 13, 2430, 5154]. These results are significant to understand the propagation processes of nonlinear waves in fluid mechanics and the explanation of some special physical problems.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Reference By original order
By published year
By cited within times
By Impact factor

X Ma W X Yu J Khalique C M 2016 Commun. Nonlinear Sci. Numer. Simulat 31 40
DOI:10.1016/j.cnsns.2015.07.007 [Cited within: 1]

Wang X B Tian S F Qin C Y Zhang T T 2017 Appl. Math. Lett. 72 58
DOI:10.1016/j.aml.2017.04.009

Xu G Q 2006 Chaos, Solitons Fractals 30 71
DOI:10.1016/j.chaos.2005.08.089 [Cited within: 2]

Wazwaz A M 2008 Appl. Math. Comput. 203 592
DOI:10.1016/j.amc.2008.05.004

Wazwaz A M 2017 Appl. Math. Lett. 64 21
DOI:10.1016/j.aml.2016.08.005

Manafian J 2018 Comput. Math. Appl. 76 1246
DOI:10.1016/j.camwa.2018.06.018 [Cited within: 3]

Zhang X E Chen Y 2018 Nonlinear Dyn. 93 2169
DOI:10.1007/s11071-018-4317-8 [Cited within: 1]

Z S Chen Y N 2015 Chaos, Solitons Fractals 81 218
DOI:10.1016/j.chaos.2015.09.022 [Cited within: 1]

Xu H X Yang Z Y Zhao L C Duan L Yang W L 2018 Phys. Lett. A 382 1738
DOI:10.1016/j.physleta.2018.04.034 [Cited within: 1]

Dong H H Zhang Y F 2015 Commun. Theor. Phys. 63 401
DOI:10.1088/0253-6102/63/4/401 [Cited within: 1]

Liu J G Yan H 2017 Nonlinear Dyn 90 363
DOI:10.1007/s11071-017-3667-y

Zhang R F Bilige S D 2019 Mode. Phys. Lett. B 33 1950067
DOI:10.1142/S0217984919500672 [Cited within: 2]

Zhang R F Bilige S D Fang T Chaolu T M 2019 Comput. Math. Appl. 78 754
DOI:10.1016/j.camwa.2019.02.035 [Cited within: 3]

Kaur L Wazwaz A M 2018 Optik-International Journal for Light and Electron Optics 174 447
DOI:10.1016/j.ijleo.2018.08.072 [Cited within: 1]

Satsuma J Ablowitz M J 1979 J. Math. Phys. 20 1496
DOI:10.1063/1.524208 [Cited within: 1]

Ma W X 2015 Phys. Lett. A 379 1975
DOI:10.1016/j.physleta.2015.06.061 [Cited within: 1]

Ma W X Zhou Y 2018 J. Differ. Equations 264 2633
DOI:10.1016/j.jde.2017.10.033 [Cited within: 1]

Ma W X Qin Z Y X 2016 Nonlinear Dyn. 84 923
DOI:10.1007/s11071-015-2539-6 [Cited within: 2]

Ma W X Zhou Y Dougherty R 2016 Int. J. Mode. Phys. B 30 1640018
DOI:10.1142/S021797921640018X

Yang J Y Ma W X 2016 Int. J. Mode. Phys. B 30 1640028
DOI:10.1142/S0217979216400282

Yang J Y Ma W X Qin Z Y 2018 Anal. Math. Phys. 8 427
DOI:10.1007/s13324-017-0181-9

Hua Y F Guo B L Ma W X X 2019 Appl. Math. Model. 74 184
DOI:10.1016/j.apm.2019.04.044

Chen S T Ma W X 2018 Front. Math. China 13 525
DOI:10.1007/s11464-018-0694-z

Ma W X 2016 Int. J. Nonlinear Sci. Numer. Simul. 17 355
DOI:10.1515/ijnsns-2015-0050 [Cited within: 2]

Yang J Y Ma W X 2017 Comput. Math. Appl. 73 220
DOI:10.1016/j.camwa.2016.11.007

Batwa S Ma W X 2018 Comput. Math. Appl. 76 1576
DOI:10.1016/j.camwa.2018.07.008 [Cited within: 1]

Zhang X E Chen Y 2017 Commun. Nonlinear Sci. Numer. Simulat 52 24
DOI:10.1016/j.cnsns.2017.03.021

Sun H Q Chen A H 2017 Appl. Math. Lett. 68 55
DOI:10.1016/j.aml.2016.12.008

Wang Y H Wang H Dong H H Zhang H S Chaolu T M 2018 Nonlinear Dyn. 92 487
DOI:10.1007/s11071-018-4070-z [Cited within: 1]

Yong X L Li X J Huang Y H 2018 Appl. Math. Lett. 86 222
DOI:10.1016/j.aml.2018.07.001 [Cited within: 2]

Ma W X 2018 J. Geom. Phys. 133 10
DOI:10.1016/j.geomphys.2018.07.003 [Cited within: 2]

Liu J G 2018 Appl. Math. Lett. 86 36
DOI:10.1016/j.aml.2018.06.011 [Cited within: 1]

X Chen S T Ma W X 2016 Nonlinear Dyn. 86 523
DOI:10.1007/s11071-016-2905-z

X Wang J P Lin F H Zhou X W 2018 Nonlinear Dyn. 91 1249
DOI:10.1007/s11071-017-3942-y

X Ma W X 2016 Nonlinear Dyn. 85 1217
DOI:10.1007/s11071-016-2755-8

Manafian J Lakestant M 2019 Pramana-J. Phys. 92 41
DOI:10.1007/s12043-018-1700-4 [Cited within: 2]

Fang T Wang Y H 2018 Comput. Math. Appl. 76 1476
DOI:10.1016/j.camwa.2018.05.043 [Cited within: 1]

Zhang Y Dong H H Zhang X E Yang H W 2017 Comput. Math. Appl. 73 246
DOI:10.1016/j.camwa.2016.11.009

Zhou Y Manukure S Ma W X 2019 Commun. Nonlinear Sci. Numer. Simulat 68 56
DOI:10.1016/j.cnsns.2018.07.038

Wang H Wang Y H Ma W X Chaolu T M 2018 Mode. Phys. Lett. B 32 1850376
DOI:10.1142/S0217984918503761

Fang T Wang H Wang Y H Ma W X 2019 Commun. Theor. Phys. 71 927
DOI:10.1088/0253-6102/71/8/927

Ahmed I Seadawy A R Lu D C 2019 Int. J. Mode. Phys. B 33 1950019
DOI:10.1142/S021797921950019X

Manukure S Zhou Y 2019 Int. J. Mode. Phys. B 33 1950038
DOI:10.1142/S0217979219500383

Lv J Q Bilige S D 2017 Nonlinear Dyn 90 2119
DOI:10.1007/s11071-017-3788-3

J Q Bilige S D Chaolu T M 2018 Nonlinear Dyn. 91 1669
DOI:10.1007/s11071-017-3972-5 [Cited within: 1]

Zhang R F Bilige S D Bai Y X J Q Gao X Q 2018 Mode. Phys. Lett. B 32 1850074
DOI:10.1142/S0217984918500744

J Q Bilige S D 2019 Anal. Math. Phys. 9 1497
DOI:10.1007/s13324-018-0256-2

J Q Bilige S D Gao X Q 2019 Int. J. Nonlin. Sci. Num. 20 33
DOI:10.1515/ijnsns-2018-0034 [Cited within: 1]

J Q Bilige S D 2018 Mode. Phys. Lett. B 32 1850311
DOI:10.1142/S0217984918503116

Gao X Q Bilige S D J Q Bai Y X Zhang R F Chaolu T M 2019 Therm. Sci. 23 2437
DOI:10.2298/TSCI1904437G [Cited within: 3]

Jimbo M Miwa T 1983 Publ. Res. Inst. Math. Sci. Kyoto Univ. 19 943
DOI:10.2977/prims/1195182017 [Cited within: 3]

Cao B T 2010 Acta Appl. Math. 112 181
DOI:10.1007/s10440-009-9559-5 [Cited within: 1]

Özis T Aslan Ï 2008 Phys. Lett. A 372 7011
DOI:10.1016/j.physleta.2008.10.014 [Cited within: 1]

Ma W X Lee J H 2009 Chaos, Solitons Fractals 42 1356
DOI:10.1016/j.chaos.2009.03.043 [Cited within: 2]

Ma W X 2011 Stud. Nonlinear Sci. 2 140
[Cited within: 1]

Ma W X 2013 J. Phys. Conf. Ser. 411 012021
DOI:10.1088/1742-6596/411/1/012021 [Cited within: 1]

相关话题/Novel interaction phenomena