删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Lump and lump-soliton interaction solutions for an integrable variable coefficient Kadomtsev【-逻*辑*与-

本站小编 Free考研考试/2022-01-02

Xin Wang,1,4, Jina Li1, Lei Wang2, Jiao Wei3, Bowen Guo11College of Science, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, China
2School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China
3School of Mathematics and Statistics, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan, 450001, China

First author contact: 4 Author to whom any correspondence should be addressed.
Received:2019-11-1Revised:2020-01-4Accepted:2020-01-6Online:2020-02-17


Abstract
For a variable coefficient Kadomtsev–Petviashvili (KP) equation the Lax pair as well as conjugate Lax pair are derived from the Painlevé analysis. The N-fold binary Darboux transformation is presented in a compact form. As an application, the multi-lump, higher-order lump and general lump-soliton interaction solutions for the variable coefficient KP equation are obtained. Typical lump structures with amplitudes exponentially decaying to zero as the time tends to infinity and interactions between one lump and one soliton are shown.
Keywords: variable coefficient KP equation;binary Darboux transformation;lump solution;lump-soliton interaction solution


PDF (646KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
Xin Wang, Jina Li, Lei Wang, Jiao Wei, Bowen Guo. Lump and lump-soliton interaction solutions for an integrable variable coefficient Kadomtsev–Petviashvili equation. Communications in Theoretical Physics, 2020, 72(3): 035001- doi:10.1088/1572-9494/ab690f

1. Introduction

The Kadomtsev–Petviashvili (KP) equation$\begin{eqnarray}{u}_{t}={u}_{{xxx}}+6{{uu}}_{x}-3{\partial }_{x}^{-1}{u}_{{yy}},\end{eqnarray}$as an integrable two-dimensional generalization of the Korteweg–de Vries (KdV) equation, has been paid increasing attention in areas of mathematics and physics during the past few decades [16]. From the mathematical perspective, the KP equation possesses more abundant nonlinear wave solutions than the one-dimensional KdV equation. For example, the lump (nonsingular rational) solutions and resonant interaction soliton solutions can be presented in the KP equation [2, 3]. Furthermore, many integrable systems can be obtained through special reductions of the KP hierarchy [4, 7]. In viewpoint of physics, the KP equation plays a fundamental part in the plasma physics [1], shallow water wave theory [5] and nonlinear optics [8], to name a few.

The search for lump solutions and lump-soliton interaction (semi-rational) solutions to the KP equation has been a topical issue during the past few decades [2, 917]. By virtue of the Hirota bilinear method, Ma recently proposed a direct algebraic approach to obtain multiparametric lump solutions for the KP equation [9]. Additionally, lump solutions for some generalized KP-type equations have also attracted considerable interest in current years. For instance, Ling et al studied a nonisospectral variable coefficient KP equation [18], He et al and Chen et al investigated the three-dimensional KP equation [19] and nonlocal KP equation [20], respectively.

In this paper, we study a variable coefficient KP equation of the form:$\begin{eqnarray}\begin{array}{rcl}{u}_{t} & = & h({u}_{{xxx}}+6{{uu}}_{x}-3{\partial }_{x}^{-1}{u}_{{yy}})\\ & & -\,k({{xu}}_{x}+2u+2{{yu}}_{y}),\end{array}\end{eqnarray}$where h and k are two real constants. Equation (2) has several reductions under specific choices of the parameters. Under the case h=1 and k=0, it reduces to the standard KP equation. Under the case u being independent on y, it reduces to the nonisospectral variable coefficient KdV equation [21]. As we know, the complete integrability such as the Painlevé test and Bäcklund transformation for equation (2) have been demonstrated by Porsezian et al [22]. In the present paper, we devote to deriving lump and lump-soliton interaction solutions for equation (2) by means of the Darboux transformation (DT) method [2331].

Our paper is organized as follows. In section 2, we present the Lax pair and conjugate Lax pair by virtue of the Painlevé analysis. In section 3, we establish the N-fold binary DT in a compact form. In section 4, as an application, we derive the multi-lump, higher-order lump and general lump-soliton interaction solutions. Moreover, we exhibit some typical lump structures and interactions between one lump and one soliton. In the last section, we give our conclusions.

2. Lax integrability from the Painlevé analysis

To start with, let us rewrite equation (2) into the following equivalent form$\begin{eqnarray}\begin{array}{rcl}{u}_{{xt}} & = & h({u}_{{xxxx}}+6{{uu}}_{{xx}}+6{u}_{x}^{2}-3{u}_{{yy}})\\ & & -\,k({{xu}}_{{xx}}+3{u}_{x}+2{{yu}}_{{xy}}).\end{array}\end{eqnarray}$One can then verify that equation (3) possesses the Painlevé property. The expansion $u={\phi }^{-2}{\sum }_{j=0}^{\infty }{u}_{j}{\phi }^{j}$ has the resonance points at j=−1, 4, 5, 6 and the associated Bäcklund transformation is given by$\begin{eqnarray}u=2{\partial }_{x}^{2}\mathrm{ln}\phi +{u}_{2},\end{eqnarray}$where$\begin{eqnarray}\begin{array}{l}{\phi }_{x}{\phi }_{t}-6h{\phi }_{x}^{2}{u}_{2}+{kx}{\phi }_{x}^{2}+3h{\phi }_{y}^{2}+2{ky}{\phi }_{x}{\phi }_{y}\\ \quad -\,4h{\phi }_{x}{\phi }_{{xx}}+3h{\phi }_{{xx}}^{2}=0,\end{array}\end{eqnarray}$and$\begin{eqnarray}\begin{array}{l}{\phi }_{{xt}}-h{\phi }_{{xxxx}}+{kx}{\phi }_{{xx}}-6h{\phi }_{{xx}}{u}_{2}+3h{\phi }_{{yy}}\\ \quad +\,2{ky}{\phi }_{{xy}}+k{\phi }_{x}=0.\end{array}\end{eqnarray}$Here {u, u2} satisfy equation (3). Now, by eliminating u2 in equations (5) and (6) we obtain the Schwarzian form of the variable coefficient KP equation$\begin{eqnarray}\begin{array}{l}\displaystyle \frac{\partial }{\partial x}\left(\displaystyle \frac{{\phi }_{t}}{{\phi }_{x}}+2{ky}\displaystyle \frac{{\phi }_{y}}{{\phi }_{x}}-h\{\phi ;x\}\right)\\ \quad +\,3h\displaystyle \frac{\partial }{\partial y}\displaystyle \frac{{\phi }_{y}}{{\phi }_{x}}+\displaystyle \frac{3}{2}h\displaystyle \frac{\partial }{\partial x}\displaystyle \frac{{\phi }_{y}^{2}}{{\phi }_{x}^{2}}+k=0,\end{array}\end{eqnarray}$where {φ; x} is the Schwarzian derivative$\begin{eqnarray*}\{\phi ;x\}=\displaystyle \frac{\partial }{\partial x}\left(\displaystyle \frac{{\phi }_{{xx}}}{{\phi }_{x}}\right)-\displaystyle \frac{1}{2}{\left(\displaystyle \frac{{\phi }_{{xx}}}{{\phi }_{x}}\right)}^{2}.\end{eqnarray*}$It is known that this third-order, differential expression is invariant under the Möbious group transformation, viz.$\begin{eqnarray*}\left\{\displaystyle \frac{a\phi +b}{c\phi +d};x\right\}=\{\phi ;x\},{ad}-{bc}\ne 0.\end{eqnarray*}$

We next let φ=ψ/ψ+, then the Lax pair and conjugate Lax pair of equation (2) can be written as$\begin{eqnarray}{\rm{i}}{\psi }_{y}^{+}=(-{\partial }_{x}^{2}-u){\psi }^{+},\end{eqnarray}$$\begin{eqnarray}{\psi }_{t}^{+}={M}^{+}(u){\psi }^{+},\end{eqnarray}$with$\begin{eqnarray*}\begin{array}{rcl}{M}^{+}(u) & = & 4h{\partial }_{x}^{3}-2{\rm{i}}{ky}{\partial }_{x}^{2}+(6{hu}-{kx}){\partial }_{x}\\ & & +\,(3{{hu}}_{x}-2{\rm{i}}{kyu}-3{\rm{i}}h{\partial }_{x}^{-1}{u}_{y}),\end{array}\end{eqnarray*}$and
$\begin{eqnarray}-{\rm{i}}{\psi }_{y}^{-}=(-{\partial }_{x}^{2}-u){\psi }^{-},\end{eqnarray}$$\begin{eqnarray}{\psi }_{t}^{-}={M}^{-}(u){\psi }^{-},\end{eqnarray}$with$\begin{eqnarray*}\begin{array}{rcl}{M}^{-}(u) & = & 4h{\partial }_{x}^{3}+2{\rm{i}}{ky}{\partial }_{x}^{2}+(6{hu}-{kx}){\partial }_{x}\\ & & +\,(3{{hu}}_{x}+2{\rm{i}}{kyu}+3{\rm{i}}h{\partial }_{x}^{-1}{u}_{y}).\end{array}\end{eqnarray*}$The compatibility condition ${\psi }_{{yt}}^{\pm }={\psi }_{{ty}}^{\pm }$ can immediately give rise to equation (2).

3. Binary DT

In this section, we shall construct the binary DT for equation (2) by means of the Lax pair (8) and (9) and conjugate Lax pair (10) and (11). To this end, we first introduce the integral$\begin{eqnarray}\begin{array}{rcl}{\rm{\Omega }}(f,g) & = & {\int }_{({x}_{0},{y}_{0},{t}_{0})}^{(x,y,t)}{fg}{\rm{d}}x+{\rm{i}}({f}_{x}g-{{fg}}_{x}){\rm{d}}y\\ & & +\,[4{{hf}}_{{xx}}g-4{{hf}}_{x}{g}_{x}\\ & & +\,4{{hfg}}_{{xx}}+6{hufg}-2{\rm{i}}{ky}({f}_{x}g-{{fg}}_{x})\\ & & -{kxfg}+k{\rm{\Omega }}]{\rm{d}}t,\end{array}\end{eqnarray}$or equivalently, a set of differential equations$\begin{eqnarray}\begin{array}{rcl}{{\rm{\Omega }}}_{x} & = & {fg},{{\rm{\Omega }}}_{y}={\rm{i}}({f}_{x}g-{{fg}}_{x}),\\ {{\rm{\Omega }}}_{t} & = & 4{{hf}}_{{xx}}g-4{{hf}}_{x}{g}_{x}+4{{hfg}}_{{xx}}+6{hufg}\\ & & -\,2{\rm{i}}{ky}({f}_{x}g-{{fg}}_{x})-{kxfg}+k{\rm{\Omega }}.\end{array}\end{eqnarray}$Next, we assume ${\psi }_{1}^{+}$ and ${\psi }_{1}^{-}$ be solutions of System (8) and (9) and System (10) and (11), respectively. Then the following expressions$\begin{eqnarray}{\psi }^{+}[-1,+1]=\displaystyle \frac{\left|\begin{array}{cc}{\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{1}^{-}) & {\rm{\Omega }}({\psi }^{+},{\psi }_{1}^{-})\\ {\psi }_{1}^{+} & {\psi }^{+}\end{array}\right|}{{\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{1}^{-})},\end{eqnarray}$$\begin{eqnarray}u[-1,+1]=u+2{\partial }_{x}^{2}\mathrm{ln}{\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{1}^{-}),\end{eqnarray}$can create a group of new solutions combining with the binary DT to System (8) and (9). Further, supposing ${\psi }_{i}^{+}$ and ${\psi }_{i}^{-}$ be N distinct solutions of System (8) and (9) and System (10) and (11), respectively, i=1, 2, ⋯, N, we can put forward the N-fold binary DT$\begin{eqnarray}{\psi }^{+}[-N,+N]=\displaystyle \frac{{{\rm{\Delta }}}_{1}}{{\rm{\Delta }}},\end{eqnarray}$$\begin{eqnarray}u[-N,+N]=u+2{\partial }_{x}^{2}\mathrm{ln}{\rm{\Delta }},\end{eqnarray}$where$\begin{eqnarray*}{\rm{\Delta }}=\left|\begin{array}{cccc}{\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{1}^{-}) & {\rm{\Omega }}({\psi }_{2}^{+},{\psi }_{1}^{-}) & \cdots & {\rm{\Omega }}({\psi }_{N}^{+},{\psi }_{1}^{-})\\ {\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{2}^{-}) & {\rm{\Omega }}({\psi }_{2}^{+},{\psi }_{2}^{-}) & \cdots & {\rm{\Omega }}({\psi }_{N}^{+},{\psi }_{2}^{-})\\ \cdots & \cdots & \ddots & \cdots \\ {\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{N}^{-}) & {\rm{\Omega }}({\psi }_{2}^{+},{\psi }_{N}^{-}) & \cdots & {\rm{\Omega }}({\psi }_{N}^{+},{\psi }_{N}^{-})\end{array}\right|,\end{eqnarray*}$and$\begin{eqnarray*}\begin{array}{l}{{\rm{\Delta }}}_{1} =\,\left|\begin{array}{ccccc}{\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{1}^{-}) & {\rm{\Omega }}({\psi }_{2}^{+},{\psi }_{1}^{-}) & \cdots & {\rm{\Omega }}({\psi }_{N}^{+},{\psi }_{1}^{-}) & {\rm{\Omega }}({\psi }^{+},{\psi }_{1}^{-})\\ {\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{2}^{-}) & {\rm{\Omega }}({\psi }_{2}^{+},{\psi }_{2}^{-}) & \cdots & {\rm{\Omega }}({\psi }_{N}^{+},{\psi }_{2}^{-}) & {\rm{\Omega }}({\psi }^{+},{\psi }_{2}^{-})\\ \cdots & \cdots & \ddots & \cdots & \vdots \\ {\rm{\Omega }}({\psi }_{1}^{+},{\psi }_{N}^{-}) & {\rm{\Omega }}({\psi }_{2}^{+},{\psi }_{N}^{-}) & \cdots & {\rm{\Omega }}({\psi }_{N}^{+},{\psi }_{N}^{-}) & {\rm{\Omega }}({\psi }^{+},{\psi }_{N}^{-})\\ {\psi }_{1}^{+} & {\psi }_{2}^{+} & \cdots & {\psi }_{N}^{+} & {\psi }^{+}\end{array}\right|.\end{array}\end{eqnarray*}$Here we would like to remark that the corresponding binary DT for System (10) and (11) can be similarly established, we refrain from presenting it in this paper.

4. Lump and lump-soliton interaction solutions

We now choose u=0 as the initial solution, then System (8) and (9) becomes$\begin{eqnarray}\begin{array}{rcl}{\rm{i}}{\psi }_{y}^{+} & = & -{\psi }_{{xx}}^{+},\\ {\psi }_{t}^{+} & = & 4h{\psi }_{{xxx}}^{+}-2{\rm{i}}{ky}{\psi }_{{xx}}^{+}-{kx}{\psi }_{x}^{+}.\end{array}\end{eqnarray}$We thus obtain the solution$\begin{eqnarray*}{\psi }^{+}(\mu )=\exp \left(\mu {{\rm{e}}}^{-{kt}}x+{\rm{i}}{\mu }^{2}{{\rm{e}}}^{-2{kt}}y-\displaystyle \frac{4}{3}\displaystyle \frac{h{\mu }^{3}}{k}{{\rm{e}}}^{-3{kt}}\right),\end{eqnarray*}$where μ is a complex constant. On the other hand, by solving System (10) and (11) with u=0 as below$\begin{eqnarray}\begin{array}{rcl}-{\rm{i}}{\psi }_{y}^{-} & = & -{\psi }_{{xx}}^{-},\\ {\psi }_{t}^{-} & = & 4h{\psi }_{{xxx}}^{-}+2{\rm{i}}{ky}{\psi }_{{xx}}^{-}-{kx}{\psi }_{x}^{-},\end{array}\end{eqnarray}$we have$\begin{eqnarray*}{\psi }^{-}(\nu )=\exp \left(\nu {{\rm{e}}}^{-{kt}}x-{\rm{i}}{\nu }^{2}{{\rm{e}}}^{-2{kt}}y-\displaystyle \frac{4}{3}\displaystyle \frac{h{\nu }^{3}}{k}{{\rm{e}}}^{-3{kt}}\right),\end{eqnarray*}$where ν=μ*. At this time, in terms of equation (12) or equation (13), we can calculate$\begin{eqnarray}\begin{array}{rcl}{\rm{\Omega }}(\mu ,\nu ) & = & \displaystyle \frac{{{\rm{e}}}^{{kt}}}{\mu +\nu }\exp \left[\Space{0ex}{2.7ex}{0ex}(\mu +\nu ){{\rm{e}}}^{-{kt}}x+{\rm{i}}({\mu }^{2}-{\nu }^{2}){{\rm{e}}}^{-2{kt}}y\right.\\ & & \left.-\,\displaystyle \frac{4}{3}\displaystyle \frac{h}{k}({\mu }^{3}+{\nu }^{3}){{\rm{e}}}^{-3{kt}}\right]+C{{\rm{e}}}^{{kt}},\end{array}\end{eqnarray}$where C is an arbitrary real constant. In the following, we will apply equations (17) and (20) to obtain three different types of lump and lump-soliton interaction solutions to equation (2).

Multi-lump solution. Given N different μi and νi, (${\nu }_{i}={\mu }_{i}^{* }$), one can present the N-lump solution$\begin{eqnarray}u=2{\partial }_{x}^{2}\mathrm{ln}{\rm{\Delta }},\end{eqnarray}$where$\begin{eqnarray*}{\rm{\Delta }}={\left({{\rm{\Delta }}}_{{ij}}\right)}_{N\times N}={\left(\displaystyle \frac{{\partial }^{2}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial \nu }{| }_{\mu ={\mu }_{j},\nu ={\nu }_{i}}\right)}_{N\times N},1\leqslant i,j\leqslant N.\end{eqnarray*}$Particularly, for N=1 and μ=ν=1, we can explicitly work out the one-lump solution, as$\begin{eqnarray}u[-1,+1]=\displaystyle \frac{G}{F},\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{rcl}F & = & 16{k}^{2}{{\rm{e}}}^{4{kt}}[{k}^{2}x{{\rm{e}}}^{5{kt}}-{k}^{2}{x}^{2}{{\rm{e}}}^{4{kt}}-4{hk}{{\rm{e}}}^{3{kt}}\\ & & +\,(4{k}^{2}{y}^{2}+8{hkx}){{\rm{e}}}^{2{kt}}-16{h}^{2}],\\ G & = & \left[{k}^{2}{{\rm{e}}}^{6{kt}}-2{k}^{2}x{{\rm{e}}}^{5{kt}}+2{k}^{2}{x}^{2}{{\rm{e}}}^{4{kt}}+8{hk}{{\rm{e}}}^{3{kt}}\right.\\ & & {\left.+(8{k}^{2}{y}^{2}-16{hkx}){{\rm{e}}}^{2{kt}}+32{h}^{2}\right]}^{2}.\end{array}\end{eqnarray*}$Figure 1 shows the evolution plots of the doubly-localized one-lump solution. For a fixed time t, the maximum amplitude of the one-lump solution is$\begin{eqnarray*}{u}_{\max }=16{{\rm{e}}}^{-2{kt}},\end{eqnarray*}$and is localized at$\begin{eqnarray*}x=\displaystyle \frac{1}{2k}(8h{{\rm{e}}}^{-2{kt}}+k{{\rm{e}}}^{{kt}}),y=0.\end{eqnarray*}$The minimum amplitude of it is$\begin{eqnarray*}{u}_{\min }=-2{{\rm{e}}}^{-2{kt}},\end{eqnarray*}$and is reached at$\begin{eqnarray*}x=\displaystyle \frac{1}{2k}(8h{{\rm{e}}}^{-2{kt}}+k{{\rm{e}}}^{{kt}}\pm \sqrt{3}k{{\rm{e}}}^{{kt}}),y=0.\end{eqnarray*}$

Figure 1.

New window|Download| PPT slide
Figure 1.Evolution plots of the one-lump solution (22) for h=k=1.


At this point, it is essential to point out that the amplitudes of the lumps shown in this paper are exponentially decaying to zero when the time tends to infinity for the positive number k, which is different from the permanent amplitudes of the lumps in the standard KP equation [2, 911]. Furthermore, the choice of N=2 in equation (21) results in the two-lump solution of determinant form$\begin{eqnarray}\begin{array}{l}u[-2,+2]=2{\partial }_{x}^{2}\\ \times \,\mathrm{ln}\left|\begin{array}{cc}\tfrac{{\partial }^{2}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial \nu }{| }_{\mu ={\mu }_{1},\nu ={\nu }_{1}} & \tfrac{{\partial }^{2}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial \nu }{| }_{\mu ={\mu }_{2},\nu ={\nu }_{1}}\\ \tfrac{{\partial }^{2}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial \nu }{| }_{\mu ={\mu }_{1},\nu ={\nu }_{2}} & \tfrac{{\partial }^{2}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial \nu }{| }_{\mu ={\mu }_{2},\nu ={\nu }_{2}}\end{array}\right|.\end{array}\end{eqnarray}$For illustration, we display in figure 2 the evolution plots of the two-lump solution under specific parameters.

Figure 2.

New window|Download| PPT slide
Figure 2.Evolution plots of the two-lump solution (23) for μ1=ν1=1, μ2=ν2=1/2 and h=k=1.


Higher-order lump solution. For the fixed parameters μ1 and ν1 (${\nu }_{1}={\mu }_{1}^{* }$), we can derive the Nth-order lump solution by making use of the higher-order derivatives of equation (20), that is$\begin{eqnarray}u=2{\partial }_{x}^{2}\mathrm{ln}\widehat{{\rm{\Delta }}},\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{rcl}\widehat{{\rm{\Delta }}} & = & {\left({\widehat{{\rm{\Delta }}}}_{{ij}}\right)}_{N\times N}={\left(\displaystyle \frac{{\partial }^{i+j}{\rm{\Omega }}(\mu ,\nu )}{\partial {\mu }^{j}\partial {\nu }^{i}}\left|{}_{\mu ={\mu }_{1},\nu ={\nu }_{1}}\right.\right)}_{N\times N},\\ 1 & \leqslant & i,j\leqslant N.\end{array}\end{eqnarray*}$Thus, the second-order lump solution can be represented in the following determinant form$\begin{eqnarray}\begin{array}{l}u[-2,+2]=2{\partial }_{x}^{2}\\ \times \mathrm{ln}\left|\begin{array}{cc}\tfrac{{\partial }^{2}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial \nu }{| }_{\mu ={\mu }_{1},\nu ={\nu }_{1}} & \tfrac{{\partial }^{3}{\rm{\Omega }}(\mu ,\nu )}{\partial {\mu }^{2}\partial \nu }{| }_{\mu ={\mu }_{1},\nu ={\nu }_{1}}\\ \tfrac{{\partial }^{3}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial {\nu }^{2}}{| }_{\mu ={\mu }_{1},\nu ={\nu }_{1}} & \tfrac{{\partial }^{4}{\rm{\Omega }}(\mu ,\nu )}{\partial {\mu }^{2}\partial {\nu }^{2}}{| }_{\mu ={\mu }_{1},\nu ={\nu }_{1}}\end{array}\right|.\end{array}\end{eqnarray}$We exhibit in figure 3 the evolution plots of the second-order lump solution by choosing specific parameters. One can find that the maximum amplitude of the second-order lump solution is much larger than the two-lump solution.

Figure 3.

New window|Download| PPT slide
Figure 3.Evolution plots of the second-order lump solution (25) for μ1=ν1=1 and h=k=1.


General lump-soliton interaction solution. At this stage, we can end up with the (N1, N2) lump-soliton interaction solution$\begin{eqnarray}\begin{array}{rcl}u & = & 2{\partial }_{x}^{2}\mathrm{ln}\widetilde{{\rm{\Delta }}},\\ \ \ \widetilde{{\rm{\Delta }}} & = & {\left({\widetilde{{\rm{\Delta }}}}_{{ij}}\right)}_{N\times N},\\ {\widetilde{{\rm{\Delta }}}}_{{ij}} & = & \left\{\begin{array}{l}{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{j},\nu ={\nu }_{i}},C={\delta }_{{ij}},1\leqslant i,j\leqslant {N}_{2},\\ \tfrac{\partial }{\partial \nu }{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{j},\nu ={\nu }_{i}},{N}_{2}+1\leqslant i\leqslant {N}_{1}+{N}_{2},1\leqslant j\leqslant {N}_{2},\\ \tfrac{\partial }{\partial \mu }{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{j},\nu ={\nu }_{i}},1\leqslant i\leqslant {N}_{2},{N}_{2}+1\leqslant j\leqslant {N}_{1}+{N}_{2},\\ \tfrac{{\partial }^{2}}{\partial \mu \partial \nu }{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{j},\nu ={\nu }_{i}},{N}_{2}+1\leqslant i,j\leqslant {N}_{1}+{N}_{2},\end{array}\right.\end{array}\end{eqnarray}$and the (N1th-order, N2) lump-soliton interaction solution$\begin{eqnarray}\begin{array}{rcl}u & = & 2{\partial }_{x}^{2}\mathrm{ln}\overline{{\rm{\Delta }}},\\ \overline{{\rm{\Delta }}} & = & {\left({\overline{{\rm{\Delta }}}}_{{ij}}\right)}_{N\times N},\\ {\overline{{\rm{\Delta }}}}_{{ij}} & = & \left\{\begin{array}{l}{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{j},\nu ={\nu }_{i}},C={\delta }_{{ij}},1\leqslant i,j\leqslant {N}_{2},\\ \tfrac{{\partial }^{i-{N}_{2}}}{\partial {\nu }^{i-{N}_{2}}}{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{j},\nu ={\nu }_{{N}_{2}+1}},{N}_{2}+1\leqslant i\leqslant {N}_{1}+{N}_{2},1\leqslant j\leqslant {N}_{2},\\ \tfrac{{\partial }^{j-{N}_{2}}}{\partial {\mu }^{{}^{j-{N}_{2}}}}{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{{N}_{2}+1},\nu ={\nu }_{i}},1\leqslant i\leqslant {N}_{2},{N}_{2}+1\leqslant j\leqslant {N}_{1}+{N}_{2},\\ \tfrac{{\partial }^{i+j-2{N}_{2}}}{\partial {\mu }^{j-{N}_{2}}\partial {\nu }^{i-{N}_{2}}}{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{{N}_{2}+1},\nu ={\nu }_{{N}_{2}+1}},{N}_{2}+1\leqslant i,j\leqslant {N}_{1}+{N}_{2},\end{array}\right.\end{array}\end{eqnarray}$where N1+N2=N. For N1=N2=1, we have$\begin{eqnarray}\begin{array}{l}u[-2,+2]=2{\partial }_{x}^{2}\\ \times \,\mathrm{ln}\left|\begin{array}{cc}{\rm{\Omega }}(\mu ,\nu ){| }_{\mu ={\mu }_{1},\nu ={\nu }_{1},C=1} & \tfrac{\partial {\rm{\Omega }}(\mu ,\nu )}{\partial \mu }{| }_{\mu ={\mu }_{2},\nu ={\nu }_{1}}\\ \tfrac{\partial {\rm{\Omega }}(\mu ,\nu )}{\partial \nu }{| }_{\mu ={\mu }_{1},\nu ={\nu }_{2}} & \tfrac{{\partial }^{2}{\rm{\Omega }}(\mu ,\nu )}{\partial \mu \partial \nu }{| }_{\mu ={\mu }_{2},\nu ={\nu }_{2}}\end{array}\right|.\end{array}\end{eqnarray}$The interactions between one lump and one soliton separating or merging with each other described by equation (28) for specific parameters are shown in figure 4.

Figure 4.

New window|Download| PPT slide
Figure 4.Interactions between one lump and one soliton described by equation (28) for μ1=ν1=1, μ2=ν2=2 and h=k=1.


5. Conclusion

In conclusion, we presented the Lax pair and conjugate Lax pair for the variable coefficient KP equation through the Painlevé analysis. We then constructed the N-fold binary DT in the compact determinant representation. As an application, we derived the arbitrary-order multi-lump, higher-order lump and general lump-soliton interaction solutions. Typically, we showed the evolution plots of the one-lump solution, two-lump solution, second-order lump solution and interactions between one lump and one soliton.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant (11705290, 11901538, 11875126), the China Postdoctoral Science Foundation funded sixty-fourth batch (2018M640678), the Young Scholar Foundation of ZUT (2018XQG16), and Training Plan for Key Young Teachers of Colleges and Universities in Henan Province (2019GGJS143).


Reference By original order
By published year
By cited within times
By Impact factor

Kadomtsev B B Petviashvili V I 1970 Sov. Phys. Dokl. 15 539
[Cited within: 2]

Matveev V B Salle M A 1991 Darboux Transformations and Solitons Berlin Springer
[Cited within: 3]

Chakravarty S Kodama Y 2013 J. Phys. A: Math. Theor. 47 025201
DOI:10.1088/1751-8113/47/2/025201 [Cited within: 1]

Satsuma J Hirota R 1982 J. Phys. Soc. Japan 51 3390
DOI:10.1143/JPSJ.51.3390 [Cited within: 1]

Kodama Y 2010 J. Phys: Math. Theor. 43 434004
DOI:10.1088/1751-8113/43/43/434004 [Cited within: 1]

Kong L Q Wang L Wang D S Dai C Q Wen X Y Xu L 2019 Nonlinear Dyn. 98 691
DOI:10.1007/s11071-019-05222-z [Cited within: 1]

Geng X G Liu H 2018 J. Nonlinear Sci. 28 739
DOI:10.1007/s00332-017-9426-x [Cited within: 1]

Baronio F Wabnitz S Kodama Y 2016 Phys. Rev. Lett. 116 173901
DOI:10.1103/PhysRevLett.116.173901 [Cited within: 1]

Ma W X 2015 Phys. Lett. A 379 1975
DOI:10.1016/j.physleta.2015.06.061 [Cited within: 3]

Chen S H Grelu P Mihalache D Baronio F 2016 Rom. Rep. Phys. 68 1407


Zhao H Q Ma W X 2017 Comput. Math. Appl. 74 1399
DOI:10.1016/j.camwa.2017.06.034 [Cited within: 1]

Chen S J Yin Y H Ma W X X 2019 Anal. Math. Phys. 9 2329
DOI:10.1007/s13324-019-00338-2

Xu H N Ruan W Y X 2020 Appl. Math. Lett. 99 105976
DOI:10.1016/j.aml.2019.07.007

Hua Y F Guo B L Ma W X X 2019 Appl. Math. Model. 74 184
DOI:10.1016/j.apm.2019.04.044

Yin Y H Ma W X Liu J G X 2018 Comput. Math. Appl. 76 1275
DOI:10.1016/j.camwa.2018.06.020

Gao L N Zi Y Y Yin Y H Ma W X X 2017 Nonlinear Dyn. 89 2233
DOI:10.1007/s11071-017-3581-3

Gao L N Zhao X Y Zi Y Y Yu J X 2016 Comput. Math. Appl. 72 1225
DOI:10.1016/j.camwa.2016.06.008 [Cited within: 1]

Guo Y F Ling L M Dai Z D 2013 Commun. Theor. Phys. 59 723
DOI:10.1088/0253-6102/59/6/13 [Cited within: 1]

Qian C Rao J G Liu Y B He J S 2016 Chin. Phys. Lett. 33 110201
DOI:10.1088/0256-307X/33/11/110201 [Cited within: 1]

Zhang X N Chen Y Zhang Y 2017 Comput. Math. Appl. 74 2341
DOI:10.1016/j.camwa.2017.07.004 [Cited within: 1]

Chan W L Zheng Y K 1987 Lett. Math. Phys. 14 293
DOI:10.1007/BF00402138 [Cited within: 1]

Uthayakumar A Porsezian K 1996 Indian J. Pure Appl. Math. 27 419
[Cited within: 1]

Wei J Wang X Geng X G 2018 Commun. Nonlinear Sci. Numer. Simul. 59 1
DOI:10.1016/j.cnsns.2017.10.017 [Cited within: 1]

Wang X Zhang J L Wang L 2018 Nonlinear Dyn. 92 1507
DOI:10.1007/s11071-018-4143-z

Li P Wang L Kong L Q Wang X Xie Z Y 2018 Appl. Math. Lett. 85 110
DOI:10.1016/j.aml.2018.05.027

Wang X Wang L 2018 Comput. Math. Appl. 75 4201
DOI:10.1016/j.camwa.2018.03.022

Wang L Liu C Wu X Wang X Sun W R 2018 Nonlinear Dyn. 94 977
DOI:10.1007/s11071-018-4404-x

Wang L Wu X Zhang H Y 2018 Phys. Lett. A 382 2650
DOI:10.1016/j.physleta.2018.07.036

Wang X Wei J Wang L Zhang J L 2019 Nonlinear Dyn. 97 343
DOI:10.1007/s11071-019-04972-0

Wang X Wei J Geng X 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105116
DOI:10.1016/j.cnsns.2019.105116

Li R M Geng X G 2020 Appl. Math. Lett. 102 106147
DOI:10.1016/j.aml.2019.106147 [Cited within: 1]

相关话题/soliton interaction solutions