删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Investigation of soliton solutions with different wave structures to the (2 【-逻*辑*与-】plus; 1)-dimens

本站小编 Free考研考试/2022-01-02

M S Osman,1,2,10, K U Tariq3,4, Ahmet Bekir5, A Elmoasry6, Nasser S Elazab1, M Younis7, Mahmoud Abdel-Aty8,91Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
2Department of Mathematics, Faculty of Applied Science, Umm Alqura University, Makkah 21955, Saudi Arabia
3School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
4Department of Mathematics, Mirpur University of Science and Technology, Mirpur (AJK) 10250, Pakistan
5Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir, Turkey
6Mathematics department, College of Science, Majmaah University, Saudi Arabia
7Punjab University College of Information Technology, University of the Punjab, Lahore 54590, Pakistan
8Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
9Applied Science University, Bahrain

First author contact: 10 Author to whom any correspondence should be addressed.
Received:2019-09-30Revised:2019-11-21Accepted:2019-12-8Online:2020-02-17


Abstract
The principal objective of this article is to construct new and further exact soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation which investigates the nonlinear dynamics of magnets and explains their ordering in ferromagnetic materials. These solutions are exerted via the new extended FAN sub-equation method. We successfully obtain dark, bright, combined bright-dark, combined dark-singular, periodic, periodic singular, and elliptic wave solutions to this equation which are interesting classes of nonlinear excitation presenting spin dynamics in classical and semi-classical continuum Heisenberg systems. 3D figures are illustrated under an appropriate selection of parameters. The applied technique is suitable to be used in gaining the exact solutions of most nonlinear partial/fractional differential equations which appear in complex phenomena.
Keywords: soliton solutions;Heisenberg ferromagnetic equation;FAN sub-equation method


PDF (755KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite
Cite this article
M S Osman, K U Tariq, Ahmet Bekir, A Elmoasry, Nasser S Elazab, M Younis, Mahmoud Abdel-Aty. Investigation of soliton solutions with different wave structures to the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation. Communications in Theoretical Physics, 2020, 72(3): 035002- doi:10.1088/1572-9494/ab6181

1. Introduction

Solitons have been widely studied in theory and experiment in recent years. Nowadays, the investigation of the soliton solutions of a number of complex nonlinear equations plays a considerable role due to the expectant effectuation in the real world, especially in different aspects of mathematical and physical phenomena [19]. Most complex phenomena arising in applied science, such as nuclear physics, chemical reactions, signal processing, optical fibers, fluid mechanics, plasma, nonlinear optics and ecology, can be sometimes modeled and described by these equations. Hereby, a massive number of mathematicians and physicists have attempted to invent various approaches by which one can obtain the soltion solutions of such equations. Among several present methods, we mention the Riccati-Bernoulli sub-ODE method [10, 11], exp-function method [12, 13], sine-cosine method [14, 15], tanh-sech method [16, 17], extended tanh-method [18, 19], F-expansion method [2022], homogeneous balance method [23, 24], Jacobi elliptic function method [25, 26], the unified method and its generalized form [2733], and so on. This work is established to utilize the extended Fan Sub-equation technique [34, 35] in determining the soliton and elliptic solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain (HFSC) equation [3640].

The HFSC equation [3640] is given by:$\begin{eqnarray}{\rm{i}}{\psi }_{t}+{\varrho }_{1}{\psi }_{{xx}}+{\varrho }_{2}{\psi }_{{yy}}+{\varrho }_{3}{\psi }_{{xy}}-{\varrho }_{4}| \psi {| }^{2}\psi =0.\end{eqnarray}$Here, ψ=ψ(x, y, t) is a complex valued function, x, y and t denote the scaled spatial and time coordinates, respectively and the coefficients ϱj for j=1, 2, 3, 4; are real constants given by [7, 39]$\begin{eqnarray*}\begin{array}{rcl}{\varrho }_{1} & = & {\kappa }^{4}({\rm{\Lambda }}+{{\rm{\Lambda }}}_{2}),{\varrho }_{2}={\kappa }^{4}({{\rm{\Lambda }}}_{1}+{{\rm{\Lambda }}}_{2}),\\ {\varrho }_{3} & = & 2{\kappa }^{4}{{\rm{\Lambda }}}_{2},{\varrho }_{4}=2{\kappa }^{4}{\rm{\Omega }},\end{array}\end{eqnarray*}$where the parameters Λ, Λ1 represent the coefficients of bilinear exchange interactions in the xy-plane, Λ2 denotes the neighboring interaction along the diagonal, Ω is the uniaxial crystal field anisotropy parameter, and κ is a lattice parameter.

Heisenberg ferromagnetic spin chain equation with different magnetic interactions in the classical and semi-classical continuum limit have been identified as interesting nonlinear model systems exhibiting integrability properties including soliton spin excitations. This equation can be used to depict the propagation of long waves, which has many applications in the percolation of water.

The rest of this continuing article is methodized as follows: In section 2, we propound the formation of the extended Fan Sub-equation method and we implement this technique to find new soliton and elliptic solutions of the HFSC equation. The physical behavior of the solutions together with their graphical illustration is within section 3. Finally, section 4 is comprised of conclusions in a suitable manner.

2. Mathematical analysis

To solve equation (1), we first need to apply the traveling wave transformation$\begin{eqnarray}\psi ={ \mathcal V }(\xi ){{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\quad \xi ={ax}+{by}-\mu t,\quad {\rm{\Phi }}={px}+{qy}-{rt},\end{eqnarray}$where a, b, μ, p, q, and r are constants to be determined.

Utilizing the wave transformation (2) in equation (1), we attain the following imaginary and real parts, respectively:$\begin{eqnarray}\mu =2a{\varrho }_{1}p+2b{\varrho }_{2}q+{\varrho }_{3}\left({bq}+{aq}\right),\end{eqnarray}$$\begin{eqnarray}{\delta }_{1}{ \mathcal V }^{\prime\prime} +{\delta }_{2}{{ \mathcal V }}^{3}+{\delta }_{3}{ \mathcal V }=0,\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{rcl}{\delta }_{1} & = & {\varrho }_{4}{a}^{2}+{\varrho }_{2}{b}^{2}+{\varrho }_{3}{ab},\\ {\delta }_{2} & = & -{\varrho }_{4},\\ {\delta }_{3} & = & r-{\varrho }_{1}{p}^{2}-q\left({\varrho }_{2}q+{\varrho }_{3}p\right).\end{array}\end{eqnarray*}$By applying the homogeneous balance to equation (4), we have n=1. Suppose equation (4) has the solution of the form$\begin{eqnarray}{ \mathcal V }={a}_{0}+{a}_{1}\phi (\xi ),\end{eqnarray}$where φ satisfies the following general elliptic equation,$\begin{eqnarray}{\left(\displaystyle \frac{{\rm{d}}\phi (\xi )}{{\rm{d}}\xi }\right)}^{2}={\zeta }_{0}+{\zeta }_{1}\phi (\xi )+{\zeta }_{2}{\phi }^{2}(\xi )+{\zeta }_{3}{\phi }^{3}(\xi )+{\zeta }_{4}{\phi }^{4}(\xi ),\end{eqnarray}$ζi (i=0, 1, 2, 3, 4) are real constants.

Substituting (5) along (6) in (4) and collecting the coefficients of ${\phi }^{j}{\phi }^{(k)}$,$\begin{eqnarray*}\begin{array}{rcl}{a}_{0}\left({a}_{0}^{2}{\delta }_{2}+{\delta }_{3}\right)+\displaystyle \frac{1}{2}{a}_{1}{\delta }_{1}{\zeta }_{1} & = & 0,\\ {a}_{1}\left(3{a}_{0}^{2}{\delta }_{2}+{\delta }_{3}\right)+{a}_{1}{\delta }_{1}{\zeta }_{2} & = & 0,\\ 3{a}_{0}{a}_{1}^{2}{\delta }_{2}+\displaystyle \frac{3}{2}{a}_{1}{\delta }_{1}{\zeta }_{3} & = & 0,\\ {a}_{1}^{3}{\delta }_{2}+2{a}_{1}{\delta }_{1}{\zeta }_{4} & = & 0,\end{array}\end{eqnarray*}$we select variables suitably, to have the most of ζi, (i=0, 1, 2, 3, 4),$\begin{eqnarray*}\begin{array}{rcl}{\zeta }_{1} & = & -\displaystyle \frac{2{a}_{0}\left({a}_{0}^{2}{\delta }_{2}+{\delta }_{3}\right)}{{a}_{1}{\delta }_{1}},\\ {\zeta }_{2} & = & -\displaystyle \frac{3{a}_{0}^{2}{\delta }_{2}+{\delta }_{3}}{{\delta }_{1}},\\ {\zeta }_{3} & = & -\displaystyle \frac{2{a}_{0}{a}_{1}{\delta }_{2}}{{\delta }_{1}},\\ {\zeta }_{4} & = & -\displaystyle \frac{{a}_{1}^{2}{\delta }_{2}}{2{\delta }_{1}},\end{array}\end{eqnarray*}$which give$\begin{eqnarray*}\begin{array}{rcl}{a}_{0} & = & \displaystyle \frac{\sqrt{{\delta }_{1}\left(-{\zeta }_{2}\right)-{\delta }_{3}}}{\sqrt{3}\sqrt{{\delta }_{2}}},\\ {a}_{1} & = & \displaystyle \frac{\sqrt{2}\sqrt{-{\delta }_{1}}\sqrt{{\zeta }_{4}}}{\sqrt{{\delta }_{2}}},\end{array}\end{eqnarray*}$therefore,$\begin{eqnarray}\psi =({a}_{0}+{a}_{1}\phi (\xi )){{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$We have following solutions, for more details see also [34, 35].

CaseI.

If ${\zeta }_{0}={\vartheta }_{3}^{2},{\zeta }_{1}=2{\vartheta }_{1}{\vartheta }_{3}$, ${\zeta }_{2}=2{\vartheta }_{2}{\vartheta }_{3}+{\vartheta }_{1}^{2},{\zeta }_{3}=2{\vartheta }_{1}{\vartheta }_{2},{\zeta }_{4}={\vartheta }_{2}^{2}$, where ${\vartheta }_{1},{\vartheta }_{2},$ and ${\vartheta }_{3}$ are arbitrary constants. The solutions of (1) are ${\psi }_{\eta }^{I},(\eta =1,2,\,\ldots ,\,24).$ Some of important solitons are listed below.

Type I: when ${\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}\gt 0$, ${\vartheta }_{1}{\vartheta }_{2}\ne 0$, ${\vartheta }_{2}{\vartheta }_{3}\ne 0$. The following family of dark solitons is obtained as$\begin{eqnarray}\begin{array}{l}{\psi }_{1}^{I}(\xi )=\left[{a}_{0}\right.\\ \left.+\,{a}_{1}\left(-\displaystyle \frac{\sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\tanh \left(\tfrac{1}{2}\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)+{\vartheta }_{1}}{2{\vartheta }_{2}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$The family of combined bright-dark soliton is obtained as,$\begin{eqnarray}\begin{array}{rcl}{\psi }_{3}^{I}(\xi ) & = & \left[{a}_{0}-\displaystyle \frac{{a}_{1}}{2{\vartheta }_{2}}\left(\sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right.\right.\\ & & \times \,\left(i\,{\rm{sech}} \left(\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right.\\ & & \left.\left.\left.+\tanh \left(\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right)+{\vartheta }_{1}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$The family of combined dark-singular solitons is obtained as$\begin{eqnarray}\begin{array}{rcl}{\psi }_{5}^{I}(\xi ) & = & \left[{a}_{0}-\displaystyle \frac{{a}_{1}}{2{\vartheta }_{2}}\left(\sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right.\right.\\ & & \times \,\left(\tanh \left(\displaystyle \frac{1}{4}\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right.\\ & & \left.\left.\left.+\coth \left(\displaystyle \frac{1}{4}\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right)+{\vartheta }_{1}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$The family of solitons is obtained as$\begin{eqnarray}\begin{array}{rcl}{\psi }_{10}^{I}(\xi ) & = & \left[{a}_{0}+{a}_{1}\left(2\cosh \left(\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right.\right.\\ & & \times \left(\sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\sinh \left(\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right.\\ & & -\left({\vartheta }_{1}\cosh \left(\xi \sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right.\\ & & \left.\left.{\left.\left.\pm i\sqrt{{\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}}\right)\right)}^{-1}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$Type II: when ${\vartheta }_{1}^{2}-4{\vartheta }_{2}{\vartheta }_{3}\lt 0$, ${\vartheta }_{1}{\vartheta }_{2}\ne 0$, ${\vartheta }_{2}{\vartheta }_{3}\ne 0$. The following families of periodic solitons are obtained$\begin{eqnarray}\begin{array}{l}{\psi }_{13}^{I}(\xi )=\left[{a}_{0}\right.\\ \left.+\,{a}_{1}\left(-\displaystyle \frac{\sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\tan \left(\tfrac{1}{2}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)-{\vartheta }_{1}}{2{\vartheta }_{2}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{l}{\psi }_{20}^{I}(\xi )\,=\,\left[{a}_{0}+{a}_{1}\left(-\displaystyle \frac{2{\vartheta }_{3}\cos \left(\tfrac{1}{2}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)}{\sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\sin \left(\tfrac{1}{2}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)+{\vartheta }_{1}\cos \left(\tfrac{1}{2}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{array}\end{eqnarray}$$\begin{eqnarray}\begin{array}{rcl}{\psi }_{24}^{I}(\xi ) & = & \left[{a}_{0}+{a}_{1}\left(\left(4r\sin \left(\displaystyle \frac{1}{4}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)\right.\right.\right.\\ & & \times \left.\cos \left(\displaystyle \frac{1}{4}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)\right)\\ & & \times \,\left(2\sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}{\cos }^{2}\left(\displaystyle \frac{1}{4}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)\right.\\ & & -2{\vartheta }_{1}\sin \left(\displaystyle \frac{1}{4}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)\\ & & \times \,\cos \left(\displaystyle \frac{1}{4}\xi \sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)\\ & & \left.\left.{\left.-\sqrt{4{\vartheta }_{2}{\vartheta }_{3}-{\vartheta }_{1}^{2}}\right)}^{-1}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$

CaseII.

If ${\zeta }_{0}={\vartheta }_{3}^{2},{\zeta }_{1}=2{\vartheta }_{1}{\vartheta }_{3},{\zeta }_{2}=0$, ${\zeta }_{3}=2{\vartheta }_{1}{\vartheta }_{2},{\zeta }_{4}={\vartheta }_{2}^{2}$, the solutions of (1) are ${\psi }_{\eta }^{{II}},(\eta =1,2,\ldots ,12).$ A family of dark soliton is obtained$\begin{eqnarray}\begin{array}{l}{\psi }_{1}^{{II}}(\xi )=\left[{a}_{0}\right.\\ \left.+\,{a}_{1}\left(-\displaystyle \frac{\sqrt{-6{\vartheta }_{2}{\vartheta }_{3}}\tanh \left(\tfrac{1}{2}\xi \sqrt{-6{\vartheta }_{2}{\vartheta }_{3}}\right)+\sqrt{-2{\vartheta }_{2}{\vartheta }_{3}}}{2{\vartheta }_{2}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$Another form of dark-singular soliton is obtained$\begin{eqnarray}\begin{array}{l}{\psi }_{5}^{{II}}(\xi )=\left[{a}_{0}\right.\left.\,+\,{a}_{1}\left(-\displaystyle \frac{\sqrt{-6{qr}}\left(\tanh \left(\tfrac{1}{4}\xi \sqrt{-6{qr}}\right)+\coth \left(\tfrac{1}{4}\xi \sqrt{-6{qr}}\right)\right)+2\sqrt{-2{qr}}}{4q}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{array}\end{eqnarray}$

CaseIII.

If ζ0=ζ1=0, we have the following solution of (1) in the form ${\psi }_{\eta }^{{III}},(\eta =1,2,\ldots ,10)$ .

Type I: ${\zeta }_{2}=1,{\zeta }_{3}=\tfrac{-2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}-{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where ${\lambda }_{1},{\lambda }_{2},{\lambda }_{3}$ are arbitrary constants.$\begin{eqnarray}{\psi }_{1}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\rm{sech}} (\xi )}{{\lambda }_{2}{\rm{sech}} (\xi )+{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$

Type II: ${\zeta }_{2}=1,{\zeta }_{3}=\tfrac{-2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}+{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3 are arbitrary constants.$\begin{eqnarray}{\psi }_{2}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}\mathrm{csch}(\xi )}{{\lambda }_{2}\mathrm{csch}(\xi )+{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$In particular, if we take ${\lambda }_{2}=0$ in above equations (17)–(18). We obtain the families of bright and singular solitons as follows$\begin{eqnarray}{\psi }_{1}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\rm{sech}} (\xi )}{{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$$\begin{eqnarray}{\psi }_{2}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}\mathrm{csch}(\xi )}{{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type III: ${\zeta }_{2}=4,{\zeta }_{3}=-\tfrac{4\left(2{\lambda }_{2}+{\lambda }_{4}\right)}{{\lambda }_{1}}$, ${\zeta }_{4}=\tfrac{4{\lambda }_{2}^{2}+4{\lambda }_{4}{\lambda }_{2}+{\lambda }_{3}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3, λ4 are arbitrary constants.$\begin{eqnarray}{\psi }_{3}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{{\rm{sech}} }^{2}(\xi )}{{\lambda }_{2}\tanh (\xi )+{\lambda }_{3}+{\lambda }_{4}{{\rm{sech}} }^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type IV: ${\zeta }_{2}=4,{\zeta }_{3}=\tfrac{4\left({\lambda }_{4}-2{\lambda }_{2}\right)}{{\lambda }_{1}}$, ${\zeta }_{4}=\tfrac{4{\lambda }_{2}^{2}-4{\lambda }_{4}{\lambda }_{2}+{\lambda }_{3}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3, λ4 are arbitrary constants.$\begin{eqnarray}{\psi }_{4}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\mathrm{csch}}^{2}(\xi )}{{\lambda }_{2}\coth (\xi )+{\lambda }_{3}+{\lambda }_{4}{\mathrm{csch}}^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$In particular, if we consider λ2=λ4; another family of dark and singular solitons are obtained as follows$\begin{eqnarray}{\psi }_{4}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\mathrm{csch}}^{2}(\xi )}{{\lambda }_{2}\coth (\xi )+{\lambda }_{3}+{\lambda }_{2}{\mathrm{csch}}^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type V: ${\zeta }_{2}=-1,{\zeta }_{3}=\tfrac{2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}-{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3 are arbitrary constants.$\begin{eqnarray}\begin{array}{l}{\psi }_{6}^{{III}}(\xi )\,=\,\left[{a}_{0}+{a}_{1}\left(-\displaystyle \frac{{\lambda }_{1}(\sinh ({\lambda }_{1}\xi )+\cosh ({\lambda }_{1}\xi ))(\sinh ({\lambda }_{1}\xi )+\cosh ({\lambda }_{1}\xi )+{\lambda }_{2})}{{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$Type VI: ${\zeta }_{2}=4,{\zeta }_{3}=\tfrac{-2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}-{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where ${\lambda }_{1},{\lambda }_{2},{\lambda }_{3}$ are arbitrary constants.$\begin{eqnarray}{\psi }_{8}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}\csc (\xi )}{{\lambda }_{2}\csc (\xi )+{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type VII: ${\zeta }_{2}=-4,{\zeta }_{3}=\tfrac{4\left(2{\lambda }_{2}+{\lambda }_{4}\right)}{{\lambda }_{1}}$, ${\zeta }_{4}=-\tfrac{4{\lambda }_{2}^{2}+4{\lambda }_{4}{\lambda }_{2}-{\lambda }_{3}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3, λ4 are arbitrary constants.$\begin{eqnarray}{\psi }_{9}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\sec }^{2}(\xi )}{{\lambda }_{2}\tan (\xi )+{\lambda }_{3}+{\lambda }_{4}{\sec }^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$

CaseIV.

If ζ1=ζ3=0, we have the following solutions of (1) in the form ${\psi }_{\eta }^{{IV}},(\eta =1,2,\ldots ,16)$ [34, 35].

For ${\zeta }_{0}=\tfrac{1}{4},{\zeta }_{2}=\tfrac{1-2{m}^{2}}{2},{\zeta }_{4}=\tfrac{1}{4}$, the solution of (1) is of the form$\begin{eqnarray}{\psi }_{3}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\mathrm{cn}\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$gives the bright soliton for $m\to 1$,$\begin{eqnarray}{\psi }_{3}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}{\rm{sech}} (\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$and the periodic singular solution for $m\to 0$,$\begin{eqnarray}{\psi }_{3}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}\cos (\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$for ${\zeta }_{0}=\tfrac{1}{4},{\zeta }_{2}=\tfrac{1-2{m}^{2}}{2},{\zeta }_{4}=\tfrac{1}{4}$, the solution of (1) is of the form$\begin{eqnarray}{\psi }_{13}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\mathrm{ns}\xi \pm \mathrm{cs}\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$gives the combined dark-singular wave solution for $m\to 1$,$\begin{eqnarray}{\psi }_{13}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\coth (\xi )+\mathrm{csch}(\xi ))\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\,\end{eqnarray}$and the periodic singular solution for $m\to 0$,$\begin{eqnarray}{\psi }_{13}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\cot (\xi )+\csc (\xi ))\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$

3. Physical description

The graphical representation of solitons has been illustrated in the following figures, for various values of the parameters. Mathematica 11 is used to carry out simulations and to visualize the behavior of nonlinear waves observed by the equation (1).

Figures 1(a), (b), and (c) illustrate the 3D chart of the absolute value of ${\psi }_{1}^{I}(x,y,t)$ established in Case I (Type I) when t=−0.5, t=0, and t=0.5 respectively. Figure 1 represents complex solitary wave solution with the parameters ϑ1=1, ϑ2=−1, ϑ3=1, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, a=1, b=−1, p=−2, q=1, and r=−3.

Figure 1.

New window|Download| PPT slide
Figure 1.$| {\psi }_{1}^{I}(x,y,t)| :$ The complex solitary wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.


Figures 2(a), (b), and (c) show the 3D chart of the absolute value of ${\psi }_{1}^{{III}}(x,y,t)$ established in Case III (Type I) when t=−0.5, t=0, and t=0.5 respectively. Figure 2 represents complex bright soliton wave solution with the parameters λ1=−1, λ2=−1, λ3=−2, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, a=1, b=−1, p=−2, q=1, and r=−3.

Figure 2.

New window|Download| PPT slide
Figure 2.$| {\psi }_{1}^{{III}}(x,y,t)| :$ The complex bright soliton wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.


Figures 3(a), (b), and (c) show the 3D chart of the absolute value of ${\psi }_{3}^{{III}}(x,y,t)$ established in Case III (Type III) when t=−0.5, t=0, and t=0.5 respectively. Figure 3 represents complex dark soliton wave (a ’W ’ shape wave) solution with the parameters λ1=1, λ2=−1, λ3=−2, λ4=1, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, a=1, b=−1, p=−2, q=1, and r=−3.

Figure 3.

New window|Download| PPT slide
Figure 3.$| {\psi }_{3}^{{III}}(x,y,t)| :$ The complex dark soliton wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.


Figures 4(a), 4(b), and 4(c) show the 3D chart of the absolute value of ${\psi }_{3}^{{IV}}(x,y,t)$ established in Case IV when t=−0.5, t=0, and t=0.5 respectively. Figure 4 represents complex elliptic wave solution with the parameters λ1=−1, ${\lambda }_{2}$=-1, λ3=−2, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, ${\zeta }_{0}=\tfrac{1}{4},{\zeta }_{2}=\tfrac{1-2{m}^{2}}{2},{\zeta }_{4}=\tfrac{1}{4},m=\tfrac{1}{3},a=1$, b=−1, p=−2, q=1, and r=−3.

Figure 4.

New window|Download| PPT slide
Figure 4.$| {\psi }_{3}^{{IV}}(x,y,t)| :$ The complex elliptic wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.


4. Conclusions

In this study, new soliton and elliptic wave solutions with different wave structures for the Heisenberg ferromagnetic spin chain equation have been constructed via the extended FAN sub-equation method. A set of new exact solutions is found corresponding to various parameters. The graphical representations of the solutions are also demonstrated by figures 14, to investigate the behavior of the nonlinear model. Moreover, it is observed that the proposed approach can also be applied to other types of more complex models of contemporary science.

Acknowledgments

This work is funded by the Basic Science Research Unit, Scientific Research Deanship at Majmaah University, project number RGP-2019-4. The authors is extremely grateful to Majmaah University, Deanship of Scientific Research and Basic Science Research Unit, Majmaah University.


Reference By original order
By published year
By cited within times
By Impact factor

Liu J G Osman M S Zhu W H Zhou L Ai G P 2019 Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers
Appl. Phys. B 125 175

DOI:10.1007/s00340-019-7287-8 [Cited within: 1]

Tariq K U Younis M Rezazadeh H Rizvi S T R Osman M S 2018 Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution
Mod. Phys. Lett. B 32 1850317

DOI:10.1142/S0217984918503177

Osman M S Lu D Khater M M A Attia R A M 2019 Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model
Optik 192 162927

DOI:10.1016/j.ijleo.2019.06.027

Jawad A J A M Biswas A Abdelaty M Zhou Q Moshokoa S P Belic M 2018 Chirped singular and combo optical solitons for Gerdjikov-Ivanov equation using three integration forms
Optik 172 144149

DOI:10.1016/j.ijleo.2018.07.013

Abdel-Aty M 2014 Linear entropy of a driven central spin interacting with an antiferromagnetic environment
Natural Science 6 532539

DOI:10.4236/ns.2014.67052

Triki H Jovanoski Z Biswas A 2014 Solitary waves, shock waves and singular solitons of the generalized ostrovsky-benjamin-bona-mahoney equation
Applied Mathematics & Information Sciences 8 113116

DOI:10.12785/amis/080113

Latha M M Vasanthi C C 2014 An integrable model of (2 + 1)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations
Phys. Scr. 89 065204

DOI:10.1088/0031-8949/89/6/065204 [Cited within: 1]

Wang Q M Gao Y T Su C Q Mao B Q Gao Z Yang J W 2015 Dark solitonic interaction and conservation laws for a higher-order (2 + 1)-dimensional nonlinear Schrödinger-type equation in a Heisenberg ferromagnetic spin chain with bilinear and biquadratic interaction
Ann. Phys. 363 440456

DOI:10.1016/j.aop.2015.10.001

Liu D Y Tian B Jiang Y Xie X Y Wu X Y 2016 Analytic study on a (2 + 1)-dimensional nonlinear Schrödinger equation in the Heisenberg ferromagnetism
Comput. Math. Appl. 71 20012007

DOI:10.1016/j.camwa.2016.03.020 [Cited within: 1]

Yang X F Deng Z C Wei Y 2015 A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application
Advances in Difference equations 2015 117

DOI:10.1186/s13662-015-0452-4 [Cited within: 1]

Hassan S Z Abdelrahman M A 2019 A Riccati-Bernoulli sub-ODE method for some nonlinear evolution equations
International Journal of Nonlinear Sciences and Numerical Simulation 20 303313

DOI:10.1515/ijnsns-2018-0045 [Cited within: 1]

Guner O 2017 Exp-function method and fractional complex transform for space-time fractional KP-BBM equation
Commun. Theor. Phys. 68 149

DOI:10.1088/0253-6102/68/2/149 [Cited within: 1]

Shakeel M Mohyud-Din S T Iqbal M A 2018 Modified extended exp-function method for a system of nonlinear partial differential equations defined by seismic sea waves
Pramana 91 28

DOI:10.1007/s12043-018-1601-6 [Cited within: 1]

Sabi’u J Jibril A Gadu A M 2019 New exact solution for the (3 + 1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine-Cosine method
Journal of Taibah University for Science 13 9195

DOI:10.1080/16583655.2018.1537642 [Cited within: 1]

Wazwaz A M 2004 A sine-cosine method for handlingnonlinear wave equations
Math. Comput. Modell. 40 499508

DOI:10.1016/j.mcm.2003.12.010 [Cited within: 1]

Malfliet W Hereman W 1996 The tanh method: I. Exact solutions of nonlinear evolution and wave equations
Phys. Scr. 54 563

DOI:10.1088/0031-8949/54/6/003 [Cited within: 1]

Wazwaz A M 2006 Two reliable methods for solving variants of the KdV equation with compact and noncompact structures
Chaos, Solitons Fractals 28 454462

DOI:10.1016/j.chaos.2005.06.004 [Cited within: 1]

Abdou M A 2007 The extended tanh method and its applications for solving nonlinear physical models
Appl. Math. Comput. 190 988996

DOI:10.1016/j.amc.2007.01.070 [Cited within: 1]

Zhang W 2010 The extended tanh method and the exp-function method to solve a kind of nonlinear heat equation
Mathematical Problems in Engineering 2010

DOI:10.1155/2010/935873 [Cited within: 1]

Islam M S Khan K Akbar M A 2017 Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations
Journal of the Egyptian Mathematical Society 25 1318

DOI:10.1016/j.joems.2016.03.008 [Cited within: 1]

Kaur B Gupta R K 2019 Dispersion analysis and improved F-expansion method for space-time fractional differential equations
Nonlinear Dyn. 96 837852

DOI:10.1007/s11071-019-04825-w

Ma Y L Li B Q Fu Y Y 2018 A series of the solutions for the Heisenberg ferromagnetic spin chain equation
Math. Methods Appl. Sci. 41 33163322

DOI:10.1002/mma.4818 [Cited within: 1]

Rady A A Osman E S Khalfallah M 2010 The homogeneous balance method and its application to the Benjamin-Bona-Mahoney (BBM) equation
Appl. Math. Comput. 217 13851390

DOI:10.1016/j.amc.2009.05.027 [Cited within: 1]

Jafari H Tajadodi H Baleanu D 2014 Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations
J. Comput. Nonlinear Dyn. 9 021019

DOI:10.1115/1.4025770 [Cited within: 1]

Elboree M K 2011 The Jacobi elliptic function method and its application for two component BKP hierarchy equations
Comput. Math. Appl. 62 44024414

DOI:10.1016/j.camwa.2011.10.015 [Cited within: 1]

Kumar V S Rezazadeh H Eslami M Izadi F Osman M S 2019 Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity
International Journal of Applied and Computational Mathematics 5 127

DOI:10.1007/s40819-019-0710-3 [Cited within: 1]

Osman M S Ghanbari B Machado J A T 2019 New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity
The European Physical Journal Plus 134 20

DOI:10.1140/epjp/i2019-12442-4 [Cited within: 1]

Osman M S 2018 On complex wave solutions governed by the 2D Ginzburg-Landau equation with variable coefficients
Optik 156 169174

DOI:10.1016/j.ijleo.2017.10.127

Osman M S Wazwaz A M 2019 A general bilinear form to generate different wave structures of solitons for a (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation
Math. Methods Appl. Sci. 42 62776283

DOI:10.1002/mma.5721

Osman M S 2019 One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation
Nonlinear Dyn. 96 14911496

DOI:10.1007/s11071-019-04866-1

Abdel-Gawad H I Tantawy M Osman M S 2016 Dynamic of DNA’s possible impact on its damage
Math. Methods Appl. Sci. 39 168176

DOI:10.1002/mma.3466

Osman M S 2016 Multi-soliton rational solutions for quantum Zakharov-Kuznetsov equation in quantum magnetoplasmas
Waves Random Complex Medium 26 434443

DOI:10.1080/17455030.2016.1166288

Javid A Raza N Osman M S 2019 Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets
Commun. Theor. Phys. 71 362

DOI:10.1088/0253-6102/71/4/362 [Cited within: 1]

Yomba E 2005 The extended fan sub-equation method and its application to the (2 + 1)-dimensional dispersive long wave and Whitham-Broer-Kaup equations
Chin. J. Phys. 43 789805(https://www.ps-taiwan.org/cjp/issues.php?vol=43&num=4)

[Cited within: 3]

Yomba E 2006 The modified extended Fan sub-equation method and its application to the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equation
Chaos, Solitons Fractals 27 187196

DOI:10.1016/j.chaos.2005.03.021 [Cited within: 3]

Li B Q Ma Y L 2019 Lax pair, Darboux transformation and Nth-order rogue wave solutions for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation
Comput. Math. Appl. 77 514524

DOI:10.1016/j.camwa.2018.09.054 [Cited within: 2]

Li B Q Ma Y L 2019 Characteristics of rogue waves for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain system
J. Magn. Magn. Mater. 474 537543

DOI:10.1016/j.jmmm.2018.10.133

Zhao X H Tian B Liu D Y Wu X Y Chai J Guo Y J 2016 Dark solitons interaction for a (2 + 1)-dimensional nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain
Superlattices Microstruct. 100 587595

DOI:10.1016/j.spmi.2016.10.014

Triki H Wazwaz A M 2016 New solitons and periodic wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation
J. Electromagn. Waves Appl. 30 788794

DOI:10.1080/09205071.2016.1153986 [Cited within: 1]

Bulut H Sulaiman T A Baskonus H M 2018 Dark, bright and other soliton solutions to the Heisenberg ferromagnetic spin chain equation
Superlattices Microstruct. 123 1219

DOI:10.1016/j.spmi.2017.12.009 [Cited within: 2]

相关话题/Investigation soliton solutions