Investigation of soliton solutions with different wave structures to the (2 【-逻*辑*与-】plus; 1)-dimens
本站小编 Free考研考试/2022-01-02
M S Osman,1,2,10, K U Tariq3,4, Ahmet Bekir5, A Elmoasry6, Nasser S Elazab1, M Younis7, Mahmoud Abdel-Aty8,91Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt 2Department of Mathematics, Faculty of Applied Science, Umm Alqura University, Makkah 21955, Saudi Arabia 3School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China 4Department of Mathematics, Mirpur University of Science and Technology, Mirpur (AJK) 10250, Pakistan 5Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir, Turkey 6Mathematics department, College of Science, Majmaah University, Saudi Arabia 7Punjab University College of Information Technology, University of the Punjab, Lahore 54590, Pakistan 8Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt 9Applied Science University, Bahrain
First author contact:10 Author to whom any correspondence should be addressed. Received:2019-09-30Revised:2019-11-21Accepted:2019-12-8Online:2020-02-17
Abstract The principal objective of this article is to construct new and further exact soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation which investigates the nonlinear dynamics of magnets and explains their ordering in ferromagnetic materials. These solutions are exerted via the new extended FAN sub-equation method. We successfully obtain dark, bright, combined bright-dark, combined dark-singular, periodic, periodic singular, and elliptic wave solutions to this equation which are interesting classes of nonlinear excitation presenting spin dynamics in classical and semi-classical continuum Heisenberg systems. 3D figures are illustrated under an appropriate selection of parameters. The applied technique is suitable to be used in gaining the exact solutions of most nonlinear partial/fractional differential equations which appear in complex phenomena. Keywords:soliton solutions;Heisenberg ferromagnetic equation;FAN sub-equation method
PDF (755KB)MetadataMetricsRelated articlesExportEndNote|Ris|BibtexFavorite Cite this article M S Osman, K U Tariq, Ahmet Bekir, A Elmoasry, Nasser S Elazab, M Younis, Mahmoud Abdel-Aty. Investigation of soliton solutions with different wave structures to the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation. Communications in Theoretical Physics, 2020, 72(3): 035002- doi:10.1088/1572-9494/ab6181
1. Introduction
Solitons have been widely studied in theory and experiment in recent years. Nowadays, the investigation of the soliton solutions of a number of complex nonlinear equations plays a considerable role due to the expectant effectuation in the real world, especially in different aspects of mathematical and physical phenomena [1–9]. Most complex phenomena arising in applied science, such as nuclear physics, chemical reactions, signal processing, optical fibers, fluid mechanics, plasma, nonlinear optics and ecology, can be sometimes modeled and described by these equations. Hereby, a massive number of mathematicians and physicists have attempted to invent various approaches by which one can obtain the soltion solutions of such equations. Among several present methods, we mention the Riccati-Bernoulli sub-ODE method [10, 11], exp-function method [12, 13], sine-cosine method [14, 15], tanh-sech method [16, 17], extended tanh-method [18, 19], F-expansion method [20–22], homogeneous balance method [23, 24], Jacobi elliptic function method [25, 26], the unified method and its generalized form [27–33], and so on. This work is established to utilize the extended Fan Sub-equation technique [34, 35] in determining the soliton and elliptic solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain (HFSC) equation [36–40].
The HFSC equation [36–40] is given by:$\begin{eqnarray}{\rm{i}}{\psi }_{t}+{\varrho }_{1}{\psi }_{{xx}}+{\varrho }_{2}{\psi }_{{yy}}+{\varrho }_{3}{\psi }_{{xy}}-{\varrho }_{4}| \psi {| }^{2}\psi =0.\end{eqnarray}$Here, ψ=ψ(x, y, t) is a complex valued function, x, y and t denote the scaled spatial and time coordinates, respectively and the coefficients ϱj for j=1, 2, 3, 4; are real constants given by [7, 39]$\begin{eqnarray*}\begin{array}{rcl}{\varrho }_{1} & = & {\kappa }^{4}({\rm{\Lambda }}+{{\rm{\Lambda }}}_{2}),{\varrho }_{2}={\kappa }^{4}({{\rm{\Lambda }}}_{1}+{{\rm{\Lambda }}}_{2}),\\ {\varrho }_{3} & = & 2{\kappa }^{4}{{\rm{\Lambda }}}_{2},{\varrho }_{4}=2{\kappa }^{4}{\rm{\Omega }},\end{array}\end{eqnarray*}$where the parameters Λ, Λ1 represent the coefficients of bilinear exchange interactions in the xy-plane, Λ2 denotes the neighboring interaction along the diagonal, Ω is the uniaxial crystal field anisotropy parameter, and κ is a lattice parameter.
Heisenberg ferromagnetic spin chain equation with different magnetic interactions in the classical and semi-classical continuum limit have been identified as interesting nonlinear model systems exhibiting integrability properties including soliton spin excitations. This equation can be used to depict the propagation of long waves, which has many applications in the percolation of water.
The rest of this continuing article is methodized as follows: In section 2, we propound the formation of the extended Fan Sub-equation method and we implement this technique to find new soliton and elliptic solutions of the HFSC equation. The physical behavior of the solutions together with their graphical illustration is within section 3. Finally, section 4 is comprised of conclusions in a suitable manner.
2. Mathematical analysis
To solve equation (1), we first need to apply the traveling wave transformation$\begin{eqnarray}\psi ={ \mathcal V }(\xi ){{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\quad \xi ={ax}+{by}-\mu t,\quad {\rm{\Phi }}={px}+{qy}-{rt},\end{eqnarray}$where a, b, μ, p, q, and r are constants to be determined.
Utilizing the wave transformation (2) in equation (1), we attain the following imaginary and real parts, respectively:$\begin{eqnarray}\mu =2a{\varrho }_{1}p+2b{\varrho }_{2}q+{\varrho }_{3}\left({bq}+{aq}\right),\end{eqnarray}$$\begin{eqnarray}{\delta }_{1}{ \mathcal V }^{\prime\prime} +{\delta }_{2}{{ \mathcal V }}^{3}+{\delta }_{3}{ \mathcal V }=0,\end{eqnarray}$where$\begin{eqnarray*}\begin{array}{rcl}{\delta }_{1} & = & {\varrho }_{4}{a}^{2}+{\varrho }_{2}{b}^{2}+{\varrho }_{3}{ab},\\ {\delta }_{2} & = & -{\varrho }_{4},\\ {\delta }_{3} & = & r-{\varrho }_{1}{p}^{2}-q\left({\varrho }_{2}q+{\varrho }_{3}p\right).\end{array}\end{eqnarray*}$By applying the homogeneous balance to equation (4), we have n=1. Suppose equation (4) has the solution of the form$\begin{eqnarray}{ \mathcal V }={a}_{0}+{a}_{1}\phi (\xi ),\end{eqnarray}$where φ satisfies the following general elliptic equation,$\begin{eqnarray}{\left(\displaystyle \frac{{\rm{d}}\phi (\xi )}{{\rm{d}}\xi }\right)}^{2}={\zeta }_{0}+{\zeta }_{1}\phi (\xi )+{\zeta }_{2}{\phi }^{2}(\xi )+{\zeta }_{3}{\phi }^{3}(\xi )+{\zeta }_{4}{\phi }^{4}(\xi ),\end{eqnarray}$ζi (i=0, 1, 2, 3, 4) are real constants.
Substituting (5) along (6) in (4) and collecting the coefficients of ${\phi }^{j}{\phi }^{(k)}$,$\begin{eqnarray*}\begin{array}{rcl}{a}_{0}\left({a}_{0}^{2}{\delta }_{2}+{\delta }_{3}\right)+\displaystyle \frac{1}{2}{a}_{1}{\delta }_{1}{\zeta }_{1} & = & 0,\\ {a}_{1}\left(3{a}_{0}^{2}{\delta }_{2}+{\delta }_{3}\right)+{a}_{1}{\delta }_{1}{\zeta }_{2} & = & 0,\\ 3{a}_{0}{a}_{1}^{2}{\delta }_{2}+\displaystyle \frac{3}{2}{a}_{1}{\delta }_{1}{\zeta }_{3} & = & 0,\\ {a}_{1}^{3}{\delta }_{2}+2{a}_{1}{\delta }_{1}{\zeta }_{4} & = & 0,\end{array}\end{eqnarray*}$we select variables suitably, to have the most of ζi, (i=0, 1, 2, 3, 4),$\begin{eqnarray*}\begin{array}{rcl}{\zeta }_{1} & = & -\displaystyle \frac{2{a}_{0}\left({a}_{0}^{2}{\delta }_{2}+{\delta }_{3}\right)}{{a}_{1}{\delta }_{1}},\\ {\zeta }_{2} & = & -\displaystyle \frac{3{a}_{0}^{2}{\delta }_{2}+{\delta }_{3}}{{\delta }_{1}},\\ {\zeta }_{3} & = & -\displaystyle \frac{2{a}_{0}{a}_{1}{\delta }_{2}}{{\delta }_{1}},\\ {\zeta }_{4} & = & -\displaystyle \frac{{a}_{1}^{2}{\delta }_{2}}{2{\delta }_{1}},\end{array}\end{eqnarray*}$which give$\begin{eqnarray*}\begin{array}{rcl}{a}_{0} & = & \displaystyle \frac{\sqrt{{\delta }_{1}\left(-{\zeta }_{2}\right)-{\delta }_{3}}}{\sqrt{3}\sqrt{{\delta }_{2}}},\\ {a}_{1} & = & \displaystyle \frac{\sqrt{2}\sqrt{-{\delta }_{1}}\sqrt{{\zeta }_{4}}}{\sqrt{{\delta }_{2}}},\end{array}\end{eqnarray*}$therefore,$\begin{eqnarray}\psi =({a}_{0}+{a}_{1}\phi (\xi )){{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$We have following solutions, for more details see also [34, 35].
CaseI.
If ${\zeta }_{0}={\vartheta }_{3}^{2},{\zeta }_{1}=2{\vartheta }_{1}{\vartheta }_{3}$, ${\zeta }_{2}=2{\vartheta }_{2}{\vartheta }_{3}+{\vartheta }_{1}^{2},{\zeta }_{3}=2{\vartheta }_{1}{\vartheta }_{2},{\zeta }_{4}={\vartheta }_{2}^{2}$, where ${\vartheta }_{1},{\vartheta }_{2},$ and ${\vartheta }_{3}$ are arbitrary constants. The solutions of (1) are ${\psi }_{\eta }^{I},(\eta =1,2,\,\ldots ,\,24).$ Some of important solitons are listed below.
If ${\zeta }_{0}={\vartheta }_{3}^{2},{\zeta }_{1}=2{\vartheta }_{1}{\vartheta }_{3},{\zeta }_{2}=0$, ${\zeta }_{3}=2{\vartheta }_{1}{\vartheta }_{2},{\zeta }_{4}={\vartheta }_{2}^{2}$, the solutions of (1) are ${\psi }_{\eta }^{{II}},(\eta =1,2,\ldots ,12).$ A family of dark soliton is obtained$\begin{eqnarray}\begin{array}{l}{\psi }_{1}^{{II}}(\xi )=\left[{a}_{0}\right.\\ \left.+\,{a}_{1}\left(-\displaystyle \frac{\sqrt{-6{\vartheta }_{2}{\vartheta }_{3}}\tanh \left(\tfrac{1}{2}\xi \sqrt{-6{\vartheta }_{2}{\vartheta }_{3}}\right)+\sqrt{-2{\vartheta }_{2}{\vartheta }_{3}}}{2{\vartheta }_{2}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$Another form of dark-singular soliton is obtained$\begin{eqnarray}\begin{array}{l}{\psi }_{5}^{{II}}(\xi )=\left[{a}_{0}\right.\left.\,+\,{a}_{1}\left(-\displaystyle \frac{\sqrt{-6{qr}}\left(\tanh \left(\tfrac{1}{4}\xi \sqrt{-6{qr}}\right)+\coth \left(\tfrac{1}{4}\xi \sqrt{-6{qr}}\right)\right)+2\sqrt{-2{qr}}}{4q}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{array}\end{eqnarray}$
CaseIII.
If ζ0=ζ1=0, we have the following solution of (1) in the form ${\psi }_{\eta }^{{III}},(\eta =1,2,\ldots ,10)$ .
Type I: ${\zeta }_{2}=1,{\zeta }_{3}=\tfrac{-2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}-{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where ${\lambda }_{1},{\lambda }_{2},{\lambda }_{3}$ are arbitrary constants.$\begin{eqnarray}{\psi }_{1}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\rm{sech}} (\xi )}{{\lambda }_{2}{\rm{sech}} (\xi )+{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$
Type II: ${\zeta }_{2}=1,{\zeta }_{3}=\tfrac{-2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}+{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3 are arbitrary constants.$\begin{eqnarray}{\psi }_{2}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}\mathrm{csch}(\xi )}{{\lambda }_{2}\mathrm{csch}(\xi )+{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$In particular, if we take ${\lambda }_{2}=0$ in above equations (17)–(18). We obtain the families of bright and singular solitons as follows$\begin{eqnarray}{\psi }_{1}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\rm{sech}} (\xi )}{{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$$\begin{eqnarray}{\psi }_{2}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}\mathrm{csch}(\xi )}{{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type III: ${\zeta }_{2}=4,{\zeta }_{3}=-\tfrac{4\left(2{\lambda }_{2}+{\lambda }_{4}\right)}{{\lambda }_{1}}$, ${\zeta }_{4}=\tfrac{4{\lambda }_{2}^{2}+4{\lambda }_{4}{\lambda }_{2}+{\lambda }_{3}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3, λ4 are arbitrary constants.$\begin{eqnarray}{\psi }_{3}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{{\rm{sech}} }^{2}(\xi )}{{\lambda }_{2}\tanh (\xi )+{\lambda }_{3}+{\lambda }_{4}{{\rm{sech}} }^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type IV: ${\zeta }_{2}=4,{\zeta }_{3}=\tfrac{4\left({\lambda }_{4}-2{\lambda }_{2}\right)}{{\lambda }_{1}}$, ${\zeta }_{4}=\tfrac{4{\lambda }_{2}^{2}-4{\lambda }_{4}{\lambda }_{2}+{\lambda }_{3}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3, λ4 are arbitrary constants.$\begin{eqnarray}{\psi }_{4}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\mathrm{csch}}^{2}(\xi )}{{\lambda }_{2}\coth (\xi )+{\lambda }_{3}+{\lambda }_{4}{\mathrm{csch}}^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$In particular, if we consider λ2=λ4; another family of dark and singular solitons are obtained as follows$\begin{eqnarray}{\psi }_{4}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\mathrm{csch}}^{2}(\xi )}{{\lambda }_{2}\coth (\xi )+{\lambda }_{3}+{\lambda }_{2}{\mathrm{csch}}^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type V: ${\zeta }_{2}=-1,{\zeta }_{3}=\tfrac{2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}-{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3 are arbitrary constants.$\begin{eqnarray}\begin{array}{l}{\psi }_{6}^{{III}}(\xi )\,=\,\left[{a}_{0}+{a}_{1}\left(-\displaystyle \frac{{\lambda }_{1}(\sinh ({\lambda }_{1}\xi )+\cosh ({\lambda }_{1}\xi ))(\sinh ({\lambda }_{1}\xi )+\cosh ({\lambda }_{1}\xi )+{\lambda }_{2})}{{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{array}\end{eqnarray}$Type VI: ${\zeta }_{2}=4,{\zeta }_{3}=\tfrac{-2{\lambda }_{3}}{{\lambda }_{1}},{\zeta }_{4}=\tfrac{{\lambda }_{3}^{2}-{\lambda }_{2}^{2}}{{\lambda }_{1}^{2}}$, where ${\lambda }_{1},{\lambda }_{2},{\lambda }_{3}$ are arbitrary constants.$\begin{eqnarray}{\psi }_{8}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}\csc (\xi )}{{\lambda }_{2}\csc (\xi )+{\lambda }_{3}}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$Type VII: ${\zeta }_{2}=-4,{\zeta }_{3}=\tfrac{4\left(2{\lambda }_{2}+{\lambda }_{4}\right)}{{\lambda }_{1}}$, ${\zeta }_{4}=-\tfrac{4{\lambda }_{2}^{2}+4{\lambda }_{4}{\lambda }_{2}-{\lambda }_{3}^{2}}{{\lambda }_{1}^{2}}$, where λ1, λ2, λ3, λ4 are arbitrary constants.$\begin{eqnarray}{\psi }_{9}^{{III}}(\xi )=\left[{a}_{0}+{a}_{1}\left(\displaystyle \frac{{\lambda }_{1}{\sec }^{2}(\xi )}{{\lambda }_{2}\tan (\xi )+{\lambda }_{3}+{\lambda }_{4}{\sec }^{2}(\xi )}\right)\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$
CaseIV.
If ζ1=ζ3=0, we have the following solutions of (1) in the form ${\psi }_{\eta }^{{IV}},(\eta =1,2,\ldots ,16)$ [34, 35].
For ${\zeta }_{0}=\tfrac{1}{4},{\zeta }_{2}=\tfrac{1-2{m}^{2}}{2},{\zeta }_{4}=\tfrac{1}{4}$, the solution of (1) is of the form$\begin{eqnarray}{\psi }_{3}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\mathrm{cn}\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$gives the bright soliton for $m\to 1$,$\begin{eqnarray}{\psi }_{3}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}{\rm{sech}} (\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$and the periodic singular solution for $m\to 0$,$\begin{eqnarray}{\psi }_{3}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}\cos (\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$for ${\zeta }_{0}=\tfrac{1}{4},{\zeta }_{2}=\tfrac{1-2{m}^{2}}{2},{\zeta }_{4}=\tfrac{1}{4}$, the solution of (1) is of the form$\begin{eqnarray}{\psi }_{13}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\mathrm{ns}\xi \pm \mathrm{cs}\xi )\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\end{eqnarray}$gives the combined dark-singular wave solution for $m\to 1$,$\begin{eqnarray}{\psi }_{13}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\coth (\xi )+\mathrm{csch}(\xi ))\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}},\,\end{eqnarray}$and the periodic singular solution for $m\to 0$,$\begin{eqnarray}{\psi }_{13}^{{IV}}(\xi )=\left[{a}_{0}+{a}_{1}(\cot (\xi )+\csc (\xi ))\right]{{\rm{e}}}^{{\rm{i}}{\rm{\Phi }}}.\end{eqnarray}$
3. Physical description
The graphical representation of solitons has been illustrated in the following figures, for various values of the parameters. Mathematica 11 is used to carry out simulations and to visualize the behavior of nonlinear waves observed by the equation (1).
Figures 1(a), (b), and (c) illustrate the 3D chart of the absolute value of ${\psi }_{1}^{I}(x,y,t)$ established in Case I (Type I) when t=−0.5, t=0, and t=0.5 respectively. Figure 1 represents complex solitary wave solution with the parameters ϑ1=1, ϑ2=−1, ϑ3=1, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, a=1, b=−1, p=−2, q=1, and r=−3.
Figure 1.
New window|Download| PPT slide Figure 1.$| {\psi }_{1}^{I}(x,y,t)| :$ The complex solitary wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.
Figures 2(a), (b), and (c) show the 3D chart of the absolute value of ${\psi }_{1}^{{III}}(x,y,t)$ established in Case III (Type I) when t=−0.5, t=0, and t=0.5 respectively. Figure 2 represents complex bright soliton wave solution with the parameters λ1=−1, λ2=−1, λ3=−2, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, a=1, b=−1, p=−2, q=1, and r=−3.
Figure 2.
New window|Download| PPT slide Figure 2.$| {\psi }_{1}^{{III}}(x,y,t)| :$ The complex bright soliton wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.
Figures 3(a), (b), and (c) show the 3D chart of the absolute value of ${\psi }_{3}^{{III}}(x,y,t)$ established in Case III (Type III) when t=−0.5, t=0, and t=0.5 respectively. Figure 3 represents complex dark soliton wave (a ’W ’ shape wave) solution with the parameters λ1=1, λ2=−1, λ3=−2, λ4=1, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, a=1, b=−1, p=−2, q=1, and r=−3.
Figure 3.
New window|Download| PPT slide Figure 3.$| {\psi }_{3}^{{III}}(x,y,t)| :$ The complex dark soliton wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.
Figures 4(a), 4(b), and 4(c) show the 3D chart of the absolute value of ${\psi }_{3}^{{IV}}(x,y,t)$ established in Case IV when t=−0.5, t=0, and t=0.5 respectively. Figure 4 represents complex elliptic wave solution with the parameters λ1=−1, ${\lambda }_{2}$=-1, λ3=−2, ϱ1=1, ϱ2=3, ϱ3=4, ϱ4=−1, ${\zeta }_{0}=\tfrac{1}{4},{\zeta }_{2}=\tfrac{1-2{m}^{2}}{2},{\zeta }_{4}=\tfrac{1}{4},m=\tfrac{1}{3},a=1$, b=−1, p=−2, q=1, and r=−3.
Figure 4.
New window|Download| PPT slide Figure 4.$| {\psi }_{3}^{{IV}}(x,y,t)| :$ The complex elliptic wave solution when (a) t=−0.5 (b) t=0 (c) t=0.5.
4. Conclusions
In this study, new soliton and elliptic wave solutions with different wave structures for the Heisenberg ferromagnetic spin chain equation have been constructed via the extended FAN sub-equation method. A set of new exact solutions is found corresponding to various parameters. The graphical representations of the solutions are also demonstrated by figures 1–4, to investigate the behavior of the nonlinear model. Moreover, it is observed that the proposed approach can also be applied to other types of more complex models of contemporary science.
Acknowledgments
This work is funded by the Basic Science Research Unit, Scientific Research Deanship at Majmaah University, project number RGP-2019-4. The authors is extremely grateful to Majmaah University, Deanship of Scientific Research and Basic Science Research Unit, Majmaah University.
LiuJ GOsmanM SZhuW HZhouLAiG P2019 Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers 125 175 DOI:10.1007/s00340-019-7287-8 [Cited within: 1]
TariqK UYounisMRezazadehHRizviS T ROsmanM S2018 Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution 32 1850317 DOI:10.1142/S0217984918503177
OsmanM SLuDKhaterM M AAttiaR A M2019 Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model 192 162927 DOI:10.1016/j.ijleo.2019.06.027
JawadA J A MBiswasAAbdelatyMZhouQMoshokoaS PBelicM2018 Chirped singular and combo optical solitons for Gerdjikov-Ivanov equation using three integration forms 172 144149 DOI:10.1016/j.ijleo.2018.07.013
Abdel-AtyM2014 Linear entropy of a driven central spin interacting with an antiferromagnetic environment 6 532539 DOI:10.4236/ns.2014.67052
TrikiHJovanoskiZBiswasA2014 Solitary waves, shock waves and singular solitons of the generalized ostrovsky-benjamin-bona-mahoney equation 8 113116 DOI:10.12785/amis/080113
LathaM MVasanthiC C2014 An integrable model of (2 + 1)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations 89 065204 DOI:10.1088/0031-8949/89/6/065204 [Cited within: 1]
WangQ MGaoY TSuC QMaoB QGaoZYangJ W2015 Dark solitonic interaction and conservation laws for a higher-order (2 + 1)-dimensional nonlinear Schrödinger-type equation in a Heisenberg ferromagnetic spin chain with bilinear and biquadratic interaction 363 440456 DOI:10.1016/j.aop.2015.10.001
LiuD YTianBJiangYXieX YWuX Y2016 Analytic study on a (2 + 1)-dimensional nonlinear Schrödinger equation in the Heisenberg ferromagnetism 71 20012007 DOI:10.1016/j.camwa.2016.03.020 [Cited within: 1]
YangX FDengZ CWeiY2015 A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application 2015 117 DOI:10.1186/s13662-015-0452-4 [Cited within: 1]
ShakeelMMohyud-DinS TIqbalM A2018 Modified extended exp-function method for a system of nonlinear partial differential equations defined by seismic sea waves 91 28 DOI:10.1007/s12043-018-1601-6 [Cited within: 1]
Sabi’uJJibrilAGaduA M2019 New exact solution for the (3 + 1) conformable space-time fractional modified Korteweg-de-Vries equations via Sine-Cosine method 13 9195 DOI:10.1080/16583655.2018.1537642 [Cited within: 1]
ZhangW2010 The extended tanh method and the exp-function method to solve a kind of nonlinear heat equation 2010 DOI:10.1155/2010/935873 [Cited within: 1]
IslamM SKhanKAkbarM A2017 Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations 25 1318 DOI:10.1016/j.joems.2016.03.008 [Cited within: 1]
KaurBGuptaR K2019 Dispersion analysis and improved F-expansion method for space-time fractional differential equations 96 837852 DOI:10.1007/s11071-019-04825-w
MaY LLiB QFuY Y2018 A series of the solutions for the Heisenberg ferromagnetic spin chain equation 41 33163322 DOI:10.1002/mma.4818 [Cited within: 1]
RadyA AOsmanE SKhalfallahM2010 The homogeneous balance method and its application to the Benjamin-Bona-Mahoney (BBM) equation 217 13851390 DOI:10.1016/j.amc.2009.05.027 [Cited within: 1]
JafariHTajadodiHBaleanuD2014 Application of a homogeneous balance method to exact solutions of nonlinear fractional evolution equations 9 021019 DOI:10.1115/1.4025770 [Cited within: 1]
KumarV SRezazadehHEslamiMIzadiFOsmanM S2019 Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity 5 127 DOI:10.1007/s40819-019-0710-3 [Cited within: 1]
OsmanM SGhanbariBMachadoJ A T2019 New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity 134 20 DOI:10.1140/epjp/i2019-12442-4 [Cited within: 1]
OsmanM S2018 On complex wave solutions governed by the 2D Ginzburg-Landau equation with variable coefficients 156 169174 DOI:10.1016/j.ijleo.2017.10.127
OsmanM SWazwazA M2019 A general bilinear form to generate different wave structures of solitons for a (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation 42 62776283 DOI:10.1002/mma.5721
OsmanM S2019 One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation 96 14911496 DOI:10.1007/s11071-019-04866-1
Abdel-GawadH ITantawyMOsmanM S2016 Dynamic of DNA’s possible impact on its damage 39 168176 DOI:10.1002/mma.3466
OsmanM S2016 Multi-soliton rational solutions for quantum Zakharov-Kuznetsov equation in quantum magnetoplasmas 26 434443 DOI:10.1080/17455030.2016.1166288
JavidARazaNOsmanM S2019 Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets 71 362 DOI:10.1088/0253-6102/71/4/362 [Cited within: 1]
YombaE2006 The modified extended Fan sub-equation method and its application to the (2 + 1)-dimensional Broer-Kaup-Kupershmidt equation 27 187196 DOI:10.1016/j.chaos.2005.03.021 [Cited within: 3]
LiB QMaY L2019 Lax pair, Darboux transformation and Nth-order rogue wave solutions for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation 77 514524 DOI:10.1016/j.camwa.2018.09.054 [Cited within: 2]
LiB QMaY L2019 Characteristics of rogue waves for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain system 474 537543 DOI:10.1016/j.jmmm.2018.10.133
ZhaoX HTianBLiuD YWuX YChaiJGuoY J2016 Dark solitons interaction for a (2 + 1)-dimensional nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain 100 587595 DOI:10.1016/j.spmi.2016.10.014
TrikiHWazwazA M2016 New solitons and periodic wave solutions for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation 30 788794 DOI:10.1080/09205071.2016.1153986 [Cited within: 1]
BulutHSulaimanT ABaskonusH M2018 Dark, bright and other soliton solutions to the Heisenberg ferromagnetic spin chain equation 123 1219 DOI:10.1016/j.spmi.2017.12.009 [Cited within: 2]