Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61921002, 61988102)
Received Date:11 August 2021
Accepted Date:15 September 2021
Available Online:22 September 2021
Published Online:20 December 2021
Abstract:The physical properties and dynamics of molecules can be studied by the interaction between electromagnetic field and molecular system. The continuous development of terahertz technology provides a terahertz source capable of generating a sub-picosecond directional intense electric field. The generated intense-field terahertz wave has the same electric field intensity as the molecular local electric field environment, and on a sub-picosecond time scale of the directional electric field there can happen many ultrafast physical and chemical reactions. At present, the interaction between terahertz waves and molecules is limited mainly to the resonance interaction, that is, the molecules transition at different vibrational levels, caused through dipole interaction. In this work, based on the density functional theory calculation and the finite difference time domain solution method of Schr?dinger equation, the intense non-resonance effect of intense terahertz wave electric field on hydrogen molecules is studied. The results show that under the action of intense terahertz wave sub-picosecond directional intense electric field, hydrogen molecule will produce an induced dipole moment. This dipole interacts with the external terahertz field, resulting in the fluctuation of proton probability density distribution and the change of vibration energy level population. Based on the non-resonant interaction between non-polar diatomic molecule hydrogen and intense terahertz wave, a unique way of producing the interaction between electromagnetic waves and molecules is displayed in this work, which is a method of studying the dynamics of non-polar molecules and molecules with weak polarity in intense terahertz field. Keywords:hydrogen molecule/ terahertz wave/ non-resonance/ induce dipole moment
全文HTML
--> --> --> -->
2.1.分子计算模型及氢分子的势能面扫描
首先建立如图1的分子计算模型. 1个氢分子包含2个质子和2个电子, 采用玻恩-奥本海默绝热近似, 将原子核的运动与电子的运动进行分离, 引入相对坐标及折合质量, 氢分子的振动可以简化为一维振动问题, 描述原子核振动的定态薛定谔方程为 图 1 氢分子的计算模型(球体表示氢原子), 两个氢核的连线平行于z轴 Figure1. Calculation model of hydrogen molecules (spheres represent hydrogen atoms), two hydrogen nuclei are parallel to the z axis.
其中$v(t)$和$\alpha (t)$分别为波函数对时间的一阶、二阶偏导数. 选取合适的空间步长$\Delta z = $0.005 ?以及空间步长$ \Delta t = 1\;{\text{as}} $, 使得迭代求解的结果收敛. -->
3.1.静电场下氢分子的势能面
无外加电场的情形时. 经势能面扫描得到的氢分子的势能面曲线、质子振动基态及更高振动能级下的概率密度分布如图2所示. 黑色曲线代表氢分子的势能面曲线, 红色曲线表示的零点振动能为534.2 meV, 与实验值接近, 故本文对氢分子振动问题的一维近似的方法是合理的. 不同颜色的曲线表示基态及更高振动能级的氢核概率密度分布. 随着能级的增加, 概率密度分布曲线的峰数目不断增加, 同时z轴方向概率的分布区间增大, 这反映了质子位置的不确定性范围增加. 图 2 无外加电场时氢分子势能面(黑色曲线)及各能级概率密度分布曲线(彩色曲线), 氢分子的前3个本征振动模式由3条彩色曲线表示, 图例的数字代表氢分子每个本征模的能量E, 这里将势能面最低点设置为0 Figure2. Without external electric field, the potential energy surface of hydrogen molecule (black curve) and the probability density distribution curve of each energy level (color curves). The first three eigen vibration modes of hydrogen molecule are represented by three color curves, the number in the legend represents the energy of each eigenmode of the hydrogen molecule, and the lowest point of potential energy surface is set to 0.
对氢分子体系施加不同场强的z向静电场, 并进行势能面扫描, 得到如图3所示的氢分子势能面. 随着外加电场的场强从0逐渐增大, 势阱逐渐变宽. 当外加电场的强度增大至45 GV/m附近时, 最小势能点的位置会逐渐发生偏转, 新的最小势能点位置出现在2.8 ?附近. 图 3 氢分子的势能面随外加电场强度与键长的变化图. 这幅图是用三次样条插值方法绘制, 颜色块代表能量, 单位是eV. 在电场强度增加至45 GV/m附近时, 最小势能点发生移动, 新的最小势能点出现在2.8 ?附近. 为了更清楚地展示势能面, 大于5 eV的体系势能用深红色表示 Figure3. Variation of potential energy surface of hydrogen molecule with applied electric field intensity and bond length. This map is drawn by cubic spline interpolation method. The color block represents energy in eV. When the electric field intensity increases to 45 GV/m, the minimum potential energy point moves, and the new minimum energy point appears near 2.8 ?. In order to show the potential energy surface more clearly, the potential energy of the system greater than 5 eV is expressed in dark red.
23.2.强场太赫兹波对氢分子振动态的作用 -->
3.2.强场太赫兹波对氢分子振动态的作用
为模拟施加在氢分子体系中的太赫兹场波形, 考虑表达式(5)的太赫兹高斯脉冲场, 计算所用的4个太赫兹频段的脉冲场如图4所示, 脉冲中心设置在0.4 ps, 幅值有60及35 GV/m两种, 脉宽有20及90 fs两种. 幅值相同的两种脉宽的脉冲场经傅里叶变换的频谱图如图5所示. 功率分别集中在0—15 THz以及0—3 THz频谱范围内. 以下将利用这些太赫兹脉冲场作用氢分子体系来探索产生诱导偶极矩, 发生非共振作用从而引起振动能级改变的可能性. 图 4 本文计算所使用的4个太赫兹高斯脉冲场的波形图, 幅值分别为35 GV/m (红色、紫色线)和60 GV/m (蓝色、黑色线), 脉宽分别为90 fs (红色、蓝色线)和20 fs (紫色、黑色线) Figure4. Waveforms of four THz pulse fields are calculated, the amplitudes are 35 GV/m (red, purple lines), 60 GV/m (blue, black lines), pulse width are 90 fs (red, blue lines), 20 fs (purple, black lines).
图 5 脉宽为90与20 fs的太赫兹脉冲波经傅里叶变换后的频谱图, 纵轴代表归一化的功率密度 Figure5. Spectrum of THz pulse waves with 90 fs and 20 fs pulse width after fast Fourier transform. The longitudinal axis represents normalized power density.
考虑幅值为35 GV/m的太赫兹强场对氢分子振动的影响, 利用时域有限差分法, 得到随时间演化的氢分子的质子概率密度分布图(图6)及各振动能级的布居数图(图7). 由质子的概率密度分布图可看出, 两者在场作用稳定时后续均无明显的振动, 振动能级布居数几乎不变, 图中各能态布居数总和表示所有能态的占比和, 其值为1表示薛定谔方程的FDTD计算结果是收敛的. 图 6 氢分子在幅值为35 GV/m的z方向高斯定向强场作用下质子概率密度分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 颜色条代表质子概率密度 Figure6. Evolution diagram of proton probability density distribution of hydrogen molecule under the action of Gaussian directional intense field in z direction with amplitude of 35 GV/m. The pulse widths of applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps, and the color strip represents the proton probability density.
图 7 氢分子在幅值为35 GV/m的z方向高斯定向强场作用下能级布居数分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 不同颜色的曲线代表不同能级的布居数 Figure7. Evolution diagram of the energy level population distribution of hydrogen molecule under the action of the Gaussian directional intense field in the z direction with the amplitude of 35 GV/m. The pulse widths of the applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps. Curves of different colors represent populations of different energy levels.
增大太赫兹场幅值至60 GV/m, 且保持两种频率不变, 可得另外两组随时间演化的氢分子的质子概率密度图(图8)及各振动能级的布居数图(图9), 由质子的概率密度分布图可以看出, 脉宽为90 fs的太赫兹场作用稳定时, 后续无明显的振动. 而脉宽为20 fs时, 后续出现了较为稳定的波动, 在振动能级布居数图中, 稳定时基态的占比不再是1, 高能级出现且各占比稳定. 而氢分子的基态振动频率的实验值为132 THz[33], 此频率远在90及20 fs的太赫兹高斯脉冲频谱图覆盖范围外, 但振动能级发生更明显的改变. 说明此时在太赫兹场作用下, 体系中出现诱导偶极矩, 诱导偶极矩与太赫兹场发生了非共振作用, 使原有的振动能级改变. 图 8 氢分子在幅值为60 GV/m的z方向高斯定向强场作用下质子概率密度分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 颜色条代表质子概率密度 Figure8. Evolution diagram of proton probability density distribution of hydrogen molecule under the action of Gaussian directional intense field in z direction with amplitude of 60 GV/m. The pulse widths of applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps, and the color strip represents the proton probability density.
图 9 氢分子在幅值为60 GV/m的z方向高斯定向强场作用下能级布居数分布的演化图, 施加的高斯脉冲电场的脉宽分别为(a) 90 fs与(b) 20 fs, 高斯脉冲中心设置在0.4 ps, 不同颜色的曲线代表不同能级的布居数 Figure9. Evolution diagram of the energy level population distribution of hydrogen molecule under the action of the Gaussian directional strong field in the z direction with the amplitude of 60 GV/m. The pulse widths of the applied Gaussian pulse electric field are (a) 90 fs and (b) 20 fs, respectively. The Gaussian pulse center is set at 0.4 ps. Curves of different colors represent populations of different energy levels