1.Department of Aerospace Science and Technology, Space Engineering University, Beijing 101400, China 2.Laboratory of Quantum Detection & Awareness, Space Engineering University, Beijing 101400, China 3.State Key Laboratory for Laser Propulsion and its Applications, Space Engineering University, Beijing 101400, China
Fund Project:Project supported by the Program for National Defense Science and Technology Innovation Special Zone of China, the National Natural Science Foundation of China (Grant Nos. 11772001, 61805283), and the Youth Top-Notch Talent Support Program of Beijing, China (Grant No. 2017000026833ZK23).
Received Date:24 May 2021
Accepted Date:12 August 2021
Available Online:30 August 2021
Published Online:20 December 2021
Abstract:Owing to its light effective mass, polariton can easily realize Bose-Einstein condensates (BEC) and can also produce gyro effect under external drive. Therefore, it has a promising application prospect. Based on the Gross-Pitaevskii equation, the evolution of the exciton polaron BEC system in the annular microcavity is studied. Two key parameters affecting the characteristics of the exciton polaron system, namely the size of the microcavity and the configuration of the ring-shaped pumped beam, are investigated. The size of microcavity often directly affects the volume and power consumption of integrated devices. In addition, the number of coherent petals of exciton polariton superposition state matter wave propagated in microcavity is closely related to the precision and sensitivity of gyro, and the size of microcavity has a direct effect on the number of coherent petals. At the same time, whether the pumping region is continuous or not also has a key effect on the evolution of the system, and different pump configurations will affect the evolutions of the system. We find that in the microcavity radius on a micron scale, the annular microcavity can excite the petal of vortex superposition state when pumped by pumping light, and the petals can be stable, but circular cavity with a certain radius can “accommodate” a limited vortex quantum number, when vortex quantum number is too large, the system will be unstable and unable to support the formation of stable petals. However, with the increase of the radius of the annular microcavity, the superposition petal number of the exciton polariton system contained in the annular region will also increase, and the maximum petal number contained in the exciton polariton system has a positive linear correlation with the inner radius of the annular microcavity. At the same time, we find that when the pump laser configuration is changed, the system will evolve into a special form of steady state. The calculation results show that when microcavity parameters are the same but for only changing the radial width of single pump, the number of petals obtained is three times that before changing the radial width. In such a case, the number of superposition petals not only exceeds the previously calculated maximum number of petals accommodated by the annular cavity under the radius but also there appear the multiple petals combined radially. Under the double-ring pump system, changing the width of the hollow ring may produce not only the new exciton polariton condensation in the hollow ring, but also vortex states in the original petal. Under each of the three-ring and four-ring pumping condition, the evolution of the system finally presents a multi-petal state in the radial direction. Because these vortex superposition states contain the information about the density and the phase, it has important guiding significance for designing the new system of gyroscope. Therefore, these special evolutionary results open a new direction for studying the new system gyroscope. Keywords:quantum vortex gyroscope/ exciton polaron/ superposition vortex states/ ring-shaped pump
其中$ w $表示初始波包的宽度, $ l $表示涡旋量子数, 根据$ l $的不同取值可以构造出不同的涡旋叠加态, 所形成的涡旋叠加态呈相互对称的瓣状, 称为“叠加态花瓣”, 简称为“花瓣”. 产生的“花瓣”个数称为“花瓣数”, 花瓣数与涡旋量子数$ l $有关, 为$ 2 l $.
3.微腔半径与叠加态花瓣数的关系微腔的尺寸往往直接影响着集成器件的体积和功耗, 此外传播于微腔中的激子极化激元叠加态物质波的相干花瓣的数量与陀螺的精度和灵敏度息息相关, 而微腔的大小对这种相干花瓣的数量有着直接的影响. 考虑在微腔大小不变的情况下, 即计算区域一定, 通过改变体系的期望叠加态花瓣数, 分析体系的演化稳定性. 实验假设微腔区域为在二维平面上半径为$5$和$10\;{\text{μ}}{\rm{m}}$的同心圆所构成的环形带, 分别取涡旋量子数$l = 3, {\text{ 5}}, {\text{ 8}}$对激子极化激元体系的演化进行分析, 不同的涡旋量子数对体系总粒子数的影响如图1(a)所示. 图 1 涡旋量子数$l = 3, {\text{ 5}}, {\text{ 8}}$时的计算结果 (a)激子极化激元体系在演化时间从0到$100\;\hbar /{\text{meV}}$的总粒子数变化图; (b), (c), (d)涡旋量子数$l = 3, {\text{ 5, 8}}$时激子极化激元体系在$t = 100\;\hbar /{\text{meV}}$时的粒子数密度分布情况 Figure1. Calculated results of vortex quantum number $ l=3, \text{ 5}, \text{ 8} $: (a) Total particle number of exciton polariton system changes from 0 to $100\;\hbar /{\text{meV}}$ in evolution time; (b), (c), (d) particle number density distribution of exciton polariton system at $t = 100\;\hbar /{\text{meV}}$ with the vortex quantum number $l = 3, {\text{ 5, 8}}$.
根据计算结果发现, 计算时间t在$ 0— 100\;\hbar /{\text{meV}} $范围内, 当$ l $取值为3和5时, 激子极化激元体系能演化至稳定状态, 即体系内的总粒子数不再发生变化; 当进一步增加$ l $, 取$l = 8$时, 激子极化激元体系的总粒子数在短时间内达到稳定的基础上将会出现波动, 直到$ 100\;\hbar /{\text{meV}} $时刻总粒子数也没有再次达到稳定. 分别取$ t = 100\;\hbar /{\text{meV}} $ 时的计算结果作图分析, 3种涡旋量子数对应的体系粒子数密度演化情况如图1(b)—(d)所示. 可以看出, 对应于涡旋量子数$l = 3$和$l = 5$时, 体系最终可以演化为花瓣状, 在粒子数密度分布图中清楚地分辨出有6个和10个花瓣; 但涡旋量子数$l = 8$时, 粒子无序地分布在演化区域中, 此种情况下, 花瓣消失. 出现这种情况的原因在于, 在(1)式所描述的方程模型中泵浦项$P(r)$和耗散项$\gamma $决定了系统最终是一种动态平衡, 其必然存在着一个涨落. 在选择了一定环形大小的情况下, “花瓣”数越多, 系统中某处微小的不平衡就会使整体的振荡变大, 导致系统各处非线性能量产生的涨落也变大, 进而影响了激子极化激元的稳定. 随后, 改变微腔的半径, 将环形微腔的区域从之前的$5—10\;{\text{μ}}{\rm{m}}$改为$15—20\;{\text{μ}}{\rm{m}}$ (下文称之为“大半径”模式). 在此种情况下, 微腔的宽度没有改变, 但环的半径增大. 如图2所示, 当涡旋量子数$l = 8$时可以演化至稳定状态, 密度分布中出现了$2 l$即16个花瓣, 且体系的总粒子数密度曲线最终也保持稳定. 图 2 大半径下激子极化激元体系在$l = 8$时的演化图像 (a) $t = 100\;\hbar /{\text{meV}}$时, 体系的粒子数密度分布; (b) $t = 100\;\hbar /{\text{meV}}$时刻之前体系总粒子数的演化情况 Figure2. Evolution image of the exciton polariton system with a large radius at $l = 8$: (a) Particle number density distribution of the system at $t = 100\;\hbar /{\text{meV}}$; (b) evolution of the total particle number of the system before $t = 100\;\hbar /{\text{meV}}$.
据此认为, 在增大环形微腔半径下, 环形微腔能够容纳的最大叠加态花瓣数也会随之增大. 也就是说, 激子极化激元体系能容纳的最大叠加态花瓣数与环形微腔的半径是正相关的. 为了进一步验证这个猜想, 在下面的计算中设置环形微腔的宽度为$5\;{\text{μ}}{\rm{m}}$保持不变, 不断改变环形微腔的内半径的大小, 计算得出在不同内半径大小的情况下, 激子极化激元体系能够容纳的最大花瓣数, 具体结果如图3所示. 图 3 在改变环形微腔半径后, 计算分析得到的对应体系下的最大承载花瓣数 (a)环形泵浦半径与能容纳的最大花瓣数的关系, 环形微腔宽度统一为$5\;{\text{μ}}{\rm{m}}$, 横坐标是环形微腔的内半径, 纵坐标是能够容纳的最大花瓣数. 点b, c, d分别是图(a)中的3个取值点, 对应的环形微腔内半径分别为$8$, $15$和$22\;{\text{μ}}{\rm{m}}$. (b), (c), (d) 3 个取值点在演化时间$t = 100\;\hbar /{\text{meV}}$时的粒子数密度分布. Figure3. After changing the radius of the annular microcavity, the calculated maximum number of bearing petals in the corresponding system. (a) Relationship between the annular pumping radius and the maximum number of petals that can be accommodated. The width of the annular microcavity is $5\;{\text{μ}}{\rm{m}}$, the abscess is the inner radius of the annular microcavity, and the ordinate is the maximum number of petals that can be accommodated. Points b, c and d are the three value points in panel (a) respectively, which correspond to the radii of the annular microcavity of $8$, $15$ and $22\;{\text{μ}}{\rm{m}}$ respectively. (b), (c), (d) Particle number density distribution of the three value points at evolution time $t = 100\;\hbar /{\text{meV}}$.
下面在泵浦区域不连续情况下, 分析泵浦激光对体系演化的影响情况. 通过人为地构造出空白的泵浦间隙环带(以下简称“空环带”)来改变泵浦的区域, 以此来构造出所谓的双环泵浦、三环泵浦等. 比如, 在泵浦区域内构造出一个空环带, 即可构造出双环泵浦. 由此类推, 设置不同数量的空环带, 即可对泵浦区域进行构造, 以达到使用多环泵浦对实验区域进行演化分析的研究. 这里选取环形微腔的半径仍为二维平面上$5—10\;{\text{μ}}{\rm{m}}$的环形区域, 涡旋量子数取$ l = 3 $, 其他参数与前述中的计算保持不变, 分别构造了单环、双环、三环和四环的泵浦区域对涡旋叠加态的演化进行分析, 实验中设定泵浦服从(2)式中的环形泵浦分布, 3种泵浦的强度相同, 其余参数条件与图1(b)的计算条件相同, 计算得出的结果如图5所示. 图 5 多环泵浦下的涡旋叠加态演化情况, 图(a), (b), (c), (d)分别表示单环、双环、三环、四环情况下的计算结果, 其中第一行为构造的多环泵浦区域示意图, 红色区域表示泵浦区域, 白色区域表示构造出的空环带; 第二行对应于多环泵浦下体系演化的粒子数密度分布, 取值时刻为$t = 100\;\hbar /{\text{meV}}$ Figure5. Evolution of vortex superposition state under multiloop pump. (a), (b), (c) and (d) show the calculation results of single-ring, double-ring, three-ring, and four-ring respectively. The first shows the schematic diagram of the multi-ring pumping region constructed, with the red region representing the pumping region and the white region representing the empty ring zone constructed. The second row corresponds to the particle number density distribution of the system evolution under the multi-loop pump, and the value time is $t = 100\;\hbar /{\text{meV}}$.
由图5可以看出, 当设定不同环数泵浦区域进行计算时, 最终的演化稳态基本保持着6个花瓣数. 其中, 在双环泵浦情况下, 6个花瓣内部各出现了两处密度极大值和两处密度极小值. 在三环泵浦和四环泵浦的情况下, 每个花瓣态按照径向分为了3个或者4个较小的花瓣态, 同一径向上的密度分布规律同单环下的计算结果类似. 对图5的结果分析发现, 双环泵浦下的激子场演化相较于其他3种泵浦有明显的差异, 此处产生的现象与2014年Dreismann等[26]的研究结论相似, Dreismann 等在双环泵浦下, 通过构造结构势垒, 将激子极化激元限制在微腔中并产生凝聚, 与本文类似的是, 实验观察到的激子极化激元凝聚发生在双环泵浦中间的空环带, 而本文计算中亦是在空环带上发生了与施加泵浦的区域不同的现象. 因此下面对双环泵浦情况进行深入分析, 接下来改变泵浦区域的径向宽度, 即空环带的大小, 其余参数保持不变. 以计算区域径向中心为空环带径向中心, 不断改变空环带的径向宽度, 部分数值计算结果如图6所示. 图 6 不同空环带宽度下双环泵浦时激子场演化的分析, 图(a), (b), (c)分别对应于空环带区域为$6.6—8.4\;{\text{μ}}{\rm{m}}$, $6.9—8.1\;{\text{μ}}{\rm{m}}$和$7.2—7.8\;{\text{μ}}{\rm{m}}$时体系演化的粒子数密度分布, 取值时刻为$t = 100\;\hbar /{\text{meV}}$ Figure6. Analysis of the evolution of exciton field under double-ring pump with different void band widths. (a), (b) and (c) correspond to the particle number density distribution of the system evolution when the void band region is $6.6-8.4\;{\text{μ}}{\rm{m}}$, $6.9-8.1\;{\text{μ}}{\rm{m}}$ and $7.2-7.8\;{\text{μ}}{\rm{m}}$ respectively, and the value time is t = 100 $ \hbar /{\text{meV}} $.