1.Department of Aerospace Science and Technology, Space Engineering University, Beijing 101400, China 2.Laboratory of Quantum Detection & Awareness, Space Engineering University, Beijing 101400, China 3.State Key Laboratory for Laser Propulsion and its Applications, Space Engineering University, Beijing 101400, China
Fund Project:Project supported by the Program for National Defense Science and Technology Innovation Special Zone of China, the National Natural Science Foundation of China (Grant Nos. 11772001, 61805283), and the Youth Top-Notch Talent Support Program of Beijing, China (Grant No. 2017000026833ZK23).
Received Date:24 May 2021
Accepted Date:12 August 2021
Available Online:30 August 2021
Published Online:20 December 2021
Abstract:Owing to its light effective mass, polariton can easily realize Bose-Einstein condensates (BEC) and can also produce gyro effect under external drive. Therefore, it has a promising application prospect. Based on the Gross-Pitaevskii equation, the evolution of the exciton polaron BEC system in the annular microcavity is studied. Two key parameters affecting the characteristics of the exciton polaron system, namely the size of the microcavity and the configuration of the ring-shaped pumped beam, are investigated. The size of microcavity often directly affects the volume and power consumption of integrated devices. In addition, the number of coherent petals of exciton polariton superposition state matter wave propagated in microcavity is closely related to the precision and sensitivity of gyro, and the size of microcavity has a direct effect on the number of coherent petals. At the same time, whether the pumping region is continuous or not also has a key effect on the evolution of the system, and different pump configurations will affect the evolutions of the system. We find that in the microcavity radius on a micron scale, the annular microcavity can excite the petal of vortex superposition state when pumped by pumping light, and the petals can be stable, but circular cavity with a certain radius can “accommodate” a limited vortex quantum number, when vortex quantum number is too large, the system will be unstable and unable to support the formation of stable petals. However, with the increase of the radius of the annular microcavity, the superposition petal number of the exciton polariton system contained in the annular region will also increase, and the maximum petal number contained in the exciton polariton system has a positive linear correlation with the inner radius of the annular microcavity. At the same time, we find that when the pump laser configuration is changed, the system will evolve into a special form of steady state. The calculation results show that when microcavity parameters are the same but for only changing the radial width of single pump, the number of petals obtained is three times that before changing the radial width. In such a case, the number of superposition petals not only exceeds the previously calculated maximum number of petals accommodated by the annular cavity under the radius but also there appear the multiple petals combined radially. Under the double-ring pump system, changing the width of the hollow ring may produce not only the new exciton polariton condensation in the hollow ring, but also vortex states in the original petal. Under each of the three-ring and four-ring pumping condition, the evolution of the system finally presents a multi-petal state in the radial direction. Because these vortex superposition states contain the information about the density and the phase, it has important guiding significance for designing the new system of gyroscope. Therefore, these special evolutionary results open a new direction for studying the new system gyroscope. Keywords:quantum vortex gyroscope/ exciton polaron/ superposition vortex states/ ring-shaped pump
下面在泵浦区域不连续情况下, 分析泵浦激光对体系演化的影响情况. 通过人为地构造出空白的泵浦间隙环带(以下简称“空环带”)来改变泵浦的区域, 以此来构造出所谓的双环泵浦、三环泵浦等. 比如, 在泵浦区域内构造出一个空环带, 即可构造出双环泵浦. 由此类推, 设置不同数量的空环带, 即可对泵浦区域进行构造, 以达到使用多环泵浦对实验区域进行演化分析的研究. 这里选取环形微腔的半径仍为二维平面上$5—10\;{\text{μ}}{\rm{m}}$的环形区域, 涡旋量子数取$ l = 3 $, 其他参数与前述中的计算保持不变, 分别构造了单环、双环、三环和四环的泵浦区域对涡旋叠加态的演化进行分析, 实验中设定泵浦服从(2)式中的环形泵浦分布, 3种泵浦的强度相同, 其余参数条件与图1(b)的计算条件相同, 计算得出的结果如图5所示. 图 5 多环泵浦下的涡旋叠加态演化情况, 图(a), (b), (c), (d)分别表示单环、双环、三环、四环情况下的计算结果, 其中第一行为构造的多环泵浦区域示意图, 红色区域表示泵浦区域, 白色区域表示构造出的空环带; 第二行对应于多环泵浦下体系演化的粒子数密度分布, 取值时刻为$t = 100\;\hbar /{\text{meV}}$ Figure5. Evolution of vortex superposition state under multiloop pump. (a), (b), (c) and (d) show the calculation results of single-ring, double-ring, three-ring, and four-ring respectively. The first shows the schematic diagram of the multi-ring pumping region constructed, with the red region representing the pumping region and the white region representing the empty ring zone constructed. The second row corresponds to the particle number density distribution of the system evolution under the multi-loop pump, and the value time is $t = 100\;\hbar /{\text{meV}}$.
由图5可以看出, 当设定不同环数泵浦区域进行计算时, 最终的演化稳态基本保持着6个花瓣数. 其中, 在双环泵浦情况下, 6个花瓣内部各出现了两处密度极大值和两处密度极小值. 在三环泵浦和四环泵浦的情况下, 每个花瓣态按照径向分为了3个或者4个较小的花瓣态, 同一径向上的密度分布规律同单环下的计算结果类似. 对图5的结果分析发现, 双环泵浦下的激子场演化相较于其他3种泵浦有明显的差异, 此处产生的现象与2014年Dreismann等[26]的研究结论相似, Dreismann 等在双环泵浦下, 通过构造结构势垒, 将激子极化激元限制在微腔中并产生凝聚, 与本文类似的是, 实验观察到的激子极化激元凝聚发生在双环泵浦中间的空环带, 而本文计算中亦是在空环带上发生了与施加泵浦的区域不同的现象. 因此下面对双环泵浦情况进行深入分析, 接下来改变泵浦区域的径向宽度, 即空环带的大小, 其余参数保持不变. 以计算区域径向中心为空环带径向中心, 不断改变空环带的径向宽度, 部分数值计算结果如图6所示. 图 6 不同空环带宽度下双环泵浦时激子场演化的分析, 图(a), (b), (c)分别对应于空环带区域为$6.6—8.4\;{\text{μ}}{\rm{m}}$, $6.9—8.1\;{\text{μ}}{\rm{m}}$和$7.2—7.8\;{\text{μ}}{\rm{m}}$时体系演化的粒子数密度分布, 取值时刻为$t = 100\;\hbar /{\text{meV}}$ Figure6. Analysis of the evolution of exciton field under double-ring pump with different void band widths. (a), (b) and (c) correspond to the particle number density distribution of the system evolution when the void band region is $6.6-8.4\;{\text{μ}}{\rm{m}}$, $6.9-8.1\;{\text{μ}}{\rm{m}}$ and $7.2-7.8\;{\text{μ}}{\rm{m}}$ respectively, and the value time is t = 100 $ \hbar /{\text{meV}} $.