Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor
1.Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China 2.Southwestern Institute of Physics, Chengdu 610225, China 3.Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11905142, 11875290)
Received Date:23 November 2020
Accepted Date:16 January 2021
Available Online:28 May 2021
Published Online:05 June 2021
Abstract:Confinement of fusion born alpha particles in tokamak is the key issue to burning plasma. Apart from toroidal field ripple, instabilities can induce energetic particles to lose and be redistributed. Based on the parameters of China Fusion Engineering Testing Reactor (CFETT) hybrid scenario, alpha particle distribution and neoclassical tearing mode structure, the alpha particle loss induced under perturbation of ripple and neoclassical tearing mode (NTM) is calculated with the guiding center code ORBIT. The inputs have the initial distribution of alpha particles which is obtained with the TRANSP/NUBEAM code, the static NTM perturbation with different amplitudes which is obtained from TM1 code, and the ripple field from engineering design. The results show that the heat load on last closed flux surface is about 0.1 MW/m2, with ripple and collision included. The collisionless stochastic ripple diffusion is the main loss channel of initial alpha particle distribution in the CFETR, and the ripple perturbation has no influence on passing particles. The loss fraction does not increase with the NTM perturbation amplitude increasing, the synergistic effect is negligible. The scanning of ripple amplitude shows that the synergistic effect is slight. The monoenergetic initial distribution of alpha particles can give different types of orbits in the plane of ($ {P_\zeta },\mu $), such as the domains of trapped particle and passing particle, lost particle and confined particle. The trapped fraction of initial alpha particles is about 27%, ripple loss region in phase space is narrow and away from the main trapped particle distribution. The increasing of ripple perturbation in simulation does enlarge the ripple loss domain in the phase space ($ {P_\zeta },\mu $), which is corresponding to a lager ripple loss fraction and has more trapped-passing boundaries. The NTM perturbation does enlarge the orbit excursions of trapped particles, and thus increasing the trapped passing transition near the boundary. The slight synergistic effect in calculation with larger ripple amplitude is explained by ripple loss region having more trapped-passing boundaries, not by the profile flattening of trapped particles. The NTM perturbation and finite collision can transit the passing particle to trapped particle near the boundary. With the help of kinetic Poincare plot, neither direct particle loss nor profile flattening of trapped particles is observed. The loss fraction enhancement can happen only when the profile flattening of trapped particles takes place within the ripple loss region, which is not the case in CFETR. The conclusion of this work contributes a lot to the design of CFETR and the study of alpha particle physics. Keywords:tokamak/ alpha particle/ magnetic ripple/ neoclassical tearing mode
全文HTML
--> --> --> -->
2.1.CFETR等离子体参数和初始alpha粒子分布
经过物理和工程设计迭代, 目前CFETR主机参数如表1所列. 作为实现稳态氚自持的托卡马克装置, CFETR物理实验分两个阶段实现200—1500 MW的聚变功率, 等离子体放电占空比约为0.3—0.5, 能量增益因子Q约为5—30[19]. 基于集成模拟流程提出了CFETR稳态运行模式和混杂运行模式两种, 本文基于混杂运行模式(v201806)参数, 利用输运程序TRANSP/NUBEAM计算得到了alpha粒子初始分布下的蒙特卡罗罗样本粒子. NUBEAM模块是分析托卡马克实验中中性束注入和聚变产物的含时集成工具. 混杂运行模式(v201806)的背景等离子体剖面见图1, 聚变功率约为${P_{{\rm{fus}}}} = 1\;{\rm{ GW}}$, 台基顶部的等离子体密度为格林极限的90%. 初始alpha粒子密度分布见图2, 初始alpha粒子产自氘氚聚变反应, 能量单值分布为3.52 MeV, 速度基本各向同性. 在没有不稳定性引起的显著输运和再分布时, alpha粒子经与背景等离子体库伦碰撞慢化并形成氦灰, 符合就地慢化模型. 平衡位形为下单零偏滤器位形, 纵场和等离子体电流方向都是俯视逆时针, 安全因子剖面见图4(a). 图 1 CFETR混杂运行模式(v201806)中背景电子密度、温度和离子温度分布 Figure1. Distributions of bulk electron density, electron temperature, and bulk ion temperature in CFETR hybrid scenario (v201806).
参数
CFETR
ITER
EAST
磁轴场强${B_{{\rm{T}}0}}$/T
6.5
5.3
2
等体大半径${R_0}$/m
7.2
6.2
1.9
等体小半径a/m
2.2
2.0
0.5
等体电流${I_{\rm{p}}}$/MA
14
15
1
纵场磁体柄数N
16
18
16
表1CFETR与其他托卡马克装置主机参数对比 Table1.Main parameters comparison of CFETR and other tokomak facilities.
图 2 CFETR初始alpha粒子密度分布 Figure2. Density profile of alpha particle initial distribution in CFETR.
图 7 纵场波纹扰动下损失alpha粒子信息 (a) 损失份额随时演化; (b) 损失粒子能量分布; (c) 损失粒子螺距角分布 Figure7. Information of lost alpha particles under collision and toroidal field ripple: (a) Evolution of loss fraction; (b) energy distribution of lost particles; (c) pitch angle distribution of lost particles.
图 8 一个慢化时间后初始分布alpha粒子波纹损失局域沉积在LCFS处得到的热负荷 Figure8. The heat load at the last closed flux surface due to ripple loss of initial alpha particle distribution after a slowing down time.
为了验证图6中增大NTM扰动幅度而粒子损失份额不变的原因, 增大装置整体波纹度, 进行图6中磁场波纹叠加NTM扰动并考虑碰撞下的粒子损失计算, 结果如图10所示. 在CFETR装置实际波纹度分布下, alpha粒子的损失份额并不随NTM扰动幅度增大而增大, 但增大波纹度从工程设计值到其9倍时, 粒子损失份额随波纹度增大而显著增大. 在波纹度较大时, 可观察到一定程度的损失份额随NTM扰动幅度增大而增大. 波纹度分布整体增大引起波纹损失区扩大, 使波纹损失区朝芯部扩展并覆盖更多的粒子. 以波纹磁阱区域为例, 不同波纹度分布对应的磁阱区域如图11所示, 随着波纹损失区扩展, 逐渐靠近NTM扰动和EP主分布区, NTM扰动幅度增大开始影响进入损失区的粒子数. 图 10 半个慢化时间内不同磁场波纹度和NTM扰动幅度下的初始分布alpha粒子损失份额 Figure10. The loss fraction of initial alpha particles under different toroidal ripple and NTM perturbation amplitude.
图 11 CFETR平衡位形中不同波纹度形成的波纹磁阱 (a) 工程设计值; (b) 5倍波纹度分布; (c) 9倍波纹度分布 Figure11. The ripple well domain in CFETR equilibrium with different ripple amplitude: (a) Distribution with engineering design; (b) 5 times of ripple; (c) 9 times of ripple.