1.State Key Laboratory of Modern Optical Instrumentation, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China 2.Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China 3.State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61975177)
Received Date:23 November 2020
Accepted Date:16 December 2020
Available Online:15 April 2021
Published Online:05 May 2021
Abstract:Perovskite solar cells have been attracting more and more attentions due to their extraordinary performances in the photovoltaic field. In view of the highest certified power conversion efficiency of 25.5% that is much lower than the corresponding Shockley-Queisser limit, understanding and quantifying the main loss factors affecting the power conversion efficiency of perovskite solar cells are urgently needed. At present, the three loss mechanisms generally recognized are optical loss, ohmic loss, and non-radiative recombination loss. Including the trap-assisted bulk recombination and surface recombination, the non-radiative recombination is proved to be the dominant recombination mechanism prohibiting the increase of efficiency. In this work, based on semiconductor physics, the expressions of bulk and surface recombination currents are analytically derived. Then taking the optical loss, series and shunt resistance losses, and bulk and surface recombination losses into considerations, an equivalent circuit model is proposed to describe the current density-voltage characteristics of practical perovskite solar cells. Furthermore, by comparing to the drift-diffusion model, the pre-defined physical parameters of the drift-diffusion model well agree with the fitting parameters retrieved by the equivalent circuit model, which verifies the reliability of the proposed model. For example, the carrier lifetimes in the drift-diffusion model are consistent with the recombination factors in the equivalent circuit model. Moreover, when the circuit model is applied to analyze experimental results, the fitting outcomes show favorable consistency to the physical investigations offered by the experiments. And the relative fitting errors of the above cases are all less than 2%. Through employing the model, the dominant recombination type is clearly identified and split current density-voltage curves characterizing different loss mechanisms are offered, which intuitively reveals the physical principles of efficiency loss. Additionally, through calculating the efficiency loss ratios under the open-circuit voltage condition, quantifying the above-mentioned loss mechanisms becomes simple and compelling. The prediction capability of the model is expected to be enhanced if a series of light intensity dependent current density-voltage curves are fitted simultaneously. Consequently, this model offers a guideline to approach the efficiency limit from a circuit-level perspective. And the model is a comprehensive simulation and analysis tool for understanding the device physics of perovskite solar cells. Keywords:perovskite solar cell/ equivalent circuit model/ bulk recombination/ surface recombination
全文HTML
--> --> --> -->
2.1.等效电路模型
光照下, 理想的光伏电池可看作一个理想二极管和一个恒流源组成的并联电路, 恒流源产生的电流$ J_{{\rm{ph}}} $即为光生电流. 基于修正细致平衡模型[4], 描述实际钙钛矿太阳电池伏安曲线的改进等效电路模型如图1所示. 图 1 钙钛矿太阳电池的等效电路模型图 Figure1. Equivalent circuit model of perovskite solar cells.
表2不同情况下经等效电路模型和漂移-扩散模型仿真得到的非辐射复合参数表 Table2.Nonradiative recombination parameters retrieved from different cases by equivalent circuit model and drift-diffusion model.
仅考虑体复合时, 漂移-扩散模型设置$\tau _{{\rm{bulk}}} = $$ 100\ {\rm{ns}}$, $\tau _{\rm{{surf}}} ={\rm{ Inf}}$, 故其对应的体复合系数计算值应为$10^7\ {\rm{s}}^{-1}$, 而等效电路模型的拟合值是$2.07\times $$ 10^6\ {\rm{s}}^{-1}$, 说明该情况下体复合系数的拟合误差在可接受范围内(约为计算值的$ 1/5 $). 对应的表面复合系数$ \gamma _{{\rm{surf}}} $计算值应为无限小, 但实际等效电路模型的拟合值是$3.48\times10^5\ {\rm{s}}^{-1}$. 此时, 根据表面复合系数拟合值相对体复合系数拟合值显著小(相差一个数量级), 可推断该钙钛矿太阳电池内表面复合较弱. 仅考虑表面复合时, 设置$\tau _{{\rm{bulk}}} = {\rm{Inf}}$, $\tau _{{\rm{surf}}} = 1\ {\rm{ns}}$, 其体复合系数的计算值应为无限小, 表面复合系数的计算值应为$10^9\ {\rm{s}}^{-1}$, 而等效电路模型的拟合值为$\gamma _{{\rm{bulk}}} = $$ 1.30\times10^7\ {\rm{s}}^{-1}$, $\gamma _{{\rm{surf}}} = 1.95\times10^{9}\ {\rm{s}}^{-1}$. 同样, 该情况下表面复合系数的拟合误差在允许范围内(约为计算值的2倍), 而体复合系数拟合值相比表面复合系数拟合值显著小, 可认为钙钛矿中体复合较弱. 当改变传输层迁移率时, 体复合系数和表面复合系数的计算值应均为无限小, 而对应的等效电路拟合值分别为$\gamma_{{\rm{bulk}}} = 8.75\times10^4\ {\rm{s}}^{-1}$, $\gamma_{{\rm{surf}}} = 0.86\ {\rm{s}}^{-1}$. 对比前两个例子, 可以明显看出该情况下, 体复合系数拟合值和表面复合系数拟合值都相对较小, 即非辐射复合系数拟合值与漂移-扩散模型的寿命设定值之间有较好的对应关系. 综上, 在已知$L_{{\rm{surf}}}$和$p_{0}^{\rm h}$的情况下, 根据$ J\text{-}V $曲线拟合得到的$\gamma_{{\rm{bulk}}}$和$\gamma_{{\rm{surf}}}$的大小比较, 可以粗略判断该电池内的非辐射复合情况. 然而, 单纯比较$\gamma_{{\rm{bulk}}}$和$\gamma_{{\rm{surf}}}$的数值大小, 难以直观理解钙钛矿太阳电池中的非辐射复合机理, 因此需要更形象的比较方法. 除此之外, 分析并比较表1中的结果, 发现三种情况下的短路电流大小相近. 仅考虑表面复合时的开路电压最小, 不考虑非辐射复合但改变传输层迁移率时的效率最高但填充因子最小. 另外, 仅考虑体复合或仅考虑表面复合时的$R_{\rm{s}}$都很小, $R_{{\rm{sh}}}$都很大. 而降低传输层迁移率时, $R_{\rm{s}}$相对以上两种情况最大, $R_{{\rm{sh}}}$最小. 同样, 单纯观察$R_{\rm{s}}$和$R_{{\rm{sh}}}$的数值大小, 也难以分析欧姆损失对工作特性的影响. 故根据(1)式作出电池总电流和各子电流随电压变化的曲线, 如图3所示. 图 3 根据(1)式分解的不同情况下的钙钛矿太阳电池电流组成示意图 (a), (d) 仅考虑体复合; (b), (e) 非辐射复合以表面复合为主; (c), (f)不考虑非辐射复合但改变传输层. 其中$ J $ 代表钙钛矿太阳电池的总电流, $J_{{\rm{bulk}}}$为体复合电流, $J_{{\rm{surf}}}$为表面复合电流, $J_{{\rm{sh}}}$为电阻电流 Figure3. Decompositions of the total current density of perovskite solar cells according to Eq. (1): (a), (d) Only bulk recombination is considered; (b), (e) only surface recombination is considered; (c), (f) without non-radiative recombination and with different transport layers. J represents the total current, Jbulk represents the bulk recombination current and Jsurf represents the surface recombination current. $J_{{\rm{sh}}}$ represents the resistance current
为进一步分析串联电阻、并联电阻、体复合和表面复合对钙钛矿太阳电池光电转换效率的影响, 绘制效率损失示意图, 如图4所示(绘制方法见附录B). 图 4 不同情况下钙钛矿太阳电池的效率损失示意图 Figure4. Efficiency loss of perovskite solar cells in different cases
表3不同情况下钙钛矿太阳电池J -V曲线对应的特征参数表 Table3.Parameters retrieved from the J -V curves of different cases.
根据表3可以发现, 引入DTS之后, 相比Control, 钙钛矿太阳电池的体复合系数显著降低, 开路电压增大, 表明DTS具有良好的MAPbI$ _{3} $活性层晶界钝化作用, 可以有效提高钙钛矿太阳电池的工作性能. 同样, 引入DR3T 后, 体复合系数进一步降低, 开路电压增大, 表明DR3T 的晶界钝化作用优于DTS; 但由于表面复合的增加, 最终效率提升不明显. 图5为不同晶界处理情况下, 钙钛矿太阳电池伏安特性的等效电路模型拟合结果, 而图6为对应的效率损失示意图. 其中图5(a)为未进行晶界修饰时的钙钛矿太阳电池等效电路拟合曲线和各子电流的曲线, 其总电流-电压的理论曲线和实验曲线的相对拟合误差为1.08%. 图5(b)为引入DTS 时的电流-电压曲线, 其理论和实验曲线的相对拟合误差为0.70%. 图5(c)为引入DR3T时的曲线, 其相对拟合误差为0.95%. 极小的相对误差, 再一次表明该等效电路模型可以很好地描述实际钙钛矿太阳电池的电流密度-电压曲线. 图 5 根据(1)式分解的不同情况下的钙钛矿太阳电池电流组成示意图 (a) 未进行钙钛矿层晶界修饰的钙钛矿太阳电池器件; (b) 钙钛矿层引入DTS的太阳电池器件; (c)钙钛矿层引入DR3T 的器件. 其中$J_{{\rm{theoretical}}}$代表等效电路模型拟合得到的钙钛矿太阳电池的总电流, $J_{{\rm{bulk}}}$为其体复合电流, $J_{{\rm{surf}}}$为表面复合电流, $J_{{\rm{experimental}}}$为实验测得的电流曲线; 插图表示漏电流$J_{{\rm{sh}}}$随电压的变化 Figure5. Decompositions of the total current density of perovskite solar cells according to Eq. (1): (a) Devices based on the control MAPbI$ _3 $ films; (b) devices based on the DTS passivated MAPbI$ _3 $ films; (c) devices based on the DR3T passivated MAPbI$ _3 $ films. Jtheoretical represents the total theoretical current, Jbulk represents the bulk recombination current, Jsurf represents the surface recombination current and Jexperimental represents the experimental current. The insets show the bias voltage dependence of $J_{{\rm{sh}}}$
图 6 不同界面工程处理下钙钛矿太阳电池的效率损失示意图 Figure6. Efficiency loss of perovskite solar cells with different grain boundaries