1.School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China 2.School of Mechanical and Electrical Engineering, Jinling Institute of Technology, Nanjing 211169, China
Fund Project:Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11802136)
Received Date:02 July 2020
Accepted Date:30 July 2020
Available Online:22 December 2020
Published Online:20 December 2020
Abstract:The gas-liquid two-phase flow of liquid dispersing and breaking under the action of shock wave includes complex physical phenomena, such as turbulent mixing of gas-liquid two-phase, instability and breakage of liquid interface, and formation of internal cavity structure after atomization. In order to investigate the shock-wave-caused breaking process of the liquid film, a three-dimensional numerical simulation of the gas-liquid two-phase flow process is performed by using the computational fluid dynamics method. In the simulation, the Mach number of shock wave is 1.5 and the thickness of liquid film is 2 mm. The finite volume method is used to solve the three-dimensional Navier-Stokes equation. The volume of fluid model is applied to the gas-liquid two-phase flow. The k-ε double equation turbulence model is selected for the turbulence calculation. The evolution process of the wave system structure of the shock wave and the deformation, breakage and atomization characteristics of the liquid film are obtained, and compared with the experimental results. The results show that the incidence, reflection, and transmission phenomena occur during the interaction between the shock wave and the liquid film, and the intensity of the transmitted shock wave and the liquid surface tension have an important effect on the breaking process of the liquid film. The transmitted shock wave affects the shape of the broken cloud cluster on the left of the liquid film, while the incident shock wave and reflected shock wave affect the shape of the broken cloud cluster on the right side of the liquid film. The volume of the atomized cloud formed in the breaking process of the liquid film increases rapidly, first reaching 6.7 dm3 within 2.5 ms, then keeping stable basically. After the shock wave exits from the tube, a long narrow jet is formed. The maximum velocity reaches 519 m/s and appears in the interior of the jet, and then decreases continuously. Under the action of the jet, an expanding three-dimensional cavity structure is formed inside the atomizing cloud, and an annular vortex with negative pressure in the core area occurs in the cavity structure. Finally, the annular vortex continuously entrains the surrounding fluid in the process of forward movement, the strength of the vortex decreases and gradually dissipates in the space. This work is conducive to further understanding the interaction process of gas-liquid two-phase flow. Keywords:breaking process of liquid film/ gas-liquid two-phase flow/ computational fluid dynamics/ shock wave
全文HTML
--> --> --> -->
2.1.几何与网格
依据激波与液膜作用测试系统建立相应的几何模型, 结构如图1所示. 三维计算域的空间网格划分见图2. 图 1 激波与液膜作用系统几何结构图 Figure1. Geometry of the interaction system between shock wave and liquid film.
图 2 计算域网格划分 Figure2. Mesh generation of the calculation domain.
图1展示了计算域的几何模型, 整体为圆柱形, 包含激波管、液膜以及管外作用空间. 计算域总长度为2 m, 直径为0.8 m, 边界为压力出口. 激波管由驱动段与被驱动段组成, 全长为1 m, 膜片位于激波管中间位置. 横截面为方形, 内径60 mm× 60 mm. 液膜为400 mm (长) × 400 mm (宽) × 2 mm (厚)方形区域, 填充材料为水. 图2展示了计算域的网格分布情况. 常见的网格划分方式有六面体划分以及四面体划分, 其中六面体网格在多相流计算应用中具有较明显的计算精度以及收敛性优势, 因此采用拓扑切分方式对计算域进行高质量全六面体网格划分. 全局网格总数为168万, 对于激波管以及液膜区域进行网格加密处理, 网格最小尺寸为0.2 mm, 出现在液膜厚度方向. 22.2.数学模型 -->
为了验证数学模型在计算激波与液膜作用问题上的有效性和精度, 选取装置前期实验结果[21]与计算结果进行对照. 数值计算采用的激波强度以及液膜厚度条件与实验相一致, 激波马赫数为1.5, 液膜厚度为2 mm; 驱动段(高压段)初始表压为600 kPa, 被驱动段(低压段)与外界大气连通, 初始表压为0 kPa. 不同时刻液膜变形破碎形态的实验结果见图3, 仿真结果见图4, 液膜破碎雾化距离的对比见图5. 图 3 液膜破碎形态演变实验结果[21] (a) t = 0 ms; (b) t =1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms Figure3. Experiment results of liquid film breaking evolution: (a) t = 0 ms; (b) t = 1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms.
图 4 液膜破碎形态演变仿真结果 (a) t = 0 ms; (b) t = 1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms Figure4. Simulation results of liquid film breaking evolution: (a) t = 0 ms; (b) t = 1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms.
图 5 液膜抛撒距离的仿真与实验对比 Figure5. Comparison of simulation and experiment on the dispersal distance of liquid film.
液膜在激波的冲击作用下呈现剥离破碎过程, 为了对该过程进行观察, 创建液相等值面对该过程进行表征. 图6与图7为不同时刻侧向视角与正向视角下等值面的演变过程. 图 6 侧向视角下液膜破碎过程 (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms Figure6. Process of liquid film breaking in side view: (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms.
图 7 正向视角下液膜破碎过程 (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms Figure7. Process of liquid film breaking in front view: (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms.
激波与液膜作用过程中存在复杂的波系结构, 创建通过中轴线的YZ平面对作用过程中压力场演变过程进行分析. 不同时刻压力分布见图9. 图 9 激波与液膜作用过程压力变化 (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 4 ms Figure9. Pressure change during the interaction between shock wave and liquid film: (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 4 ms.
从图9可以看出, 0 ms时刻激波运动至管口位置, 此时激波管驱动段最右侧仍位于600 kPa超压区域; 管口激波与液膜开始接触, 激波阵面压力为155 kPa. 1 ms时刻液膜左右两侧均发生了破碎雾化现象, 然而左右两侧雾化云团的形状存在很大区别: 液膜左侧在透射激波作用下拉升形成圆弧状凸起, 此时表面张力会促使液膜整体向作用中心收拢, 当透射激波作用力超过表面张力后, 液膜左侧逐渐破碎雾化并与液膜主体剥离; 同时由于液膜的阻挡效应, 入射激波与反射激波在液膜右侧位置相遇叠加并发生干涉现象, 使得液膜右侧产生振动直至破碎雾化, 雾化形状呈现较薄的圆饼状. 2 ms时刻液膜左侧的雾化云团增长迅速, 云团内部空腔初步形成. 空腔的头部位置产生了圆环状湍流旋涡, 旋涡内部为负压区, 且越靠近旋涡核心位置, 压力值越低, 最大负压值达到–78 kPa. 湍流旋涡对左侧雾化云团的形状存在影响. 随着时间的推进, 3—4 ms时间段激波管内高压气体完全排出, 并且由于惯性效应, 激波管右侧会形成一定负压, 激波管外部气体开始向管内倒灌. 环状旋涡持续向左运动, 但由于周围气流的摩擦阻力效应, 旋涡强度有所减弱, 表现为旋涡核心区负压值由–47 kPa变为–24 kPa. 5 ms时刻旋涡在空间中逐渐耗散, 激波管内气体处于反复振荡状态, 并且随着时间的推移, 振荡逐渐减弱. 为了更直观地了解压力演变过程, 以激波管最右侧驱动段为坐标原点, 横轴为距离, 纵轴为压力, 绘制不同时刻激波管中轴线上压力随距离变化的分布图, 具体见图10. 图 10 不同时刻激波管中轴线上压力分布 Figure10. Pressure distribution on the central axis of shock tube at different times.
激波与液膜作用过程中流场速度的演变是重要的参数之一, 不同时刻通过中轴线的YZ平面速度分布见图11. 图 11 激波与液膜作用过程速度变化 (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 5 ms Figure11. Velocity change during the interaction between shock wave and liquid film: (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 5 ms.