1.Fujian Key Laboratory of Optoelectronic Technology and Devices, School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China 2.Engineering Research Center of Smart Microsensors and Microsystems, Ministry of Education, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
Fund Project:Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG19F040003), the National Natural Science Foundation of China (Grant No. 61704040), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2016J01684, 2018J01568), and the Education and Scientific Research Project for Young and Middle Aged Teachers of Fujian Province, China (Grant No. JAT190671)
Received Date:11 April 2020
Accepted Date:26 May 2020
Available Online:30 September 2020
Published Online:05 October 2020
Abstract:The adsorptions of various gas molecules (H2, H2O, CO, NH3, NO, and NO2) on monolayer GeSe versus the external biaxial strain in a range of –8% to 8% are investigated by first-principles calculations. The band structures, the equilibrium heights, the adsorption energy, and the amount of charge transfer are determined. The calculated results show that monolayer GeSe changes from indirect-to-direct and semiconducting-to-metallic under a certain biaxial strain. The adsorbed gas molecules hardly change the band gap of monolayer GeSe even under a biaxial strain in the whole range from –8% to 8%. The calculated adsorption energies under different strains reveal that the external biaxial strain has no significant effect on the adsorption stability of the gas molecules on monolayer GeSe, so it seems impossible to promote the desorption of the gas molecules by applying strain. It is found that NO2 under the biaxial tensile strain of 8% tends to be bound with the monolayer GeSe by chemical bond which leads to being-difficult-to-desorb. Besides that case, the investigated gas molecules are physisorbed on the GeSe surface and have a certain probability of adsorption and desorption. The charge transfers of CO, NH3, NO and NO2 adsorbed systems under the biaxial strain from –8% to 8% change somehow but are still non-negligible, while for H2 and H2O, their charge transfers are too small to be detected by the monolayer-GeSe-based gas-sensor. Thus, due to the moderate adsorption energy and charge transfer, monolayer GeSe can be a promising candidate as a sensor for CO, NH3 and NO under the biaxial strain from –8% to 8%, and for NO2 in the range from –8% to 6%. It is worth noting that because of the appropriately lower adsorption energy and bigger charge transfer, a bigger biaxial compressive strain, ranging from –6% to –8%, can improve the response speed and sensibility to CO and NO of monolayer GeSe. Furthermore, the effect of the external biaxial strain on the adsorption stability and the charge transfer are discussed based on the two mechanisms of charge transfers, i.e. the traditional and the orbital mixing charge transfer theory. The charge transfer of NH3 is governed by mixing the molecular HOMO with the orbital of GeSe, while for CO, NO and NO2, their charge transfers are most likely determined by different mechanisms under different external strains, which results in different influences on the charge transfer. The present study would be valuable for fully excavating the gas-sensing potential of the two-dimensional GeSe, and then providing sufficient theoretical basis for designing high performance gas sensors based on two-dimensional materials. Keywords:gas-sensing/ strain/ monolayer-GeSe/ first-principles
3.结果与讨论在单层GeSe上施加在–8%—8%范围内的双轴向应变(–8% ≤ ε ≤ 8%)(如图1(c)所示), 应变值为负时表示施加压缩应变, 绝对值越大, 压缩应变就越大; 反之, 正的应变值的增大则表示施加了越来越大的拉伸应变. 图2展示了在不同双轴应变下单层GeSe的能带结构. 施加了双轴应变后, 价带顶(valence band maximum, VBM)仍保持在费米能级附近. 在2%—6%的拉伸应变下, 导带底(conduction band minimum, CBM)的位置由无应变时的X点附近改变到M点附近, 间接带隙变成了直接带隙, 且随着应变增大, CBM向上移动, 使带隙逐渐增大. 而当压缩应变增大时, CBM的位置保持在X点不变, 但却向下移动. 值得注意的是, 当压缩应变增大至接近–6%时, 带隙减小到0, 随后导带和价带便发生了交叠, 呈现出金属性. 综上所述, 单层GeSe的能带结构对于双轴应变十分敏感, 在拉伸应变下, 直接带隙可在0.90—1.35 eV范围内调整, 使单层GeSe具有在光电设备中的应用潜力; 而在足够大的压缩应变下(ε ≤ –6%), 则由半导体变成了金属. 尽管本文计算时所使用的LDA比起GGA明显低估了带隙, 导致这些结果与报道的文献相比在数值上略有偏小[36], 但二者随应变的变化趋势基本一致. 吸附了H2, H2O, CO, NH3, NO, NO2等气体分子的单层GeSe与未吸附的单层GeSe在–8%—8%的双轴向应变下的带隙变化情况如图3(a)所示. 可以看出, 计算所得带隙显示出吸附的单层GeSe和未吸附的单层GeSe具有相似的趋势和取值. 所以, 尽管在–8%—8%这么大的双轴向应变范围内, 吸附气体也几乎没有改变基底单层GeSe的带隙. 图 2 双轴向应变ε为0, –2%, –6%, 4%, 8%时单层GeSe的能带结构图 Figure2. Band structures of pristine monolayer GeSe at the biaxial stain of 0, –2%, –6%, 4% and 8%, respectively.
图 3 在–8%—8%的双轴向应变范围内, 各气体吸附体系的特性与双轴向应变的关系曲线: (a) 带隙; (b) 平衡高度; (c) 吸附能; (d) 电荷转移量 Figure3. The characteristics of different gas adsorbed systems versus the biaxial strain ranging from –8% to 8%: (a) energy bandgap; (b) equilibrium height; (c) adsorption energy; (d) amount of charge transfer.
目前关于不同分子在二维材料上电荷转移机制的理论有两种[44]: 传统电荷转移理论和轨道杂化理论. 传统理论认为, 当气体分子的LUMO比单层GeSe的费米能级还低时, 电子从单层GeSe流向分子; 反过来, 当分子的HOMO比单层GeSe的费米能级还高时, 电子则流向单层GeSe; 然而, 当单层GeSe的费米能级位于吸附分子的LUMO和HOMO之间时, 则不会有电荷转移. 从图4(b)中可以看出, 在–8%—8%的双轴向应变范围内, 尽管单层GeSe的费米能级有所变化, NO和NO2分子的LUMO始终低于单层GeSe的费米能级, 它们作为受主从基底单层GeSe获得电子, 电荷转移量为正数. 并且, 随着应变由–8%变化到8%, 单层GeSe的费米能级有所下降, 导致其与分子LUMO的能量差也相应减小, 所以电荷转移量呈下降趋势, 这与计算结果基本一致(见图3(d)). 对于CO分子, 对吸附体系施加压缩应变后, 分子LUMO低于单层GeSe的费米能级, 电子从单层GeSe流向CO, 且随着压缩应力的增大, 能量差随之增大, 电荷转移量也有所增大. 然而, 对于NH3吸附体系在–8%—8%的双轴向应变范围内, 以及CO吸附体系在0—8%的拉伸应变下, 单层GeSe的费米能级位于气体LUMO和HOMO之间, 主导的电荷转移机制为轨道杂化理论: 若分子LUMO与基底单层GeSe轨道的交叠占主导地位, 则气体分子获得电子, 相反地, 若分子HOMO与单层GeSe的相互作用占主导地位, 则气体分子失去电子. 以CO为例, 图5(a)和图5(b)给出了无应变与8%双轴应变下的差分电荷密度分布. 可以看出, CO分子的LUMO与单层GeSe表面Ge原子轨道的相互作用占据主导地位, 于是CO分子充当电荷受主的角色. 比较图5(a)和(b)可以看出, 在8%拉伸应变下, CO与基底GeSe之间的平衡高度比起无应变时有所增大, 减小了它们之间的相互作用, 进而导致CO从单层GeSe得到的电子数有所减少. 同理, 随着双轴向应变从–8%变化到8%, NH3吸附时的平衡高度略有增大, 弱化了NH3分子HOMO与单层GeSe之间的轨道杂化, 进而导致了电荷转移量的减小. 值得一提的是, 对于NO2分子吸附, 在较大的拉伸应变(8%)下, 平衡高度大幅减小, 发生了化学键合, 加强了NO2与基底单层GeSe之间的轨道交叠. 这一推测可从6%—8%拉伸应变下的差分电荷密度分布(图5(c)和图5(d))中得到验证. 8%拉伸应变下NO2分子中O原子与相邻Ge原子形成了共价键, 这种强烈的化学键合使得表面Ge原子偏离了原来的位置, 气体分子LUMO与单层GeSe之间的相互作用比6%应变下时明显增强, 进而导致NO2获得的电子有所增加. 所以, 尽管基于传统理论, 随着拉伸应力的增大, 电荷转移量本应随之单调减小, 而在8%的拉伸应变处, 由于轨道杂化的作用, 电荷转移量出现了反向增加的现象. 同时, 由于这种增强的相互作用, 吸附能也有所减小. 综合以上讨论, 双轴向应变对电荷转移的影响得到了确认, 且对于不同气体在不同应变下, 有着不同的主导电荷转移机制, 本文所提出的电荷转移机制分析方法也可应用于其他二维材料吸附体系. 图 5 CO分子吸附体系在双轴向应变 (a) ε = 0和(b) ε = 8%下, NO2分子吸附体系在双轴向应变 (c) ε = 6%和(d) ε = 8%下2.0 × 10–3 e/?3等能面的差分电荷密度分布图, 其中黄色和蓝色等能面分别表示电子的积聚和耗尽. 图中标出了电荷转移的方向和大小. 插图为单个气体分子的HOMO和LUMO Figure5. Side views of the differential charge densities (DCD) for CO adsorbed system at (a) ε = 0 and (b) ε = 8%, NO2 adsorbed system at (a) ε = 6% and (b) ε = 8%, respectively. The isosurface is taken as 2.0 × 10–3 e/?3. The electron accumulation (depletion) regin on the DCD isosurface is indicated by yellow (blue). The direction (indicated by an arrow) and value of the charge transfer are shown. Insets show the HOMO and LUMO of a single gas molecule.