Abstract:Based on the existing experimental data of nuclear radius, the previous formula of nuclear charge radius is verified and discussed. Comparing the formula of the single-parameter nuclear charge radius, it is proved that the formula of $Z^{1/3}$ law is better than the formula of $A^{1/3}$ law. We refitted the two-parameter formula and the three-parameter formula that have been proposed and confirmed that the two-parameter and three-parameter formula fit better than the single-parameter formula. It is shown that show that the deformation plays a key role in the nuclear charge radius. The electric quadrupole moment is an important physical quantity representing the properties of the nucleus. Its appearance indicates the deviation from spherical symmetry and also reflects the size of the nuclear deformation. The electric quadrupole moment is also one of the basic observations to understand the distribution of matter within the nucleus, to examine the nuclear model, and to observe nucleon-nuclear interactions. Taking into account the relationship between the nuclear quadrupole moment and the deformation, the electric quadrupole moment factor is added to the original three-parameter formula to obtain a new formula for the nuclear charge radius. Fitting the four-parameter formula, it is found that the theoretical value of the nuclear charge radius is in good agreement with the experimental value, the root-mean-square deviation is 0.0397 fm. Considering the relationship between the total spin and the electric quadrupole moment, the intrinsic electric quadrupole moment is obtained and brought into the formula for fitting, and the root-mean-square deviation further decreases,the root-mean-square deviation is 0.0372 fm. Finally, considering the universality of odd-even staggering, we add the $\delta$ term that can reflect the odd and even oscillation phenomenon, and the root-mean-square deviation obtained by the formula is 0.369 fm, which better reflects the relationship between the deformation and the nuclear charge radius. Compared with the formulas already proposed, the new formula can better reflect the variation trend of nuclear deformation, shell effect, odd-even staggering, etc., and the calculation accuracy is also improved, which can provide a useful reference for future experiments. Keywords:nuclear charge radius/ quadrupole moment/ spin
其中$ r_0 $是核电荷半径常数, A为质量数, 拟合后得核电荷半径常数r0 = 1.2269 fm, 拟合图像如图1所示, 在轻核和重核区偏离较大, 中间区域符合较好. 由(2)式得到的核电荷半径理论值和实验值的均方根偏差为 图 1$ R_{\rm c} = r_0 A^{1/3} $与$ R_{\rm c} = r_0 Z^{1/3} $的拟合曲线(左图是$ R_{\rm c} = r_0 A^{1/3} $的拟合曲线, 右图是$ R_{\rm c} = r_0 Z^{1/3} $的拟合曲线) Figure1. The fitting curve of the Eqs. (2) and (4).(The left picture is the fitting curve of the Eq. (2) and the right picture is the fitting curve of the Eq. (4))
拟合(15)式, 得到参数 r0 = 1.2223 fm, a = 0.1421, b = 2.4577, c = 0.3660, d = 0.1705, 均方根偏差 σ = 0.0369 fm. 拟合图像如图4所示. 图 4$R_{\rm c}=r_0\left( 1-a\dfrac{N-Z}{A}+b\dfrac{1}{A}+c\dfrac{Q_0^*}{A}+d\frac{\delta}{A} \right)A^{1/3}$的拟合曲线图 Figure4. The fitting curve of the Eq. (15).
为了看出(13)式—(15)式在具体的同位素链中拟合的好坏程度, 选取两个满壳附近的核Ba和Fr, 与两个远离满壳附近的核Ho和Lu. 把(13)式—(15)式计算的理论的核电荷半径值与实验值进行对比, 结果如图5所示. 可以看出, 在实验曲线上的一些跳跃和转折, (13)式并不能很好地体现. 这些跳跃和转折现象与奇偶摆动、壳效应、形变相关. 把电四极矩项转变为内禀电四极矩项之后, 均方根偏差下降, 说明含有内禀电四极矩的(14)式与实验曲线符合得更好, 且(14)式在跳跃与转折的地方有了些许改善. 在加入了奇偶摆动项之后, 在跳跃与转折的地方符合得更好, 但是在一些没有出现跳跃与转折的地方, (15)式却表现出来跳跃与转折, 这表明仅仅加入这些项还是不足以描述核电荷半径复杂的变化. 图 5 Ba和Fr, Ho和Lu四个同位素链核电荷半径的实验值与(13)式—(15)式计算的核电荷半径理论值的对比 Figure5. The experimental values of the nuclear charge radii of Ba and Fr, Ho and Lu isotopic chains are compared with the theoretical values calculated by Eqs. (13)–(15).
为了从整体上看出理论值与实验值的差距, 计算了核电荷半径的实验值与(13)式—(15)式计算的理论值的差值$ \Delta R $, 做出$ \Delta R $随质子数Z变化, 结果如图6所示. 可以看出, 整体趋势上(15)式得出的结果比(13)式和(14)式更加集中, 也印证了(15)式得出的均方根偏差最小. (13)式计算的$ \Delta R $相对比较分散, 但在Z = 10的轻核区, (13)式有少数核的$ \Delta R $比(14)式和(15)式的$ \Delta R $小. 在图6中还可以看到, 传统幻数Z = 28, 50, 82所对应的$ \Delta R $接近于零, 也印证了电四极矩与壳效应相关. 对于轻核区, (13)式—(15)式的拟合结果不是很好, 计算的理论值和实验值差值较大, 这说明仅仅通过几个参数来精准地描述核电荷半径的变化趋势是很困难的. 以后还需要挖掘出蕴含在更深层的物理内容来对其进行补充. 最后, 将本文所提及的公式列在表1中, 可以直观地看到各公式拟合的参数和精确程度.
r0 = 1.2223 fm, a = 0.1421, b = 2.4577, c = 0.3660 d = 0.1705
σ = 0.0369
表1各种核电荷半径公式 Table1.The mentioned equations for nuclear charge radius $R_{\rm c}$.
图 6 计算368个核电荷半径的实验值分别与(13)式—(15)式计算的理论值的差值. (从上到下依次为核电荷半径的实验值与(13)式的差值图, 核电荷半径的实验值与(14)式的差值图, 核电荷半径的实验值与(15)式的差值图) Figure6. The difference between the experimental value of 368 nuclear charge radii and the theoretical value calculated by Eqs. (13)–(15) , respectively.