Abstract:The chiral Majorana fermion, is a massless fermionic particle being its own antiparticle, which was predicted to live in (1+1)D (i.e. one-dimensional space plus one-dimensional time) or (9+1)D. In condensed matter physics, one-dimensional (1D) chiral Majorana fermion can be viewed as the 1/2 of the chiral Dirac fermion, which could arise as the quasiparticle edge state of a two-dimensional (2D) topological state of matter. The appearance of an odd number of 1D chiral Majorana fermions on the edge implies that there exist the non-Abelian defects in the bulk. The chiral Majorana fermion edge state can be used to realize the non-Abelian quantum gate operations on electron states. Starting with the topological states in 2D, we illustrate the general and intimate relation between chiral topological superconductor and quantum anomalous Hall insulator, which leads to the theoretical prediction of the chiral Majorana fermion from the quantum anomalous Hall plateau transition in proximity to a conventional s-wave superconductor. We show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes, and may be used for the topological quantum computation. Keywords:chiral Majorana fermion/ topological superconductor/ quantum anomsloua Hall/ non-abelian braiding
全文HTML
--> --> --> 1.引 言凝聚态物理最重要的主题之一就是发现和表征各种不同的物质形态. 在量子世界里, 不同空间排列的原子通过外层价电子的耦合形成各种各样的物质态. 比如金属、绝缘体、磁体或者超导体. 这些量子态可以通过自发对称性破缺的原理来进行分类[1], 例如, 晶体破坏平移对称性; 磁体破坏旋转对称性; 而超导体则破坏规范对称性. 对称破缺的模式给出有序相中非零的序参量, 可通过朗道-金兹堡(Landau-Ginzberg)有效场论来描述[2]. 直到1980年, 量子霍尔效应(quantum Hall effect)在强磁场二维电子气中的发现[3]导致了一种全新的物质态分类标准: 拓扑序[4,5]. 量子霍尔态不破坏任何对称性, 完全由电子态的拓扑结构决定, 而与材料的几何结构无关. 比如量子化的霍尔电导${\sigma _{xy}} = C{e^2}/h$(其中$h$是普朗克常数, $e$是电子电荷, $C$是整数)和无能隙的手征边缘态数目等基本特性不依赖于体系参数的缓变, 基本上不受杂质、无序以及相互作用的影响, 只要不关闭体态的能隙就不会影响边缘态的性质[4,6]. 或者说, 要破坏边缘态, 一定要经过一个量子相变, 它与前面所说的所有物质态是拓扑不同的. 量子霍尔效应具有拓扑鲁棒性(topological robust)的本质原因是空间分离(spatial separation), 如图1所示, 两个相向传播的一维电子态分离成局域在二维体系上下边界的边缘态. 图 1 二维体系中的拓扑态. (上) 手征拓扑超导态与量子霍尔态的对应, 在这两个体系中, 时间反演对称性破缺, 同时存在手征边界态; (下) 螺旋拓扑超导态与量子自旋霍尔态的对应, 这两个体系同时保持时间反演对称性, 且存在螺旋边界态. 从边界态的自由度来看, (QSH) = (QH)2 = (Helical SC)2 = (Chiral SC)4, 其中QSH = 量子自旋霍尔态, QH = 量子霍尔态, Helical SC = 螺旋拓扑超导态, Chiral SC = 手征拓扑超导态, 指数1, 2, 4指这几种拓扑物质中边界态自由度之间的关系. 取自文献[26] Figure1. Topological states in 2D. Top row: Schematic comparison of a 2D chiral superconductor and the QH/QAH state. In both systems, TR symmetry is broken and the edge states carry a definite chirality. Bottom row: Schematic comparison of a 2D TR-invariant TSC and the QSH insulator. Both systems preserve TR symmetry and have a helical pair of edge states, where opposite spin states counterpropagate. The dashed lines show that the edge states of the superconductors are Majorana fermions so that the E < 0 part of the quasiparticle spectra is redundant. In terms of the edge-state degrees of freedom, we have (QSH) = (QH/QAH)2 = (Helical SC)2 = (Chiral SC)4. The QAH state can be obtained from the QSH state by magnetic doping, and the chiral TSC state can be obtained from the QAH state by proximity contact with a conventional superconductor. The superscripts 1, 2, 4 denote relation of the number of degree of freedom of edge states in these topological matter. Adapted from Ref. [26], APS.