删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

量子扩散通道中Wigner算符的演化规律

本站小编 Free考研考试/2021-12-29

摘要:众所周知, 量子态的演化可用与其相应的Wigner函数演化来代替. 因为量子态的Wigner函数和量子态的密度矩阵一样, 都包含了概率分布和相位等信息, 因此对量子态的Wigner函数进行研究, 可以更加快速有效地获取量子态在演化过程的重要信息. 本文从经典扩散方程出发, 利用密度算符的P表示, 导出了量子态密度算符的扩散方程. 进一步通过引入量子算符的Weyl编序记号, 给出了其对应的Weyl量子化方案. 另外, 借助于密度算符的另一相空间表示—Wigner函数, 建立了Wigner算符在扩散通道中演化方程, 并给出了其Wigner算符解的形式. 本文推导出了Wigner算符在量子扩散通道中的演化规律, 即演化过程中任意时刻Wigner算符的形式. 在此结论的基础上, 讨论了相干态经过量子扩散通道的演化情况.
关键词: Wigner函数/
Weyl编序/
量子扩散通道/
演化规律

English Abstract


--> --> -->
近来, 量子调控已经成为研究微观世界的一个重要手段, 而用单光子实现量子操控尤为可行, 例如向光腔中逐个注入光子制备非高斯态, 理论上这属于量子扩散机制[1,2]. 鉴于量子态的Wigner函数包含了量子态的概率分布和相位等信息, 量子态的演化可代之以研究相应的Wigner函数的演化[3-5]. 本文旨在研究量子相空间的Wigner算符在量子扩散通道的时间演化规律, 它简洁而物理清晰, 展现了从点源函数$\dfrac{1}{2}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {{z^ * } - {a^\dagger }} \right)\delta \left( {z - a} \right)\begin{array}{*{20}{c}} : \\ : \end{array}$$t$时刻高斯型函数$\dfrac{1}{{2 kt}}\begin{array}{*{20}{c}} : \\ : \end{array}\exp \left[ {\dfrac{{ - 1}}{{kt}}\left( {{a^\dagger } - {z^ * }} \right)\left( {a - z} \right)} \right]\begin{array}{*{20}{c}} : \\ : \end{array}$的演变, $k$是扩散系数, 这里$\begin{array}{*{20}{c}} : \\ : \end{array}\!\! \begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} : \\ : \end{array}$代表Weyl编序; ${a^\dagger }, a$是玻色产生和湮灭算符. 用有序算符内的积分方法也可进一步将Wigner算符的Weyl编序式转化为其他排序形式, 如正规乘积序等, 为计算量子态的Wigner函数演化规律带来便利. 本文安排如下, 先从经典扩散方程推导出量子扩散方程, 并以相干光场为例, 讨论其量子扩散. 鉴于初始相干光场的反正规乘积形式是Delta函数, 其演化就体现在从$\delta \left( {z - a} \right)\delta \left( {{z^ * } - {a^\dagger }} \right)$演化为
$\dfrac{1}{{kt}} \vdots \exp \left[ {\dfrac{{ - 1}}{{kt}}\left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)} \right] \vdots\;,$
这里$ \vdots \begin{array}{*{20}{c}} {} \\ {} \end{array} \vdots $代表反正规排序[6,7]. 然后再讨论Wigner算符的量子扩散, 鉴于Wigner算符的Weyl排序形式是Delta函数,
$ \dfrac{1}{2}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {{\alpha ^ * } - {a^\dagger }} \right)\delta \left( {\alpha - a} \right)\begin{array}{*{20}{c}} : \\ : \end{array}, $
符号$\begin{array}{*{20}{c}} : \\ : \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} : \\ : \end{array}$代表Weyl排序, 为范洪义首创, 所以可以立即从扩散方程导出Wigner算符在扩散通道中的演化规律.
经典扩散方程是
$\frac{{\partial P\left( {z,t} \right)}}{{\partial t}} = - k\frac{{{\partial ^2}P\left( {z,t} \right)}}{{\partial z\partial {z^ * }}},$
其中$k$是扩散率, $P\left( {z, t} \right)$是系统的某种密度分布函数. 下面推导相应的量子扩散方程. 我们将密度算符$\rho $用相干态表象中的$P $-表示[8,9]:
${\rho _t} = \int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} P\left( {z,t} \right)\left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right.,$
其中
$\left| {\left. z \right\rangle } \right. = \exp \Big( { - \frac{{{{\left| z \right|}^2}}}{2} + z{a^\dagger }} \Big)\left| {\left. 0 \right\rangle } \right.$
是相干态, 则密度算符的时间演化满足方程为
$\frac{{{\rm{d}}{\rho _t}}}{{{\rm{d}}t}} = \int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} \frac{{\partial P\left( {z,t} \right)}}{{\partial t}}\left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right..$
将经典扩散方程(1)式代入(4)式即有
$\frac{{{\rm{d}}{\rho _t}}}{{{\rm{d}}t}} = - k\int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} \frac{{{\partial ^2}P\left( {z,t} \right)}}{{\partial z\partial {z^ * }}}\left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right.,$
利用分部积分法, 并注意到在无穷远处$P\left( {z, t} \right)$消失, 则有
$\begin{aligned} & \int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} \frac{{{\partial ^2}P\left( {z, t} \right)}}{{\partial z\partial {z^ * }}}\left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right. \\=\; &\int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} P\left( {z, t} \right)\frac{{{\partial ^2}}}{{\partial z\partial {z^ * }}}\left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right.,\end{aligned}$
所以
$\frac{{{\rm{d}}{\rho _t}}}{{{\rm{d}}t}} = - k\int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} P\left( {z,t} \right)\frac{{{\partial ^2}}}{{\partial z\partial {z^ * }}}\left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right..$
现在利用相干态投影算符的正规乘积表示
$\left| {\left. z \right\rangle \left\langle {\left. z \right|} \right.} \right. = {:^{ - {{\left| z \right|}^2} + z{a^\dagger } + {z^ * }a - {a^\dagger }a}}:$
来分析$\dfrac{{{\partial ^2}}}{{\partial z\partial {z^ * }}}\left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right.$, 注意到
$\begin{split}{a^\dagger }\left| {\left. z \right\rangle \left\langle {\left. z \right|} \right.} \right.\; & = {a^\dagger }{:^{ - {{\left| z \right|}^2} + z{a^\dagger } + {z^ * }a - {a^\dagger }a}}:\\ &= \left( {{z^ * } + \frac{\partial }{{\partial z}}} \right)\left| {\left. z \right\rangle \left\langle {\left. z \right|} \right.} \right., \end{split}$
$\left| {\left. z \right\rangle \left\langle {\left. z \right|} \right.} \right.a = \left( {{z^ * } + \frac{\partial }{{\partial z}}} \right)\left| {\left. z \right\rangle \left\langle {\left. z \right|} \right.} \right.,$
则有
$\begin{split} & - \frac{\partial^2}{\partial z\partial z^*}|z\rangle \langle z|\\=\; & z\Big(z^* + \frac{\partial }{\partial z} \Big) |z \rangle \langle z| \!-\! \Big(z^* \!+\! \frac{\partial }{\partial z} \Big) \Big(z \!+\! \frac{\partial }{\partial z^*}\Big) |z\rangle \langle z | \\ & - |z|^2|z \rangle \langle z|+ \Big(z + \frac{\partial} {\partial z^*} \Big)(z^*|z\rangle \langle z|) \\ =\; & z a^\dagger |z\rangle \langle z| - \Big( z^* + \frac{\partial }{\partial z} \Big)|z\rangle \langle z|a-|z|^2 |z \rangle \langle z | \\ & + \Big(z + \frac{\partial }{\partial z^*}\Big)|z \rangle \langle z|a^\dagger \\= \; & a^\dagger a|z \rangle \langle z|- a^\dagger |z \rangle \langle z| a - a|z \rangle \langle z|a^\dagger +|z \rangle \langle z|a a^\dagger.\end{split} $
将(10)式代入(6)式得到
$\begin{split}\; & \frac{{{\rm{d}}{\rho _t}}}{{{\rm{d}}t}} = k\int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} P(z,t) \big(a^\dagger a| z \rangle \langle z | - a^\dagger | z \rangle \langle z| a \\ & \qquad~ - a | z \rangle \langle z | a^\dagger + | z \rangle \langle z | a a^\dagger \big) \\=\; & k \bigg[ a^\dagger a \int \frac{{\rm d}^2 z}{\text{π}} P( z,t)| z \rangle\langle z | - a^\dagger \int \frac{ {\rm d}^2 z} {\text{π}} P(z,t) | z \rangle \langle z| a \\&-\! a\! \int \frac{{\rm d}^2 z}{\text{π}} P(z,t)| z \rangle \langle z | a^\dagger \!+\! \int \!\frac{{\rm d}^2 z} {\text{π}} P(z,t) |z\rangle \langle z | a {a^\dagger} \bigg].\end{split} $
这说明量子扩散方程为
$\frac{{{\rm{d}}{\rho _t}}}{{{\rm{d}}t}} = k\left( {{a^\dagger }a\rho - {a^\dagger }\rho a - a\rho {a^\dagger } + \rho {a^\dagger }a} \right), $
这是从经典扩散方程过渡到量子扩散方程的捷径.
当初态是纯相干光场时,
${\rho _0} = | z\rangle \langle z |, $
它的正规排序是
${\rho _0} =:\exp \left[ { - \left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)} \right]:, $
利用范洪义等[10]给出的把正规乘积排序变为反正规乘积排序的公式
$\begin{aligned} \left| {\left. z \right\rangle } \right.\left\langle {\left. z \right|} \right. \; & =:\exp \left[ { - \left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)} \right]: \\ & = {\text{π}} \vdots \delta \left( {z - a} \right)\delta \left( {{z^ * } - {a^\dagger }} \right) \vdots ,\end{aligned}$
所以初态是纯相干光场时的反正规乘积排序是
${\rho _0} = {\text{π}}\, \vdots\, \delta \left( {z - a} \right)\delta \left( {{z^ * } - {a^\dagger }} \right) \vdots, $
故而它的$P - $表示为
${P_0} = {\text{π}}\delta \left( {{z^ * } - {\alpha ^ * }} \right)\delta \left( {z - \alpha } \right).$
由此可以直接验证扩散方程$\dfrac{{\partial P\left( {z, t} \right)}}{{\partial t}} \!=\!$$ - k\dfrac{{{\partial ^2}P\left( {z, t} \right)}}{{\partial z\partial {z^ * }}} $的解是
${P_t} = \frac{1}{{kt}}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{z^ * } - {\alpha ^ * }} \right)\left( {z - \alpha } \right)} \right],$
此解满足初始条件, 即:
$\begin{split} &\mathop {\lim }\limits_{t \to 0} \frac{1}{{kt}}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{z^ * } - {\alpha ^ * }} \right)\left( {z - \alpha } \right)} \right] \\=\; & {\text{π}}\delta \left( {{z^ * } - {\alpha ^ * }} \right)\delta \left( {z - \alpha } \right),\end{split}$
这是$\delta \left( x \right) = \mathop {\lim }\limits_{t \to 0} \dfrac{1}{{\sqrt {\text{π}} t}}{{\rm{e}}^{ - {{{x^2}} / t}}}$的推广.
${P_t}$是密度算符${\rho _t}$在相干态表象中的表示, 所以便可得到${\rho _t}$的反正规乘积形式为
${P_t} = \frac{1}{{kt}} \vdots \exp \left[ {\frac{{ - 1}}{{kt}}\left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)} \right] \vdots ,$
这就是相干态在扩散通道中的演化公式. 再用相干态表象[11]和有序算符内的积分技术[12-14]可以将它化为正规乘积,
$\begin{split} {P_t} =\;& \frac{1}{{kt}} \vdots \exp \left[ {\frac{{ - 1}}{{kt}}\left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)} \right] \vdots \int {\frac{{{{\rm{d}}^2}\alpha }}{{\text{π}}}} \left| {\left. \alpha \right\rangle } \right.\left\langle {\left. \alpha \right|} \right. \\ =\;& \frac{1}{{kt}}\int {\frac{{{{\rm{d}}^2}\alpha }}{{\text{π}}}} \left| {\left. \alpha \right\rangle } \right.\left\langle {\left. \alpha \right|} \right.\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{z^ * } - {\alpha ^ * }} \right)\left( {z - \alpha } \right)} \right] \\ =\;& \frac{1}{{kt}}\int {\frac{{{{\rm{d}}^2}\alpha }}{{\text{π}}}}:\exp \left[\frac{{ - 1}}{{kt}}\left( {{z^ * } - {\alpha ^ * }} \right)\left( {z - \alpha } \right)\right. \\ & \left.- {{\left| \alpha \right|}^2} + \alpha a + {\alpha ^ * }a - {a^\dagger }a \right]: \\ =\;& \frac{1}{{1 + kt}}{{\rm{e}}^{\frac{z}{{1 + kt}}{a^\dagger }}}:{{\rm{e}}^{\left( {\frac{{kt}}{{1 + kt}} - 1} \right){a^\dagger }a}}:{{\rm{e}}^{\frac{{{z^ * }}}{{1 + kt}}a}}{{\rm{e}}^{ - \frac{{{{\left| z \right|}^2}}}{{1 + kt}}}} \\ =\;& \frac{1}{{1 + kt}}{{\rm{e}}^{\frac{z}{{1 + kt}}{a^\dagger }}}{{\rm{e}}^{{a^\dagger }a\ln \frac{{kt}}{{1 + kt}}}}{{\rm{e}}^{\frac{{{z^ * }}}{{1 + kt}}a}}{{\rm{e}}^{ - \frac{{{{\left| z \right|}^2}}}{{1 + kt}}}}.\\[-15pt]\end{split} $
通过(20)式可发现它不再是纯态. 同时可验证${\rm{tr}}{\rho _t} = 1$, 故而${\rho _t}$是一个新光场密度算符, 代表一个广义的混沌光场[15,16]. 计算$t$时刻的光子数:
${\rm{tr}}\left( {{a^\dagger }a{\rho _t}} \right) = {\left| z \right|^2} + kt.$
比较初始时刻的光子数${\rm{tr}}\left( {{a^\dagger }a{\rho _0}} \right) = \left\langle {\left. z \right|{a^\dagger }a\left| {\left. z \right\rangle } \right.} \right.=$${\left| z \right|^2} $, 可见光子数增加了$kt$, 这是扩散的结果.
现在讨论Wigner函数在扩散通道中的演化. 鉴于$t$时刻的密度算符$\rho \left( t \right)$的Wigner函数是[17,18]
$\begin{split} W\left( {p,q,t} \right) \;& = 2{\rm{{\text{π}} tr}}\left[ {\rho \left( t \right)\varDelta \left( {p,q,0} \right)} \right] \\ & = 2{\rm{{\text{π}} tr}}\left[ {\rho \left( 0 \right)\varDelta \left( {p,q,t} \right)} \right],\end{split}$
这里$\varDelta \left( {p, q} \right)$是Wigner算符, 所以也可转而讨论Wigner算符在扩散通道中的时间演化, 即从$\varDelta \left( {p, q, 0} \right)$演化为$\varDelta \left( {p, q, t} \right)$. 历史上, Wigner算符最早是在坐标表象中定义的[19],
$\varDelta \left( {q,p} \right) = \frac{1}{{2{\text{π}}}}\int_{ - \infty }^\infty {{\rm{d}}v{{\rm{e}}^{{\rm{i}}pv}}\left| {q + \frac{v}{2}} \right\rangle \left\langle {q - \frac{v}{2}} \right|} ,$
利用$| {q \!+\! {v}/{2}}\rangle = {{\rm e}^{{{ - {\rm{i}}Pv} / 2}}} |q\rangle $$\left| q \right\rangle \left\langle q \right| = \delta \left( {q - Q} \right)$, $Q$是坐标算符, P 是动量算符, (23)式可化为
$\begin{split} \varDelta \left( {q,p} \right) \; &= \frac{1}{{2{\text{π}}}}\int_{ - \infty }^\infty {{\rm{d}}v{{\rm{e}}^{{\rm{i}}pv}}{{\rm{e}}^{{{ - {\rm{i}}Pv} / 2}}}\delta \left( {q - Q} \right){{\rm{e}}^{{{ - {\rm{i}}Pv} / 2}}}} \\ &= \frac{1}{{4{{\text{π}}^2}}}\int\!\!\! {\int_{ - \infty }^\infty {{\rm{d}}u{\rm{d}}v{{\rm{e}}^{{\rm{i}}pv}}{{\rm{e}}^{{{ - {\rm{i}}Pv} / 2}}}{{\rm{e}}^{{\rm{i}}u\left( {q - Q} \right)}}{{\rm{e}}^{{{ - {\rm{i}}Pv} / 2}}}} } \\ &= \frac{1}{{4{{\text{π}}^2}}}\int \!\!\!{\int_{ - \infty }^\infty {{\rm{d}}u{\rm{d}}v{{\rm{e}}^{{\rm{i}}v\left( {p - P} \right)}}^{ + {\rm{i}}u\left( {q - Q} \right)}} } .\\[-18pt]\end{split} $
为了对(24)式进行积分, 我们引入Weyl编序$\begin{array}{*{20}{c}} : \\ : \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} : \\ : \end{array}$来标志已经Weyl排序好了的算符[20-22]. 例如Weyl编序可以将经典量${q^m}{p^r}$通过积分变换(积分核就是Wigner算符$\varDelta \left( {q, p} \right)$)量子化为
$\begin{split}& {q^m}{p^r} \to {\iint_{ - \infty }^\infty {{\rm{d}}p{\rm{d}}q\varDelta \left( {p,q} \right)} } {q^m}{p^r} \\ =\; & {\left( {\frac{1}{2}} \right)^m}\sum\limits_{l = 0}^\infty {\left( {\begin{array}{*{20}{c}} m \\ l \end{array}} \right)} {Q^{m - l}}{P^r}{Q^l},\end{split}$
它是Weyl排序好的, 以$\begin{array}{*{20}{c}} : \\ : \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} : \\ : \end{array}$标识,
$\begin{split} & {\left( {\frac{1}{2}} \right)^m}\sum\limits_{l = 0}^\infty {\left( {\begin{array}{*{20}{c}} m \\ l \end{array}} \right)} {Q^{m - l}}{P^r}{Q^l} \\=\; & \begin{array}{*{20}{c}} : \\ : \end{array}{\left( {\frac{1}{2}} \right)^m}\sum\limits_{l = 0}^\infty {\left( {\begin{array}{*{20}{c}} m \\ l \end{array}} \right)} {Q^{m - l}}{P^r}{Q^l}\begin{array}{*{20}{c}} : \\ : \end{array},\end{split}$
再注意到在记号$\begin{array}{*{20}{c}} : \\ : \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} : \\ : \end{array}$内部玻色算符是可交换的, 所以有
$\begin{split}& \begin{array}{*{20}{c}} : \\ : \end{array}{\left( {\frac{1}{2}} \right)^m}\sum\limits_{l = 0}^\infty {\left( {\begin{array}{*{20}{c}} m \\ l \end{array}} \right)} {Q^{m - l}}{P^r}{Q^l}\begin{array}{*{20}{c}} : \\ : \end{array} \! =\! \begin{array}{*{20}{c}} : \\ : \end{array}{Q^m}{P^r}\begin{array}{*{20}{c}} : \\ : \end{array} \\\; & = {\iint_{ - \infty }^\infty {{\rm d}\,p{\rm d}\,q} } {q^m}{p^r}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {q - Q} \right)\delta \left( {p - P} \right)\begin{array}{*{20}{c}} : \\ : \end{array}. \\[-20pt]\end{split} $
与一般算符$H\left( {P, Q} \right)$及其经典对应$h\left( {p, q} \right)$的Weyl对应式为[23]
$H\left( {P,Q} \right) = {\iint_{ - \infty }^\infty {{\rm{d}}q{\rm{d}}p\varDelta \left( {p,q} \right)} } h\left( {p,q} \right),$
通过比较可见Wigner算符的Weyl排序形式是
$\varDelta \left( {p,q} \right) = \begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {q - Q} \right)\delta \left( {p - P} \right)\begin{array}{*{20}{c}} : \\ : \end{array},$
从而
$H\left( {P,Q} \right) = \begin{array}{*{20}{c}} : \\ : \end{array}h\left( {P,Q} \right)\begin{array}{*{20}{c}} : \\ : \end{array}.$
可见$H\left( {P, Q} \right)$的Weyl排序形式, 可以直接将$h\left( {p, q} \right)$中的$p \to P, q \to Q$, 并放入$\begin{array}{*{20}{c}} : \\ : \end{array}\begin{array}{*{20}{c}} {} \\ {} \end{array}\begin{array}{*{20}{c}} : \\ : \end{array}$内得到. 例如, $\begin{array}{*{20}{c}} : \\ : \end{array}{{\rm{e}}^{{\rm{i}}Pv + {\rm{i}}Qu}}\begin{array}{*{20}{c}} : \\ : \end{array}$的经典对应是${{\rm{e}}^{{\rm{i}}pv + {\rm{i}}qu}}$:
$\begin{split} & {\iint_{ - \infty }^\infty {{\rm{d}}p{\rm{d}}q\varDelta \left( {p,q} \right)} } {{\rm{e}}^{{\rm{i}}pv + {\rm{i}}qu}} \\ =\; & {\iint_{ - \infty }^\infty {{\rm{d}}p{\rm{d}}q\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {q - Q} \right)\delta \left( {p - P} \right)\begin{array}{*{20}{c}} : \\ : \end{array}} } {{\rm{e}}^{{\rm{i}}pv + {\rm{i}}qu}} \\ =\; & \begin{array}{*{20}{c}} : \\ : \end{array}{{\rm{e}}^{{\rm{i}}Pv + {\rm{i}}Qu}}\begin{array}{*{20}{c}} : \\ : \end{array}, \\[-20pt] \end{split} $
进一步令
$\alpha = ({{q + {\rm{i}}p}})/{{\sqrt 2 }},~~a = ({{Q + {\rm{i}}P}})/{{\sqrt 2 }},$
可得Wigner算符的Weyl排序形式是
$\varDelta (p,q) \!\to\! \varDelta ( {\alpha,{\alpha ^ * }} ) \!=\! \frac{1}{2}\!\begin{array}{*{20}{c}} : \\ : \end{array}\!\delta ({{\alpha ^ * } \!-\! {a^\dagger }})\delta ({\alpha \!-\! a} )\!\begin{array}{*{20}{c}} : \\ : \end{array}\!.$

由于Wigner算符满足:
$ {\iint_{ - \infty }^\infty {{\rm{d}}p{\rm{d}}q\varDelta \left( {p,q} \right)} } = 1$

$2\int {{{\rm{d}}^2}\alpha \varDelta \left( {\alpha,{\alpha ^ * }} \right) = 1} ,$
Wigner算符本身看作是一个混合态的密度算符, 根据(12)式, 它所满足的扩散方程是
$\begin{split} \; & \frac{{{\rm{d}}\varDelta \left( {\alpha,{\alpha ^ * }} \right)}}{{{\rm{d}}t}} = k\left[ {a^\dagger }a\varDelta \left( {\alpha,{\alpha ^ * }} \right) - {a^\dagger }\varDelta \left( {\alpha,{\alpha ^ * }} \right)a \right. \\ & \qquad - \left.a\varDelta \left( {\alpha,{\alpha ^ * }} \right){a^\dagger } + \varDelta \left( {\alpha,{\alpha ^ * }} \right)a{a^\dagger } \right], \end{split}$
此方程也可从Wigner算符的正规乘积形式方程(37)直接导出(具体详见附录A).
$\begin{split}& \varDelta \left( {\alpha,{\alpha ^ * }} \right) = \frac{1}{2}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {{\alpha ^ * } - {a^\dagger }} \right)\delta \left( {\alpha - a} \right)\begin{array}{*{20}{c}} : \\ : \end{array} \\ =\; & \int {\frac{{{{\rm{d}}^2}\beta }}{{2{{\text{π}}^2}}}} \begin{array}{*{20}{c}} : \\ : \end{array}\exp \left\{ {{\rm{i}}\left. {\left[ {{\beta ^ * }\left( {\alpha - a} \right) + \beta \left( {{\alpha ^ * } - {a^\dagger }} \right)} \right]} \right\}} \right.\begin{array}{*{20}{c}} : \\ : \end{array} \\ = \; &\int {\frac{{{{\rm{d}}^2}\beta }}{{2{{\text{π}}^2}}}} \exp \left\{ {{\rm{i}}\left. {\left[ {{\beta ^ * }\left( {\alpha - a} \right) + \beta \left( {{\alpha ^ * } - {a^\dagger }} \right)} \right]} \right\}} \right. \\ =\; & \int {\frac{{{{\rm{d}}^2}\beta }}{{2{{\text{π}}^2}}}}:\exp \left[ {{\rm{i}}\left. {\left( {{\beta ^ * }a - {\beta ^ * }\alpha + \beta {a^\dagger } - \beta {\alpha ^ * }} \right)} \right]} \right.{{\rm{e}}^{{{ - {{\left| \beta \right|}^2}} / 2}}}: \\ =\; & \frac{1}{{\text{π}}}:{{\rm{e}}^{ - 2\left( {{\alpha ^ * } - {a^\dagger }} \right)\left( {\alpha - a} \right)}}:. \\[-12pt]\end{split} $
对照本文第2节内容可见此扩散方程的经典对应是
$\frac{{\partial W}}{{\partial t}} = - k\frac{{{\partial ^2}}}{{\partial \alpha \partial {\alpha ^ * }}}W, $
此方程即为Wigner函数$W$应该满足的扩散方程.
初始的Wigner算符$\varDelta \left( {\alpha, {\alpha ^ * }, 0} \right)$在Weyl编序下是[24-26]
$\varDelta \left( {\alpha,{\alpha ^ * },0} \right) = \frac{1}{2}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {{\alpha ^ * } - {a^\dagger }} \right)\delta \left( {\alpha - a} \right)\begin{array}{*{20}{c}} : \\ : \end{array},$
那么类比于本文第2节的结果可知:
$\varDelta \left( {\alpha,{\alpha ^ * },t} \right) = \frac{1}{{2kt}}\begin{array}{*{20}{c}} : \\ : \end{array}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{a^\dagger } - {\alpha ^ * }} \right)\left( {a - \alpha } \right)} \right]\begin{array}{*{20}{c}} : \\ : \end{array}, $
其满足的初始条件为
$\begin{split} & \mathop {\lim }\limits_{t \to 0} \varDelta \left( {\alpha,{\alpha ^ * },t} \right) \\=\; & \mathop {\lim }\limits_{t \to 0} \frac{1}{{2kt}}\begin{array}{*{20}{c}} : \\ : \end{array}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{a^\dagger } - {\alpha ^ * }} \right)\left( {a - \alpha } \right)} \right]\begin{array}{*{20}{c}} : \\ : \end{array}\\=\; & \frac{1}{2}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {{\alpha ^ * } - {a^\dagger }} \right)\delta \left( {\alpha - a} \right)\begin{array}{*{20}{c}} : \\ : \end{array}.\end{split}$
(41)式就是量子扩散通道中Wigner算符的演化律公式, 可以看出, 它简洁明了, 同时展现了从点源函数$\dfrac{1}{2}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {{z^ * } - {a^\dagger }} \right)\delta \left( {z - a} \right)\begin{array}{*{20}{c}} : \\ : \end{array}$向高斯型函数$\dfrac{1}{{2 kt}}\begin{array}{*{20}{c}} : \\ : \end{array}$$\exp \left[ {\dfrac{{ - 1}}{{kt}}\left( {{a^\dagger } - {z^ * }} \right)\left( {a - z} \right)} \right]\begin{array}{*{20}{c}} : \\ : \end{array} $的演变, 所以此数学表达式的物理意义十分明晰.
从(40)式可知$\varDelta \left( {\alpha, {\alpha ^ * }, t} \right)$的经典对应是
$\varDelta \left( {\alpha,{\alpha ^ * },t} \right) \to \frac{1}{{2kt}}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{\alpha ^ * } - {z^ * }} \right)\left( {\alpha - z} \right)} \right], $
根据(28)式可知
$\begin{split}\varDelta \left( {\alpha,{\alpha ^ * },t} \right) =\; & \int {{{\rm{d}}^2}z} \frac{1}{{2kt}}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{\alpha ^ * } - {z^ * }} \right)\left( {\alpha - z} \right)} \right]\\ &\times\varDelta \left( {\alpha,{\alpha ^ * },0} \right).\\[-10pt]\end{split}$
而对(24)式做积分可得:
$\varDelta \left( {\alpha,{\alpha ^ * },0} \right) = \frac{1}{{\text{π}}}:{{\rm{e}}^{ - 2\left( {{\alpha ^ * } - {a^\dagger }} \right)\left( {\alpha - a} \right)}}:,$
所以$\varDelta \left( {\alpha, {\alpha ^ * }, t} \right)$的正规乘积是
$\begin{split} &\varDelta \left( {\alpha,{\alpha ^ * },t} \right) \\ =\;& \int {{{\rm{d}}^2}z} \frac{1}{{kt}}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{\alpha ^ * } - {z^ * }} \right)\left( {\alpha - z} \right)} \right]\\ &\times \frac{1}{{\text{π}}}: {{\rm{e}}^{ - 2\left( {{\alpha ^ * } - {a^\dagger }} \right)\left( {\alpha - a} \right)}}: \\ = \;&\frac{1}{{{\text{π}}\left( {2kt{\rm{ + 1}}} \right)}}:\exp \left[ {\frac{{ - 2}}{{2kt{\rm{ + 1}}}}\left( {{a^\dagger } - {\alpha ^ * }} \right)\left( {a - \alpha } \right)} \right]:. \\ \end{split} $
这样就从(40)式的Weyl编序形式导出了其正规乘积形式. 另外, (45)式还可进一步得到验证(具体详见附录B), 即将正规乘积形式转化为Weyl编序形式. 举例, 当初态是纯相干态, 那么经过扩散通道后, 从(40)式可知它的Wigner函数为
$\begin{split} \; & {W_{\rm{F}}} = \left\langle z \right|\varDelta \left( {\alpha,{\alpha ^ * },t} \right)\left| z \right\rangle \\={}& \frac{1}{{{\text{π}}\left( {2kt{\rm{ + 1}}} \right)}} \exp \left[ {\frac{{ - 2}}{{2kt{\rm{ + 1}}}}\left( {{\alpha ^ * } - {z^ * }} \right)\left( {\alpha - z} \right)} \right], \\& \qquad z = q + {\rm i} p.\end{split}$
图1所示为Wigner算符的演化规律, 图1(a)描绘了相干态初始的Wigner函数, 尖峰象征Delta函数; 图1(b) 描绘了$kt = 0.8$时高斯型Wigner函数. 对比两图中Wigner函数的峰值及形状, 可以看出相干态在耗散通道的演化情况.
图 1 (a) $kt = 0$, (b) $kt = 0.8$时, 相干态下Wigner算符的演化规律($\alpha = 1/2\left( {1 + i} \right)$)
Figure1. Evolution law of Wigner operator for the coherent state with $\alpha = 1/2\left( {1 + i} \right)$ for (a) $kt = 0$; (b) $kt = 0.8$

本文引入算符的Weyl编序记号, 导出量子扩散通道中Wigner算符的演化律公式, 它简洁而物理清晰, 展现了从点源函数
$\frac{1}{2}\begin{array}{*{20}{c}} : \\ : \end{array}\delta \left( {{z^ * } - {a^\dagger }} \right)\delta \left( {z - a} \right)\begin{array}{*{20}{c}} : \\ : \end{array}$
向高斯型函数
$\frac{1}{{2 kt}}\begin{array}{*{20}{c}} : \\ : \end{array}\exp \left[ {\frac{{ - 1}}{{kt}}\left( {{a^\dagger } - {z^ * }} \right)\left( {a - z} \right)} \right]\begin{array}{*{20}{c}} : \\ : \end{array}$
的演变, $k$是扩散系数. 由此也可转化为Wigner算符的其他排序形式, 如正规乘积序. 值得指出, 对于相干态的演化用了反正规乘积来讨论, 而对Wigner算符的演化用Weyl排序来讨论, 这两者的演化在数学形式上是一样的.
本节验证Wigner算符所满足的扩散方程. 由${\rm{Wigner}}$算符的正规乘积表达式(44)式可算出:
$\begin{split}\frac{\partial }{{\partial \alpha }}\varDelta \left( {\alpha,{\alpha ^ * }} \right)\; &= \frac{{\rm{1}}}{{\text{π}}}\frac{\partial }{{\partial \alpha }}:{{\rm{e}}^{ - 2\left( {{\alpha ^ * } - {a^\dagger }} \right)\left( {\alpha - a} \right)}}: \\ &= 2\left( {{a^\dagger } - {\alpha ^ * }} \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right),\end{split}\tag{A1}$
$\begin{split}\frac{\partial }{{\partial {\alpha ^ * }}}\varDelta \left( {\alpha,{\alpha ^ * }} \right)\; & = \frac{1}{{\text{π}}}\frac{\partial }{{\partial {\alpha ^ * }}}:{{\rm{e}}^{ - 2\left( {{\alpha ^ * } - {a^\dagger }} \right)\left( {\alpha - a} \right)}}:\\ & = \varDelta \left( {\alpha,{\alpha ^ * }} \right)2\left( {a - \alpha } \right),\end{split}\tag{A2}$
因此有
${a^\dagger }\varDelta \left( {\alpha,{\alpha ^ * }} \right) = \left( {\frac{\partial }{{2\partial \alpha }} + {\alpha ^ * }} \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right),\tag{A3}$
$\varDelta \left( {\alpha,{\alpha ^ * }} \right)a = \left( {\frac{\partial }{{2\partial {\alpha ^ * }}} + \alpha } \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right).\tag{A4}$
另一方面, 从Wigner算符的反正规乘积表达式
$\varDelta \left( {\alpha,{\alpha ^ * }} \right) = - \frac{1}{{\text{π}}} \vdots {{\rm{e}}^{2\left( {{\alpha ^ * } - {a^\dagger }} \right)\left( {\alpha - a} \right)}} \vdots ,\tag{A5}$
可以推导出:
$\begin{split}\frac{\partial }{{\partial {\alpha ^ * }}}\varDelta \left( {\alpha,{\alpha ^ * }} \right) ={}& \varDelta \left( {\alpha,{\alpha ^ * }} \right)2\left( {a - \alpha } \right)\\={}& 2\left( {\alpha - a} \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right),\end{split}\tag{A6}$
$\begin{split}\frac{\partial }{{\partial \alpha }}\varDelta \left( {\alpha,{\alpha ^ * }} \right)\; & = 2\left( {{a^\dagger } - {\alpha ^ * }} \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right) \\ &= 2\varDelta \left( {\alpha,{\alpha ^ * }} \right)\left( {{\alpha ^ * } - {a^\dagger }} \right),\end{split}\tag{A7}$
所以
$\left( {\alpha - \frac{\partial }{{2\partial {\alpha ^ * }}}} \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right) = a\varDelta \left( {\alpha,{\alpha ^ * }} \right),\tag{A8}$
$\left( {{\alpha ^ * } - \frac{\partial }{{2\partial \alpha }}} \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right) = \varDelta \left( {\alpha,{\alpha ^ * }} \right){a^\dagger },\tag{A9}$
$\begin{split}& \quad \varDelta \left( {\alpha,{\alpha ^ * }} \right){a^\dagger }a \\\;& = \left( {{\alpha ^ * } - \frac{\partial }{{2\partial \alpha }}} \right)\varDelta \left( {\alpha,{\alpha ^ * }} \right)a\\ & = \left( {{\alpha ^ * } - \frac{\partial }{{2\partial \alpha }}} \right)\left( {\frac{\partial }{{2\partial {\alpha ^ * }}} + \alpha } \right)\varDelta\left( {\alpha,{\alpha ^ * }} \right),\end{split}\tag{A10}$
由以上这些关系式就能导出(36)式.
相干态$\left| z \right\rangle \left\langle z \right|$的经典对应是
$\begin{split}& \quad 2{\rm{{\text{π}} tr}}\left[ {\left| z \right\rangle \left\langle z \right|\varDelta\left( {q,p} \right)} \right] \\\; & = 2{\text{π}}\frac{1}{{\text{π}}}\left\langle z \right|:{{\rm{e}}^{ - 2\left( {a - \alpha } \right)\left( {{a^\dagger } - {\alpha ^ * }} \right)}}:\left| z \right\rangle \\ &= 2{{\rm{e}}^{ - 2\left( {{z^ * } - {\alpha ^ * }} \right)\left( {z - \alpha } \right)}},\end{split}\tag{B1} $
其Weyl对应式则为
$\left| z \right\rangle \left\langle z \right| = 4\int {{{\rm{d}}^2}\alpha } {{\rm{e}}^{ - 2\left( {{z^ * } - {\alpha ^ * }} \right)\left( {z - \alpha } \right)}}\varDelta \left( {\alpha,{\alpha ^ * }} \right),\tag{B2}$
由于是Delta函数型, 所以$\left| z \right\rangle \left\langle z \right|$的Weyl排序形式为
$\left| z \right\rangle \left\langle z \right| = 2\begin{array}{*{20}{c}} : \\ : \end{array}{{\rm{e}}^{ - 2\left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)}}\begin{array}{*{20}{c}} : \\ : \end{array},\tag{B3}$
代入(2)式得到
$\rho = 2\int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} P\left( z \right)\begin{array}{*{20}{c}} : \\ : \end{array}{{\rm{e}}^{ - 2\left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)}}\begin{array}{*{20}{c}} : \\ : \end{array},\tag{B4}$
鉴于
$P\left( z \right) = {{\rm{e}}^{{{\left| z \right|}^2}}}\int {\frac{{{\rm d^2}\beta }}{{\text{π}}}} \left\langle { - \beta } \right|\rho \left| \beta \right\rangle {{\rm{e}}^{{{\left| \beta \right|}^2}}}{{\rm{e}}^{{\beta ^ * }z - \beta {z^ * }}},\tag{B5}$
这里$\left| \beta \right\rangle $为相干态, $\left| \beta \right\rangle = \exp \left[ {{{ - {{\left| \beta \right|}^2}} / 2} + \beta {a^\dagger }} \right]\left| 0 \right\rangle $, 所以
$\begin{split}\rho =\; & 2\int {\frac{{{{\rm{d}}^2}z}}{{\text{π}}}} {{\rm{e}}^{{{\left| z \right|}^2}}}\int {\frac{{{{\rm{d}}^2}\beta }}{{\text{π}}}} \left\langle { - \beta } \right|\rho \left| \beta \right\rangle {{\rm{e}}^{{{\left| \beta \right|}^2}}}{{\rm{e}}^{{\beta ^ * }z - \beta {z^ * }}}\\ & \times \begin{array}{*{20}{c}}:\\:\end{array}{{\rm{e}}^{ - 2\left( {{z^ * } - {a^\dagger }} \right)\left( {z - a} \right)}}\begin{array}{*{20}{c}}:\\:\end{array}\\ =\; & 2\int {\frac{{{{\rm{d}}^2}\beta }}{{\text{π}}}} \left\langle { - \beta } \right|\rho \left| \beta \right\rangle \begin{array}{*{20}{c}}:\\:\end{array}{{\rm{e}}^{2\left( {{\beta ^ * }a - \beta {a^\dagger } + {a^\dagger }a} \right)}}\begin{array}{*{20}{c}}:\\:\end{array},\\[-15pt]\end{split}\tag{B6}$
这就是将算符转化为Weyl编序的形式. 当取$\rho $为(45)式时,
$\varDelta \left( {\alpha,{\alpha ^ * },t} \right)\! =\! \frac{1}{{{\text{π}}\left( {2kt \!+\! 1} \right)}}:\exp \left[ {\frac{{ - 2}}{{2kt\! +\! 1}}\left( {{a^\dagger } \!-\! {\alpha ^ * }} \right)\left( {a\! -\! \alpha } \right)} \right]\!:,\tag{B7}$
此为正规乘积形式, 则代入(B6)式便可得到Weyl编序形式.
$\begin{split} & \varDelta \left( {\alpha,{\alpha ^ * },t} \right) \\=\; & 2\begin{array}{*{20}{c}} : \\ : \end{array}\int {\frac{{{{\rm{d}}^2}\beta }}{{{\text{π}}\left( {2kt + 1} \right)}}} \exp \Big[- 2{{\left| \beta \right|}^2} \\ & \left.- \frac{2}{{2kt + 1}}\left( { - {\beta ^ * } - {\alpha ^ * }} \right)\left( {\beta - \alpha } \right) + 2{a^\dagger }a + 2a{\beta ^ * } - 2\beta {a^\dagger }\right]\!\!\begin{array}{*{20}{c}} : \\ : \end{array} \\ = \; &2\int \!{\frac{{{{\rm{d}}^2}\beta }}{{{\text{π}}\left( {2kt + 1} \right)}}} \!\!\begin{array}{*{20}{c}} : \\ : \end{array}\!\!\exp \left[ { - {{\left| \beta \right|}^2}\frac{{4kt}}{{2kt \!+\! 1}} \!+\! 2\beta \left( {\frac{{{\alpha ^ * }}}{{2kt \!+\! 1}}\! -\! {a^\dagger }} \right)} \right. \\ &\left. { - 2{\beta ^ * }\left( {\frac{\alpha }{{2kt + 1}} - a} \right)- \frac{{2{{\left| \alpha \right|}^2}}}{{2kt + 1}} + 2{a^\dagger }a} \right]\begin{array}{*{20}{c}} : \\ : \end{array} \\ = \; &\frac{1}{{2kt}}\begin{array}{*{20}{c}} : \\ : \end{array}\exp \left[ - \frac{{2kt + 1}}{{kt}}\left( {\frac{{{\alpha ^ * }}}{{2kt + 1}} - {a^\dagger }} \right)\left( {\frac{\alpha }{{2kt + 1}} - a} \right)\right. \\ &\left.- \frac{{2{{\left| \alpha \right|}^2}}}{{2kt + 1}} + 2{a^\dagger }a \right]\begin{array}{*{20}{c}} : \\ : \end{array} \\ = \; &\frac{1}{{2kt}}\begin{array}{*{20}{c}} : \\ : \end{array}\exp \left[ { - \frac{1}{{kt}}\left( {{\alpha ^ * } - {a^\dagger }} \right)\left( {\alpha - a} \right)} \right]\begin{array}{*{20}{c}} : \\ : \end{array}.\\[-15pt]\end{split}\tag{B8}$
此即验证了(40)式.
相关话题/光子 物理 空间 信息 量子

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度
    摘要:利用张量网络表示的无限矩阵乘积态算法研究了含有Dzyaloshinskii-Moriya(DM)相互作用的键交替海森伯模型的量子相变和临界标度行为.基于矩阵乘积态的基态波函数计算了系统的量子纠缠熵及非局域拓扑序.数据表明,随着键交替强度变化,系统从拓扑有序的Haldane相转变为局域有序的二聚 ...
    本站小编 Free考研考试 2021-12-29
  • 二维介电光子晶体中的赝自旋态与拓扑相变
    摘要:基于背散射抑制且对缺陷免疫的传输性质,光子拓扑绝缘体为电磁传输调控提供了一种新颖的思路.类比电子体系中的量子自旋霍尔效应,本文设计出一种简单的二维介电光子晶体,以实现自旋依赖的光子拓扑边界态.该光子晶体是正三角环形硅柱子在空气中排列而成的蜂窝结构.将硅柱子绕各自中心旋转60°,可实现二重简并的 ...
    本站小编 Free考研考试 2021-12-29
  • 复杂势场量子弹球中疤痕态的量子化条件
    摘要:量子疤痕是波函数在经典不稳定周期轨道周围反常凝聚的一种量子或波动现象.人们对疤痕态的量子化条件进行了大量研究,对深入理解半经典量子化起到了一定的促进作用.之前大部分研究工作主要集中在硬墙量子弹球上,即给定边界形状的无穷深量子势阱系统.本文研究具有光滑复杂势场的二维量子弹球系统,考察疤痕态的量子 ...
    本站小编 Free考研考试 2021-12-29
  • 交错跃迁Hofstadter梯子的量子流相
    摘要:为玻色Hofstadter梯子模型引入交错跃迁,来扩展模型支持的量子流相.基于精确对角化和密度矩阵重整化群计算发现,无相互作用时,系统中包含横流相、涡旋相和纵流相;横流相来自均匀跃迁时Hofstadter梯子模型的Meissner相,纵流相是交错跃迁时才可见的流相.强相互作用极限下系统的超流区 ...
    本站小编 Free考研考试 2021-12-29
  • 一维化学势调制的p波超导体中的拓扑量子相变
    摘要:本文研究了一维公度势和非公度势调制下的p波超导量子线系统的拓扑相变.在公度势调制下,通过计算$Z_2$拓扑不变量确定系统的相图,指出系统的拓扑相变强烈地依赖于调制参数$\alpha$和相移$\delta$.在非公度势调制下,以$\alpha=(qrt{5}-1)/2$,$\delta=0$ ...
    本站小编 Free考研考试 2021-12-29
  • 相干与路径信息
    摘要:近年来,随着对相干性量化的发展,相干与路径信息间的互补关系渐渐引起人们注意.这样的互补关系不仅在基础量子力学方面有重要的理论意义,同时也在量子信息技术中有实际应用.本文从Bures距离和明确量子态区分出发,系统地研究了二路径干涉仪中的相干与路径信息,并建立了一个全新的互补关系.与已知的类似工作 ...
    本站小编 Free考研考试 2021-12-29
  • 基于连续量子级联激光器的1103.4 cm<sup>–1</sup>处NH<sub>3</sub>混叠吸收光谱特性研究
    摘要:由于NH3在大气气溶胶化学中具有重要作用,所以快速和精确反演NH3浓度对环境问题非常重要.本文以9.05μm的室温连续量子级联激光器(quantumcascadelaser,QCL)作为光源,采用波长扫描直接吸收可调谐二极管激光吸收光谱(tunablediodelaserabsorptions ...
    本站小编 Free考研考试 2021-12-29
  • 高时间稳定性的雪崩光电二极管单光子探测器
    摘要:雪崩光电二极管单光子探测器是一种具有超高灵敏度的光电探测器件,在远距离激光测距、激光成像和量子通信等领域有非常重要的应用.然而,由于雪崩光电二极管单光子探测器的雪崩点对工作温度高度敏感,因此在外场环境下工作时容易出现增益波动,继而导致单光子探测器输出信号的延时发生漂移,严重降低了探测器的时间稳 ...
    本站小编 Free考研考试 2021-12-29
  • AlGaN/GaN高电子迁移率器件外部边缘电容的物理模型
    摘要:AlGaN/GaNHEMT外部边缘电容Cofd是由栅极垂直侧壁与二维电子气水平壁之间的电场构成的等效电容.本文基于保角映射法对Cofd进行物理建模,考虑沟道长度调制效应,研究外部偏置、阈值电压漂移和温度变化对Cofd的影响:随着漏源偏压从零开始增加,Cofd先保持不变再开始衰减,其衰减速率随栅 ...
    本站小编 Free考研考试 2021-12-29
  • 量子点-Su-Schrieffer-Heeger原子链系统的电子输运特性
    摘要:Su-Schrieffer-Heeger(SSH)原子链是典型的具有拓扑边缘态的一维系统,并且已在光子和冷原子系统中实验实现.本文在紧束缚近似下,利用传输矩阵方法研究了量子点-SSH原子链系统的电子输运特性,这里,量子点的作用是调节SSH原子链与电极的隧穿耦合强度.当量子点与SSH原子链弱耦合 ...
    本站小编 Free考研考试 2021-12-29