Abstract:The state-to-state quantum dynamics studies of the abstraction channel D + DBr → Br + D2 and exchange channel $\rm D' + DBr \to D + D'Br$ of the D +DBr reaction are carried out by using the time-dependent wave packet method with second-order split operator in a collision energy range from 0 to 2.0 eV. The potential energy surface reported by Li et al. (Li W T, He D, Sun Z G 2019 J. Chem. Phys.151 185102) is adopted in this work. The dynamics properties such as reaction probability, integral cross section (ICS), differential cross section (DCS), the distribution of product ro-vibrational states, specific-state rate constant, etc. are reported and compared with available theoretical and experimental values. The ICSs are compared with the values reported by Zhang et al. and good agreement is achieved between each other, except a little difference at high collision energy. The specific-state rate constants of the title reaction are studied in a temperature range from 200 to 1000 K and present values are in good agreement with experimental data and the Zhang et al.’s results. For abstraction reaction, the backward DCSs reflect the head on “rebound” mechanism dominates in the low collision energy region and abstract mechanism plays a dominant role for the abstraction reaction at high collision energy. In addition, sideward DCSs are observed which stem from the crossing of the two electronic states on the potential energy surface and these values are not reliable. For exchange reaction, the head on “rebound” mechanism dominates the reaction in the collision energy range studied. However, the forward and sideward DCSs are more and more apparent as the collision energy increases. Keywords:D + DBr/ reaction probability/ integral cross section/ rate constant
全文HTML
--> --> -->
2.理论方法含时量子波包方法在计算原子与双原子的反应散射以及包含多原子的散射计算中有着广泛的应用[26-30]. 这里, 仅简单的介绍一下原子与双原子分子反应散射的动力学方法. 在空间坐标系下, 采用反应物坐标, 对于给定的总角动量J, D + DBr反应体系的哈密顿量可以写为
图5给出置换反应的总积分截面和振动分辨的积分截面. 它们的形状与图2中的反应概率类似, 都是随着碰撞的增加单调递增. 并且随着碰撞的增加, 其他振动激发态的通道逐渐打开. 产物的振动态分布也是随着振动激发态的增加逐渐递减. 主要的振动态分布集中在基态和第一激发态上. 图 5 置换反应总的积分截面和振动分辨的积分截面 Figure5. The total and vibrational state-resolved integral cross section of exchange reaction.
图6给出了置换反应在碰撞为0.8, 1.2, 1.6和2.0 eV时的产物分布. 与图4类似, 随着碰撞能的升高, 振动态的数目和转动量子数的数目都增加, 表明更多的碰撞能转化为内能. 在0.8和2.0 eV时的基态出现了有趣的双峰结构. 1.2和1.6 eV基态的峰偏向于较大转动量子数的位置. 图 6 在若干选择的碰撞能下, 置换反应的产物的振转分布 Figure6. The ro-vibrational distribution of products for exchange reaction at several selected collision energies.
23.3.微分截面 -->
3.3.微分截面
图7给出了不同碰撞能下抽取反应和置换反应的微分截面. 对于抽取反应, 在低碰撞能时主要有后向和侧向散射信号, 这表明在低碰撞能时, 头碰头的反弹机制反应机制占据主导地位. 随着能量的升高, 后向散射变的不明显, 前向散射变得越加明显, 这表明反应机制由头碰头的反弹机制转变为剥离反应机制. 侧向的信号在Li等[25]的分析中是因为势能面上两个电子态交叉的势阱引起的, 是不可靠的. 对于置换反应, 在低碰撞能时, 散射信号主要集中在后向散射. 随着碰撞的增加, 后向散射信号变得明显, 同时侧向和前向的散射信号也变得明显. 不难看出对于置换反应, 反弹反应机制一直占据主导地位. 随着碰撞能的增加, D的速率变得越来越大, 使其带走质量相对较重的Br原子成为可能, 因此出现了侧向和前向的散射信号. 图 7 (a) 在若干碰撞能下, 抽取反应的微分截面; (b) 在若干碰撞能下, 置换反应的微分截面 Figure7. (a) The differential cross sections of abstraction reaction at several selected collision energies; (b) the differential cross sections of exchange reaction at several selected collision energies.
23.4.速率常数 -->
3.4.速率常数
抽取反应和置换反应在不同温度范围内的速率常数分别示于图8(a)和图8(b)中. 为了与相应的理论和实验结果比较, 文献[1,6,24]的结果也列入到了图8(a)中. 对于抽取反应, 速率常数随着温度的升高线性增加. 此外, 本文结果与Zhang等[24]的非绝热结果以及实验值都十分吻合. 尽管在低温时出现了一些微小的差距. 这可能是因为本文的结果是基于绝热的势能面, 另一方面与实验结果比较需要包含转动激发态的贡献, 而本文只考虑了基态的结果. 图8(b)给出了0—3000 K温度范围内置换反应的速率常数. 如图8(b)所示, 速率常数随着温度升高而增加. 图 8 (a) 在200?1000 K温度范围内, 抽取反应的速率常数以及文献[1,6,24]的结果; (b) 在0?3000 K温度范围内, 置换反应的速率常数 Figure8. (a) The rate constant of abstraction reaction and the values obtained from Refs.[1,6,24] in the temperature range from 200 to 1000 K; (b) the rate constant of the exchange reaction in the temperature range from 0 to 3000 K.