1.Key Laboratory of Particle and Radiation Imaging of Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China 2.State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China 3.National Space Science Center, Chinese Academy of Sciences, Beijing 101400, China
Abstract:Fin field effect transistor (FinFET) is a most widely used structure when the field effect transistor is scaled down to 30 nm or less. And there are few studies on single-event transient of FinFET devices with gate length below 30 nm. The single-event-transient on FinFET with gate length below 30 nm is worth studying. The single-event-transient responses of bulk FinFETs with 30 nm, 40 nm, 60 nm and 100 nm gate length are examined by using the pulsed laser and technology computer-aided design (TCAD) simulation in this article. First, we use the pulsed laser to ionize the gate of the FinFET device and detect the transient drain current of the FinFET device. The experimental results show that there are obvious platforms for the transient drain current tails of FinFETs with different gate lengths, and the platform current increases as the gate length of FinFET becomes shorter. The charges collected in the platform of FinFET devices with gate lengths of 100, 60, 40, and 30 nm are 34%, 40%, 51%, and 65% of the total charge collected in transient drain current, respectively. Therefore, when the FinFET device with the gate length below 100 nm, the platform current will seriously affect the device performance. Second, we use TCAD to simulate the heavy ion single-event effect of FinFET device and study the generation mechanism of platform region in transient drain current. The TCAD simulation explains this mechanism. Laser or heavy ions ionize high concentration electron-hole pairs in the device. The holes are quickly collected and the high concentration electrons are left under the FinFET channel. High concentration electrons conduct source and drain, generating the source-to-drain current at the tail of the transient drain current. Moreover the source-drain conduction enhances the electrostatic potential below the FinFET channel and suppresses high-concentration electron diffusion, making source-to-drain current decrease slowly and form the platform. The transient drain current tail has a long duration and a large quantity of collected charges, which seriously affects FinFET performance. This is a problem that needs studying in the single-event effect of FinFET device. It is also a problem difficult to solve when the FinFET devices are applied to spacecraft. And the generation mechanism of the transient drain current plateau region of FinFET device can provide theoretical guidance for solving these problems. Keywords:single-event transient/ source-drain conduction/ platform current
图 10 重离子入射前、入射中和入射后30 nm FinFET器件内部电子浓度和电势分布 Figure10. Temporary evolution of electronic density and electrostatic potential for a 30 nm FinFET.
比较三种栅长器件1.5 ns时电子浓度分布, 如图11所示, 可以看出三种器件沟道stop区电子浓度都高于周围区域, 栅长30和60 nm器件源和漏被沟道stop内高浓度电子所导通, 在漏电流脉冲尾部形成平台区电流. 但是在栅长为100 nm时, 由于栅长较长, 源漏距离远, 高浓度电子区域不能将源漏导通, 所以100 nm器件漏电流脉冲不存在拖尾. 图 11 不同栅长FinFET器件在1.5 ns时的电子浓度 Figure11. Electronic density for FinFET of different gate length at 1.5 ns.
34.2.2.不同离子束半径 -->
4.2.2.不同离子束半径
取离子束特征半径wt分别为50, 15, 5和2 nm来研究其对漏电流脉冲的影响. 在LET相同时, 4种不同离子束宽度在栅长30 nm FinFET中造成的漏电流脉冲瞬态为图12所示, 由图12可以看出, 相同LET时, 随着入射粒子束变宽, 漏电流脉冲幅值变小. 相比于离子束半径为2和5 nm, 当离子束特征半径为15和50 nm时, 漏电流脉冲出现平台区, 且50 nm时漏电流脉冲尾部平台区电流值大于15 nm. 图 12 30 nm器件在不同特征半径重离子入射下漏电流脉冲 Figure12. Drain current transient for 30 nm FinFET when heavy ion incident device with different radius.
图13为重离子垂直入射栅长30 nm器件漏、栅极时漏电流脉冲波形. 当重离子在栅极入射时会产生较大的拖尾平台区电流, 而在漏极入射时, 漏电流在1.05 ns时基本恢复到入射前状态. 该结果和上述理论相符, 重离子入射栅极, 源漏导通导致漏电流脉冲平台区; 而重离子入射漏极时, 在漏极中心电离产生高浓度电子空穴对, 没有覆盖到源极, 不能将源漏导通, 所以漏电流会很快降低. 因此对于同一器件, 入射位置靠近栅极中心, 器件更容易发生源漏导通. 图 13 当重离子从栅极和漏极入射时, FinFET器件的漏电流脉冲 Figure13. Drain current transient for a FinFET when heavy ion incident at drain and gate.