Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Abstract:A green and low-cost method to prepare high-quality GaN (gallium nitride) nanowires is important for the applications of GaN-based devices on a large scale. In this work, high-quality GaN nanowires are successfully prepared by a green plasma enhanced chemical vapor deposition method without catalyst, with Al2O3 used as a substrate, metal Ga as a gallium source and N2 as a nitrogen source. The obtained GaN nanomaterials are investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and photoluminescence (PL) spectroscopy. The XRD results demonstrate that hexagonal-wurtzite GaN is obtained and no other phases exist. The SEM results show that GaN nanowires and hexagonal GaN microsheets are obtained at different temperatures. When the growth temperature is at 950 ℃ (reaction time for 2 h), the hexagonal GaN microsheets each with a size of 15 μm are obtained. When the growth temperature is at 1000 ℃(reaction time for 2 h), the GaN nanowires with the lengths in a range of 10–20 μm are obtained. With the reaction temperature increasing from 0.5 h to 2 h, the lengths of GaN nanowires increase. The TEM results suggest that the GaN nanowires are of high crystallinity and the growth direction of GaN nanowires is in the [0001] direction. The Raman results indicate that there exists a compressive stress in the GaN nanowires and its value is 0.84 GPa. Meanwhile, the growth mechanism of GaN nanowires is also proposed. The morphologies of GaN nanomaterials are tailed by the growth temperature, which may be caused by Ga atomic surface diffusion. Ga atoms have low diffusion energy and small diffusion length at 950 ℃. They gather in the non-polar m-plane. The (0001) plane with the lowest energy begins to grow. Then, hexagonal GaN microsheets are obtained. When reaction temperature is at 1000 ℃, the diffusion length of Ga atoms increases. Ga atoms can diffuse into (0001) plane. In order to maintain the lowest surface energy, the GaN nanowires grow along the [0001] direction. The PL results indicate that the obtained GaN nanowires have just an intrinsic and sharp luminescence peak at 360 nm, which possesses promising applications in photoelectric devices such as ultraviolet laser emitter. Our research will also provide a low-cost and green technical method of fabricating the new photoelectric devices. Keywords:GaN nanowires/ plasma enhanced chemical vapor deposition/ no catalyst/ growth mechanism
全文HTML
--> --> --> -->
3.1.XRD分析
图1为950 ℃和1000 ℃下获得样品的XRD图. 对比氮化镓的XRD标准PDF卡片(JCPDS 50-0792), 从图1中可以观察到, XRD图谱中的所有衍射峰均属于纤锌矿六方相GaN, 对应的晶面分别为(100), (002), (101), (102)和(110), 且没有观察到其他物相衍射峰存在, 说明反应温度为950—1000 ℃时, 获得样品的物相均为纤锌矿六方相GaN. 图 1 950 ℃和1000 ℃下获得样品的XRD图(反应时间为2 h) Figure1. X-ray diffraction patterns of the samples fabricated at 950 ℃ and 1000 ℃ (Reaction time is 2 h)
23.2.SEM分析 -->
3.2.SEM分析
图2(a)—图2(c)为不同反应时间获得GaN样品的SEM图(反应温度为1000 ℃). 图2(a)为反应0.5 h获得GaN样品的SEM图. 如图2(a)所示, 氧化铝衬底上生成了高密度的GaN纳米小岛. 当反应时间延长至1 h时, 获得了GaN纳米线, 长度为8—10 μm左右, 如图2(b). 当反应温度增加为2 h时, GaN纳米线的长度为10—20 μm. 实验结果表明, 随着反应时间的增加, GaN纳米线长度增加. 图2(d)为950 ℃反应获得GaN样品的SEM图. 从图2(d)观察到均匀分布的六边形GaN微米片, 大小为15 μm左右. 图 2 反应温度为1000 ℃时, 不同反应时间获得GaN样品的SEM图 (a) 0.5 h, (b) 1 h, (c) 2 h; (d) 950 ℃下获得GaN样品的SEM图 Figure2. SEM images of GaN samples fabricated at different reaction time (Reaction temperature is 1000 ℃): (a) 0.5 h, (b) 1 h, (c) 2 h; (d) SEM image of GaN sample fabricated at 950 ℃.
23.3.TEM分析 -->
3.3.TEM分析
图3为1000 ℃反应2 h获得GaN纳米线的TEM图. 图3(a)为单根GaN纳米线的微观形貌图, 直径为100 nm左右. 图3(b)为图3(a)中单根纳米线的高倍透射和反傅里叶变换图, 图中结果表明, GaN纳米线为单晶六方纤锌矿结构, 晶面间距为0.278 nm的晶面对应于六方相GaN的(100)面[21]. 图3(c)为另一根GaN纳米线的微观形貌图, 直径为30 nm左右. 图3(d)为图3(c)中单根GaN纳米线的高倍透射图, 0.277 nm的晶面间距对应于GaN的(100)面[11], 则说明纳米线的生长方向为[0001], 是垂直于[100]的[22]. 图 3 1000 ℃反应2 h获得GaN纳米线的TEM图 (a) 单根GaN纳米线的TEM照片; (b) 图(a)中的GaN纳米线的高倍TEM照片; (c) 另一根GaN纳米线的TEM照片; (d) 图(c)中的GaN纳米线的高倍TEM照片 Figure3. TEM images of GaN nanowires fabricated at 1000 ℃ (Reaction time is 2 h): (a) TEM image of single GaN nanowire; (b) HR-TEM image of GaN nanowire in (a); (c) TEM image of another GaN nanowire; (d) HR-TEM image of GaN nanowire in (c).
23.4.Raman分析 -->
3.4.Raman分析
图4为1000 ℃反应2 h获得GaN纳米线的Raman图谱, 拉曼入射光垂直于氧化铝衬底(0001)面. 如图4所示, 可以观察到Raman光谱中存在GaN的E2 (high)声子散射峰在571.2 cm–1处; 除此之外, 还可以观察到氧化铝衬底的拉曼光谱峰, 分别对应于412, 425, 445和748 cm–1[23]. E2(high)声子散射峰对GaN材料的内应力敏感[24,25]. 当GaN内部存在压应力时, E2(high)声子散射峰蓝移; 当GaN内部存在拉应力时, E2(high)声子散射峰红移[25]. 无应力的GaN块体的E2(high)声子散射峰在567.6 cm–1处, 与之相比, GaN纳米线的E2(high)声子散射峰发生了蓝移, 蓝移大小为3.6 cm–1. 内应力的经验计算公式[26]为 图 4 1000 ℃反应2 h获得GaN纳米线的Raman谱图 Figure4. Raman spectra of GaN nanowires fabricated at 1000 ℃ (Reaction time is 2 h).