Beijing Key Laboratory of Multiphase Flow and Heat Transfer, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Abstract:Based on the concept of single-phase fluid, the abnormal heat transfer behavior of supercritical fluid has been investigated for many years. However, there is no unified understanding of the mechanism of its flow and heat transfer. In this paper, we first review the reported effects of buoyancy and acceleration on supercritical fluids, and then study the effects of buoyancy and acceleration on the flow structure and heat transfer for the upward vertically flowing of supercritical CO2 fluid in a tube theoretically and experimentally. The results show that there is no conclusive experimental evidence that the abnormal heat transfer behavior of supercritical fluid is directly related to buoyancy and flow acceleration, and the existing criteria for estimating buoyancy and acceleration effect are based on the constant physical fluid and a lot of assumptions, as a result, different conclusions are obtained, though the same prediction method is used. Finally, we investigate the heat transfer deterioration of supercritical fluids based on the pseudo-boiling theory, and the proposed supercritical-boiling-number distinguishes the normal heat transfer deterioration from heat transfer deterioration of supercritical fluid. Our work paves a new way to understanding the supercritical fluid flow and heat transfer mechanism. The supercritical-boiling-number is important for establishing the optimum operating conditions for the supercritical fluid power cycle used in different technologies. Keywords:supercritical carbon dioxide/ heat transfer deterioration/ buoyancy/ acceleration/ pseudo-boiling
式中的Gr为格拉晓夫数, Re为雷诺数. 4.实验结果及讨论24.1.局部壁温Tw,in, Bu, Ac随主流焓值ib的分布 -->
4.1.局部壁温Tw,in, Bu, Ac随主流焓值ib的分布
不同质量流速下的Tw,in, Bu以及Ac随主流焓值分布, 如图4—图6所示, 所有传热恶化均发生在主流温度Tb < Tpc < Tw, Tpc为拟临界温度. 当质量流速为200 kg/(m2·s)的某一热流密度时(如图4(a)所示), 壁面温度急剧飞升, 然后恢复. 此时, Bu最高可达1 × 10–3的量级, 整个传热过程均远大于Bu的临界值. 对于质量流速为520 kg/(m2·s)的工况(如图4(b)所示), 恶化起始点Bu大于1 × 10–5, 但是当Bu小于其临界值时, 传热异常早已完全恢复. 两个质量流速下, 虽然壁温发生异常时, Bu临界值均大于1 × 10–5, 但是并不和浮升力准则存在单值性关系. 两个工况随着主流温度增加, Ac均先增加后减小, 壁面温度与Ac最大值没有对应关系. 图 4 局部壁温Tw,in, Bu, Ac随主流焓值ib的分布关系 (a) P = 8.220 MPa, G = 200 kg/(m2·s), qw = 60 kW/m2, (b) P = 8.220 MPa, G = 520 kg/(m2·s), qw = 42 kW/m2 Figure4. Local inner wall (Tw, in), Bu, Ac distributions with bulk fluid enthalpy (ib): (a) P = 8.220 MPa, G = 200 kg/(m2·s), qw = 60 kW/m2, (b) P = 8.220 MPa, G = 520 kg/(m2·s), qw = 42 kW/m2.
图 6 不同质量流速下(a)局部壁温Tw,in, (b) Bu, (c) Ac随主流焓值ib的分布(NHT, 正常传热; HTD, 恶化传热) Figure6. (a) Local inner wall Tw, in, (b) Bu, (c) Ac distributions with bulk fluid enthalpy ib (NHT, normal heat transfer; HTD, heat transfer deterioration).
当质量流速为700 kg/(m2·s)的某一热流密度下时(如图5(a)所示), 恶化与Bu和Ac准则不存在一定的对应关系. 随着质量流速进一步增大到1000 kg/(m2·s), 发现Ac数的最大值与壁面温度最值发生了对应关系, 浮升力完全不能预测恶化起始点的发生, 如图5(b)所示. 因此, 有研究者认为流动加速是导致传热恶化的主要原因[15], 实际上, 这个准则大小仅与流体的主流温度有关, 对于大质量流速, 当流体主流温度在拟临界点附近时, Ac数通常就会达到最大值. 图 5 局部壁温Tw,in, Bu, Ac随主流焓值ib的分布关系 (a) P = 8.220 MPa, G = 700 kg/(m2·s), qw = 245 kW/m2, (b) P = 8.220 MPa, G = 1000 kg/(m2·s), qw = 245 kW/m2 Figure5. Local inner wall (Tw, in), Bu, Ac distributions with bulk fluid enthalpy (ib): (a) P = 8.220 MPa, G = 700 kg/(m2·s), qw = 245 kW/m2, (b) P = 8.220 MPa, G = 1000 kg/(m2·s), qw = 245 kW/m2.