Abstract:Controlling impact dynamics of droplets on solid surfaces is a significant problem in a variety of applications, such as inkjet printing, spray cooling and coating and so on. Most of fluids used in industries always contain various kinds of additives such as surfactants, polymers and particles. Therefore, these fluids exhibit non-Newtonian behaviors, for instance, yield-stress, viscoelastic, shear-thickening and shear-thinning. The impact dynamics of Newtonian droplets on solid surfaces has been extensively investigated. However, the number of researches about fluids with non-Newtonian properties is comparatively very small. In this work, we employ the finite element scheme coupled with level set method to simulate the impact process of droplets on solid surfaces. The numerical simulation models the presence of shear-thinning viscosity by using the truncated power-law rheological model. We first conduct a mesh convergence study and verify the numerical model. The simulation results are found to be in good agreement with experimental data in the literature. By performing extensive numerical simulations and varying the rheological parameters and surface wettabilities, the influences of these parameters on the impact dynamics are evaluated, and the dominant effects that govern the spreading and receding process are determined. The simulation results show that for the case of droplet impacting on surface with contact angle θ = 55°, the spreading is stronger with power-law index decreasing as evidenced by larger shape deformation and faster interface moving speed. As power-law index decreases, we expect the maximum dimensionless diameter to increase and the minimum dimensionless height to decrease during inertial spreading. For the case of droplet with lower power-law index (m = 0.85 and 0.80), which indicates lower viscous dissipation during impact, the dimensionless parameters have significant differences. After first receding, the impacting droplet is not balanced any more and it starts to spread again until its kinetic energy is completely damped by fluid viscous dissipation. For the case of droplet (m = 0.80) impacting on surface, the center breakage can be observed during droplet spreading, which results from the effect of strong shear-thinning property. When a shear-thinning droplet impacts on a surface with contact angle θ = 100°, the oscillation behavior can be observed and the oscillation amplitude increases as power law index decreases. Bouncing phenomenon can be observed when a droplet impacts on surface with contact angle θ = 160°, regardless of rheological property. Finally, we propose an empirical model to predict the maximum dimensionless diameter of shear-thinning droplet impacting on the surface with contact angle θ = 55° as a function of non-Newtonian Reynolds number Ren. Keywords:non-Newtonian fluid/ droplet impact/ finite element method/ level-set method/ spreading dynamics
表1数值模拟参数设置 Table1.Symbols and constants in numerical simulation
图 3 本文数值模拟与Lim等[33]相场模拟的结果比较 Figure3. Comparisons between simulation results in this work and phase-field simulation results[33].
图 4 本文数值模拟与German等[11]的实验结果比较(左侧为实验结果, 右侧为模拟结果) Figure4. Comparisons between numerical simulation in this work and experiment results[11], the left half of each image is obtained from the experiment, while the right half is the snapshots from our simulation.
图 5 液滴撞击壁面的网格收敛性验证 Figure5. Mesh convergence study of droplet impact on solid surfaces
-->
3.1.剪切变稀特性的影响
为了研究剪切变稀特性对液滴撞击固体壁面后铺展行为的影响, 在不改变表1中除黏度以外参数的情况下, 对比研究了牛顿流体液滴和三种表现出不同剪切变稀程度液滴的撞击壁面行为. 图6为模拟研究中不同幂律指数流体剪切黏度随剪切速率的变化, 稠度系数和幂律指数的具体数值选择参考了Lindner等[34]对黄原胶稀溶液的流变学研究. 由幂律模型的本构关系可知在低剪切速率时, 其剪切黏度会趋近一个无穷大的值, 所以本文在剪切速率为$0.01\;{{\rm{s}}^{ - 1}}$时将曲线截断, 对黏度进行修正. 图 6 不同幂律指数流体剪切黏度随剪切速率的变化 Figure6. Variation of shear viscosity with shear rate at different power-law index.
从图7和图8可以发现, 对于表现出剪切变稀特性的液滴, 当m较小时它的铺展速度更快(更大的斜率), 但由于其在壁面上的铺展直径更大, 所以达到最大铺展的时间仍随着m减小而增大. 虽然铺展直径的增大会导致液滴与壁面间的摩擦能量耗散增加, 但从铺展直径的变化曲线可以看出, 黏性耗散在此过程中起着更大的影响. 液滴达到最大铺展直径后的回缩阶段已经不受惯性力的影响, 此时主导液滴运动的主要是表面张力和液滴黏性力, 同样由于剪切变稀特性的存在, 液滴的回缩速度更快 (更大斜率绝对值). 图 7 不同幂律指数时无量纲直径随无量纲时间的变化(We = 4.53) Figure7. Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53).
图 8 不同幂律指数时无量纲高度随无量纲时间的变化(We = 4.53) Figure8. Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53).
在$\tau $约为2.7和3.2时, m = 0.85和0.80的液滴分别达到最大的回缩高度, 但与其他3种液滴达到最大回缩后铺展直径和高度趋于恒定值不同, m = 0.85和0.80的液滴在此后无量纲直径再次增大, 无量纲高度再次减小. 这意味着液滴出现了二次铺展的情况, 也即液滴撞击固体壁面后出现振荡行为. 图9对比了m = 0.85和0.80的液滴撞击壁面(接触角为55°)时液滴形貌与速度矢量随时间的变化情况. $\tau = {\rm{1}}{\rm{.36}}$时, 可以发现m = 0.80的液滴出现内部薄液膜断裂的情况, 液滴内部液膜断裂的同时伴随着一个中心小液滴的生成. 在液滴的回缩过程中, 中心小液滴会重新合并到主液滴中. 这种液滴铺展过程中出现内部液膜断裂的行为与前人[35,36]在数值模拟研究中发现的行为类似, 本文中出现此现象的原因是m = 0.80液滴的表观黏度最小, 液滴撞击壁面过程中的黏性耗散较小, 从图7中液滴内部黏度场分布也可以看出, 相较于幂律指数较大的液滴, 此时液滴内部液膜处的剪切较强, 剪切黏度较小, 抵抗形变的能力最弱, 最终在表面张力和惯性力的驱使下, 内部液膜断裂. 图 9 不同幂律指数时液滴撞击壁面过程 (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53 Figure9. Process of droplet impact on surface at different power-law index: (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.
23.2.壁面浸润性的影响 -->
3.2.壁面浸润性的影响
液滴撞击壁面后的铺展行为被气液固三相耦合作用, 固体壁面的浸润性直接影响着壁面与液滴间力的相互作用. 通常采用接触角衡量壁面的浸润程度, 3.1节中已经研究了接触角为55°情况下液滴撞击固体壁面时的动力学行为, 为了研究壁面浸润性对液滴撞击壁面后铺展行为的影响, 继续模拟了壁面接触角分别设置为100°和160°时液滴撞击固体壁面的行为, 探讨壁面浸润性对牛顿流体液滴和剪切变稀液滴撞击壁面行为的影响差异, 图10和图11为数值计算结果的分析图. 图 10 不同幂律指数时无量纲直径随无量纲时间的变化(We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85)) Figure10. Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))
图 11 不同幂律指数时无量纲高度随无量纲时间的变化(We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85)) Figure11. Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85)).
从图10和图11可以看出, 随着壁面浸润性的减小 (接触角增大), 液滴撞击壁面后的最大无量纲直径增大, 但壁面浸润性对剪切变稀液滴的最大无量纲直径影响更为显著. 接触角为55°情况下, 牛顿流体液滴撞击壁面时, 液滴在达到最大铺展后基本不表现出回缩行为; 接触角为100°时液滴撞击壁面后铺展范围减小, 与壁面摩擦导致的能量耗散较小, 达到最大铺展后, 液滴的表面张力和壁面力驱使液滴回缩, 但此时并未弹起. 接触角为160°时, 液滴撞击过程中的摩擦耗散能量继续减少, 由(11)式可知壁面对液滴的作用力继续增大, 液滴最终在回缩过程中弹起. 图12(a)给出了接触角为160°时牛顿流体液滴撞击壁面过程中内部速度矢量随无量纲时间的变化. 在液滴的撞击瞬间, 液滴上部的速度几乎与撞击前一致, 此时在液滴近壁中心处的速度接近于零, 在液滴近壁边缘处则会产生较大的横向速度. 随着液滴在壁面上的铺展, 液滴边缘的横向速度逐渐减小, 液滴达到最大铺展时, 液滴边缘的横向速度减小为零. 在表面张力的作用下, 液滴开始回缩, 此时液滴近壁中心处的速度依然接近于零, 液滴上部的速度矢量方向向下, 但液滴边缘出现指向液滴中心的速度 (τ = 0.64), 这导致此时液滴内部出现了较小的速度环流. 随着液滴的回缩, 液滴横向回缩速度逐渐增大, 在液滴即将脱离壁面回弹起的时刻, 近壁中心处的横向速度达到最大值, 液滴脱离壁面后内部基本不存在径向的速度分量. 图12(b)为剪切变稀液滴撞击壁面过程中内部速度矢量分布的变化情况, 剪切变稀液滴撞击壁面后其内部的速度矢量分布变化与牛顿流体基本一致, 但由于流体的剪切变稀特性, 液滴铺展过程中的黏性耗散小于牛顿流体液滴, 黏性耗散的减少使得更多的惯性能量转化为表面能量, 在表面张力的驱使下液滴回缩的速度更快, 液滴弹起壁面的时间略早于牛顿流体液滴, 最终回弹高度也略高. 图 12 不同幂律指数时液滴撞击壁面过程 (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53 Figure12. Process of droplet impact on surface at different power-law index: (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.