全文HTML
--> --> -->非稳态球形冲击波是超新星的典型特征, 在恒星形成中起重要作用. 目前激光产生球形冲击波有两种方式: 一种是激光直接辐照杆或薄箔[10-12], 烧蚀产生的热等离子体在周围低密度冷气体(如氮气、氙气等)爆炸, 产生球形冲击波; 另一种是激光注入球形黑腔形成高温辐射场, 烧蚀并驱动剩余球壳在低密度气体区产生球形冲击波[13]. 第一种方式激光需要长距离地穿过低密度气体区, 激光散射限制了激光功率密度. 第二种方式的低密度气体区在球形黑腔外, 干净的激光传输通道使得激光功率密度基本不受限, 但由于黑腔的注入口(laser entrance holes, LEH)尺寸影响激光注入, 需要通过折衷黑腔和LEH尺寸, 平衡激光注入效率和黑腔辐射温度.
作为激光驱动球形冲击波实验研究基础, 本文介绍了国内首次在神光Ⅲ原型装置[14]开展的银球腔激光能量耦合和分配实验. 首先介绍银球腔实验的激光和靶物理设计, 以及诊断安排; 然后介绍单注入孔银球腔实验的散射光、辐射流、超热电子、等离子体聚心过程等测量结果, 分析激光能量耦合效率和分配情况; 最后给出实验小结.
实验利用神光Ⅲ原型装置[14]上四路激光开展. 四路激光排列为一环, 入射角为45°. 单束激光的能量可达800 J, 脉宽为1 ns. 由于实验需要黑腔辐射温度尽量高, 所以球腔半径和LEH尺寸需要尽量小. 神光Ⅲ原型在不使用连续相位板(continuous phase plate, CPP)进行束匀滑时, 可通过聚焦将激光焦斑控制在约Φ200 μm. 考虑激光瞄准误差和靶定位误差, Φ650 μm的激光注入孔能确保激光高效注入.
银球腔直径设计为800 μm, 银球壳厚度约6 μm, 银球壳外面溅射10 μm的CH作为支撑层. 锥型LEH张角110°, 避免激光注入过程挂边. 银球腔采用有机芯轴电镀方式制备[15], 先通过金刚石车床加工有机芯轴, 再电镀银制备球形腔壳, 然后溅射CH支撑层, 最后腐蚀溶解芯轴. 与常规的Al芯轴[15]相比, 有机材料热容低, 芯轴腐蚀过程发热小, 热胀冷缩小, 避免球壳的变形和龟裂; Al芯轴不易腐蚀溶解干净, 容易出现残留杂质.
实验和诊断排布如图1所示. 使用针孔相机[16](pinhole camera, PHC)监测激光注入, 使用背向散射测量系统[17]测量散射激光份额, 使用平响应X射线二极管[18](flat-response X-ray detector, FXRD)测量黑腔辐射温度, 使用软X射线能谱仪[19](soft X-ray spectrometer, SXS)测量黑腔辐射场能谱, 使用透射光栅谱仪[20](transmission grating spectrometer, TGS)测量黑腔漏失X射线能谱, 使用滤波荧光谱仪[21](filter fluorescence spectrometer, FF)测量黑腔超热电子份额, 使用X光分幅相机[22](X-ray framing camera, XFC)测量黑腔等离子体聚心过程.
图 1 实验和诊断排布Figure1. Arranging for experiment and diagnosis.
2
3.1.散射光份额
激光在注入黑腔到达腔壁的过程中, 会与腔内低密度等离子体相互作用, 激发各种有害的激光等离子体不稳定性(laser plasma instability, LPI), 散射入射激光. LPI对激光的等离子条件非常敏感, 散射光份额随激光功率密度增大而增大. 实验使用无CPP聚焦注入, 由于激光束的光程长、光学元件多, 入射在靶点的激光波阵面远远偏离理想结构, 焦斑光强的不均匀空间分布严重影响激光注入效率, 降低黑腔辐射温度.实验使用神光III原型装置的背向散射光诊断系统[17]对散射光份额进行测量, 包括全口径背向散射和近背向散射诊断系统. 全口径背向散射测量系统利用终端光学组件对靶散射激光进行收集、色散、滤波、缩束和测量. 近背向散射诊断系统利用安装在靶室内的吸收盘对诊断光学组件附近的散射光进行收集、成像、色散和测量.
实验输出的激光总能量为3.2—3.5 kJ, 散射光份额测量结果如图2所示, 其中, YX201809为2018年9月两发测量结果, YX201901为2019年1月两发测量结果. 散射光份额随着激光能量增加而增加, 平均散射份额为15%. 散射光均以全口径背反散射份额为主, 近背向散射份额约占2%; 均以受激布里渊散射为主, 受激拉曼散射约占1%. 实验测量的散射光份额低于原型真空柱腔实验[23]. 八束激光无CPP注入时, 腔内等离子体环境更复杂, 散射光总能量份额达20%—45%. 使用CPP能够减小激光焦斑中较高功率密度的能量份额, 抑制LPI.
图 2 散射光份额测量结果Figure2. Measurement results of scattering laser.
2
3.2.辐射温度
未散射激光在黑腔壁沉积能量产生等离子体, 并以电子热传导的方式向临界面内的等离子体传输. 腔壁沉积的大部分能量转换为X光, 再发射至黑腔, 最后经过多次吸收和再发射, 在黑腔内形成空间均匀、能谱接近Planck谱的高温辐射源. 通过测量黑腔LEH漏失的X射线辐射流, 可以推导给出辐射源的温度.X射线辐射流由FXRD和SXS测量. FXRD[18]由组合滤片、X光二极管、快响应电缆和宽带数字示波器组成, 实验前在同步辐射进行精密标定. 将黑腔作为黑体辐射, 根据斯提芬-玻尔兹曼定律

图 3 辐射温度测量结果(a)及随角度变化规律(b)Figure3. Measurement results (a) and angular dependence (b) of radiation temperature.
辐射温度随探测器角度的变化如图3(b)所示, 图中的激光能量为扣除散射光之后的能量. 不同角度FXRD测量的辐射温度偏差小于5%, 并随探测器角度增大而减小, 主要原因是FXRD安装角度越小, LEH和锥面的遮挡越少, 测量的辐射流越强.
激光在黑腔腔壁沉积能量转换为X光, 转换过程满足能量平衡关系[24], 即


图 4 辐射温度拟合结果Figure4. Fitting results of radiation temperature.
2
3.3.漏失辐射流
激光能量除了部分以X射线形式从LEH漏失外, 还有较大部分X射线直接穿透薄腔壁漏失. 因而, 实验在赤道和下半球安装了FXRD, 测量腔壁漏失激光份额, 测量结果如图5所示. 图5同时给出了上半球23.7°和30°、赤道和下半球56°的FXRD测量的辐射流. 测量结果显示, 上半球两支FXRD测量结果一致, 而赤道和下半球FXRD测量结果有较大差异. 腔壁漏失辐射流强度约为LEH漏失辐射流强度的百分之一. 激光注入阶段, 赤道FXRD(E90)测量辐射流略强于下半球FXRD测量辐射流(D56), 主要原因是从LEH喷射的等离子体在赤道FXRD视场内; 2 ns后, 下半球FXRD测量的辐射流比赤道FXRD测量的辐射流强, 主要原因是是激光从上半球注入, 球腔向下破碎, 下半球FXRD能观测到更多的热等离子体.
图 5 LEH和球壳漏失辐射流比较Figure5. Loss radiation flux of LEH and shell.
对LEH和球壳漏失辐射流进行时间积分, 可得单位立体角漏失辐射流强度, 球壳漏失约为LEH漏失的1/15. 再对空间积分, 即得从LEH和球壳的漏失总能量. 图5的实验结果表明, 约30%的能量从LEH漏失, 约9%的能量从球壳漏失.
2
3.4.X射线能谱
漏失X射线在周围冷气体沉积能量, 预热冷气体. X射线越软, 越容易被气体吸收. 实验使用SXS和TGS对腔内和腔壁漏失的X射线能谱进行测量. SXS[19]采用X光滤片、掠入射X光反射镜和X光二极管探测阵列, 通过不同材料滤片的低能截止和反射镜的高能截止将X光能谱分割为多个能区测量, 由多个能区强度给出整个能谱, 能谱测量精度由SXS的道数决定. 因此, SXS既可进行时间积分的软X光谱绝对强度测量, 给出辐射温度, 又可进行时间分辨的软X光谱绝对强度测量, 给出软X光能谱.SXS从LEH测量的辐射温度如图3(b)所示, 相同23.7°的FXRD和SXS辐射温度测量结果一致, 偏差小于2%. SXS从LEH测量的辐射流积分谱如图6所示, 以小于1 keV的M壳层和3—4 keV的L壳层发射[26]为主.
图 6 LEH和球壳漏失X射线能谱比较Figure6. Radiation spectrum of LEH and shell.
TGS[20]由光栏、透射光栅和CCD组成, 安装在靶室赤道. X射线经过光栏狭缝入射至光栅, 以零级为中心, 波长由小到大向两边色散, 再由CCD记录. 透射光栅的谱分辨主要由光栅线宽决定, 理论的谱分辨远高于SXS. 图6同时给出赤道TGS测量的从球壳漏失辐射流的积分谱, 同样以低能X射线为主, 也包含3—4 keV的L壳层发射.
2
3.5.超热电子份额
入射激光与通道内等离子体作用, 受激拉曼散射激发的电子等离子体波通过朗道阻尼产生超热电子. 运动的超热电子与靶作用, 由于韧致辐射过程, 产生满足麦克斯韦分布的硬X光. 高能X射线穿透能力很强, 可轻易穿透黑腔, 漏失能量.实验使用FF谱仪[21]测量韧致辐射产生的硬X光谱, 间接得到超热电子温度和漏失能量. FF谱仪的原理类似于SXS[19], 由多道前滤片、荧光片、后滤片、X射线探测器组成. 硬X射线经过前置滤片的吸收截止, 入射并经过荧光片的发射截止, 将X射线分隔为窄能带, 再由精确标定的X射线探测器记录信号强度, 合并绝对给出硬X射线谱强度, 最后推导出超热电子温度和能量.
图7是实验测量的超热电子份额(超热电子能量/激光能量), 超热电子份额低于1%, 略高于NIF的超热电子份额[25]. 其原因是神光Ⅲ原型实验采用激光聚焦注入, 聚焦后的激光焦斑为Φ200 μm, 功率密度比NIF高, 超热电子份额相应高.
图 7 超热电子份额Figure7. The fraction of hot electron.
2
3.6.等离子体聚心过程
注入激光在腔壁沉积能量, 产生的等离子体向腔中心运动, 逐渐填充激光传输通道, 甚至整个黑腔. 激光与通道内的低密度等离子体作用, 是LPI的主要来源, 会增大激光散射, 不利于随后的激光注入. 为了研究银球腔内的等离子体聚心过程, 判断激光注入情况, 实验在上极点安装了XFC.XFC[22]由针孔阵列、微通道板(micro-channel plate, MCP)、荧光屏和电荷耦合器件(charge coupled device, CCD)等组成. 靶区图像经针孔成像至MCP输入面的微带, 高压选通脉冲沿微带方向传输, 脉冲扫过的微带区被激活, 光电子被倍增放大, 并在荧光屏转换为可见光, 最后被CCD记录.
图8是XFC测量的腔内等离子体典型汇聚过程, 等离子体在949 ps左右开始聚心, 表明实验使用的1 ns激光基本能够有效注入.
图 8 冕区等离子体聚心图像 (a) 550 ps; (b) 781 ps; (c) 893 ps; (d) 949 ps; (e) 1124 ps; (f) 1236 psFigure8. X-ray imaging of coronal plasma expansion: (a) 550 ps; (b) 781 ps; (c) 893 ps; (d) 949 ps; (e) 1124 ps; (f) 1236 ps.
