Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11472139)
Received Date:07 May 2019
Accepted Date:23 July 2019
Available Online:01 November 2019
Published Online:20 November 2019
Abstract:Boundary-layer receptivity is the initial stage of the laminar-turbulent transition process, and plays a key role in predicting and controlling the transition. The present researches indicate that the boundary-layer receptivity is affected not only by the different sorts of free-stream disturbances or the size, shape and position of the wall localized roughness and blowing/suction, but also by the pressure gradient. Therefore, the local receptivity under the interaction between the free-stream turbulence and localized wall blowing/suction in the pressure-gradient boundary layer is studied in the present work, thus revealing the effect of the pressure gradient on the receptive process and the group speeds of the excited T-S wave packets under the interaction of the free-stream turbulence with localized wall blowing/suction in the boundary layer. High-order finite difference scheme is utilized to discretize the incompressible perturbation Navier-Stokes equation. A modified fourth-order Runge-Kutta scheme is used for time integration. The compact difference scheme based on non-uniform meshes is applied to the spatial discretization. The convective term is discretized by the fifth-order upwind compact scheme. The pressure gradient term is discretized by the sixth-order symmetric compact scheme. The viscosity term is discretized by the fifth-order symmetric compact scheme. Besides, the pressure Poisson equation is solved by the fourth-order scheme on the non-uniform meshes. The favorable or adverse pressure gradient promotes or suppresses the receptivity triggered by the interaction between free-stream turbulence and blowing/suction. And the blowing always induces a stronger receptivity than the suction in the same intensity. The initial amplitude of the T-S wave and wave packet excited in the adverse-pressure-gradient boundary layer are two orders larger than those excited in the favorable-pressure-gradient boundary layer. It is analyzed in detail that the favorable and adverse pressure gradient play a promoting or suppressing role in the growth of the excited T-S wave. Then the influences of the pressure gradient on the amplitudes, growth rates, wave numbers, phase speeds and shape functions of the excited T-S waves are investigated. The intensive research on receptivity in the pressure-gradient boundary layers provides a reference for designing the turbine machinery blades in the practical engineering. Keywords:receptivity/ pressure gradient/ boundary-layer
表2压力梯度边界层被激发出的T-S波的流向波数和相速度(αr, C) Table2.The streamwise wave numbers and phase speeds (αr, C) of the excited T-S wave packets in the pressure-gradient boundary layers.
其中: $\overline {{u_{{\rm{TS}}}}^2} $和$\overline {{v_{{\rm{TS}}}}^2} $代表x和y方向上有压力梯度边界层内被激发出T-S波的扰动速度平方的时均值. 图5(右边y刻度值对应的是零压和顺压梯度, 左边y刻度值对应逆压梯度)和图6给出了几种典型压力梯度情况下壁面局部吹入边界层内被激发出的具有代表性频率T-S波的幅值和增长率随流向的演变. 当频率F = 40时, 从图5(a)和图6(a)可见: 逆压力梯度能促使壁面局部吹入边界层内被诱导产生的不稳定T-S波模态转换成为更不稳定T-S波模态, 其幅值向下游加速增长以及在整个下游发展过程中的增长率始终大于零, 且增长速率明显大于零压和顺压梯度情况; 顺压力梯度使得壁面局部吹入边界层内被诱导产生的不稳定T-S波模态可能转换成为稳定T-S波模态, 其幅值向下游快速衰减以及在整个下游发展过程中的增长率始终小于零, 且增长速率明显小于零压和逆压梯度情况; 这一结果与eN法和线性理论解完全吻合. 当频率F = 80时, 从图5(b)和图6(b)可见: 逆压力梯度有可能使壁面局部吹入边界层内被诱导产生的稳定T-S波模态转换成为不稳定T-S波模态, 其幅值向下游快速增长以及在整个下游演化过程中的增长率始终大于零, 且增长速率明显大于零压和顺压梯度情况; 顺压力梯度总能使得壁面局部吹入边界层内被诱导产生稳定T-S波模态转换成为更加稳定T-S波模态. 图 5 壁面局部吹入边界层内被激发出T-S波的幅值AT-S沿x向的演化(t = 2400) (a) F = 40; (b) F = 80 Figure5. The x-direction evolutions of the amplitude of the excited T-S waves in the local blowing boundary layers (t = 2400): (a) F = 40; (b) F = 80.
图 6 壁面局部吹入边界层内被激发出T-S波的增长率(–αi)沿x向的演化(t = 2400) (a) F = 40; (b) F = 80 Figure6. The x-direction evolutions of the growth rate (–αi) of the excited T-S waves in the local blowing boundary layers (t = 2400): (a) F = 40; (b) F = 80.
分别考虑在自由来流湍流分别与壁面局部吹入和吸出作用下, 讨论在不同顺压和逆压梯度情况下边界层内被激发产生T-S波波包的初始幅值分别与吹入和吸出强度之间的关系, 详见图7所示. 图7(a)和图7(b)分别表示不同顺压和逆压梯度边界层内被激发产生T-S波波包的初始幅值与吹入强度之间的关系, 其中图7(b)左边y刻度值对应压力梯度系数βH = –0.012, –0.02和–0.05时的初始幅值, 右边y刻度值对应压力梯度系数βH = –0.1和–0.11时的初始幅值; 图7(c)和图7(d)分别表示不同顺压和逆压梯度边界层内被激发产生T-S波波包的初始幅值与吸出强度之间的关系, 其中图7(d)左边y刻度值对应压力梯度系数βH = –0.012, –0.02和–0.05时的初始幅值, 右边y刻度值对应压力梯度系数βH = –0.1和–0.11时的初始幅值. 由图7(a)和图7(b)可知, 当壁面局部吹入强度不断增强时, 压力梯度系数的不断减少都将促使边界层内被激发出 T-S波波包的初始幅值快速增长; 顺压梯度情况下边界层内被激发出 T-S波波包的初始幅值始终比逆压梯度情况下边界层内被激发出 T-S波波包的初始幅值大约要小两个数量级左右. 从图7(c)可知, 当壁面局部吸出强度不断增强时, 顺压梯度系数的不断减少都将先促使边界层内被激发出 T-S波波包的初始幅值较快的增长; 直至壁面局部吸出强度等于–0.0024之后开始阻碍边界层内被激发出 T-S波波包的初始幅值发展; 其原因是壁面局部吸出和顺压梯度两者都能抑制或阻碍不稳定波增长的作用所导致波包初始幅值较快地衰减. 从图7(d)可知, 当壁面局部吸出强度不断增强时, 逆压梯度的不断增强都将先促使边界层内被激发出 T-S波波包的初始幅值较快的增长; 直至壁面局部吸出强度等于–0.002之后将抑制或阻碍边界层内被激发出 T-S波波包的初始幅值增长, 并趋于较缓慢衰减和平稳发展的状态; 其原因是壁面局部吸出始终抑制不稳定波的增长和逆压梯度始终激励不稳定波的增长两者相互作用所导致不稳波趋于缓慢衰减或平稳发展态势. 图 7 在不同压力梯度情况下壁面局部吹入和吸出边界层内被激发出T-S波波包的初始幅值AR与局部吹吸强度q之间的关系 Figure7. The relationships between the initial amplitudes of the excited T-S waves AR and the localized blowing/suction intensity q in different pressure boundary layers
最后, 选取几种典型压力梯度的壁面局部吹入边界层内被激发出最具有代表频率(F = 40) T-S波为例, 分析其特征形状函数的幅值和相位沿法向的演变. 图8展示的结果已被零压梯度情况下壁面局部吹入边界层内被激发出T-S波的最大幅值$\left| {{u_0}} \right|$归一化. 图8显示, 几种典型压力梯度壁面局部吹入边界层内被激发出T-S波的特征形状函数的幅值沿法向变化的分布状态是相似的; 但是, 压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数幅值沿法向变化的影响是相当明显的, 即逆压力梯度明显大于零压和顺压力梯度的作用, 这说明逆压力梯度对边界层内被激发出的感受性能力较强; 另外, 从图9也可发现, 有压力梯度壁面局部吹入边界层内被激发出T-S波的相位沿法向变化与线性理论解也吻合一致, 且压力梯度对壁面局部吹入边界层内被激发出T-S波的相位沿法向变化的影响很小. 同理, 压力梯度对壁面局部吸出边界层内被激发出T-S波的特征形状函数的幅值和相位沿法向变化的影响相同; 其主要区别是压力梯度对壁面局部吸出边界层内被激发出T-S波的特征形状函数幅值沿法向变化的影响要明显小于壁面局部吹入的情况. 图 8 压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数的幅值沿y向演变的影响(x = 300) Figure8. The effects of different pressure gradients on y-direction amplitude profiles of the shape functions of the excited T-S waves in localized blowing boundary layers (x = 300).
图 9 压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数的相位沿y向演变的影响(x = 300) Figure9. The effects of different pressure gradients on y-direction phase profiles of the shape functions of the excited T-S waves in localized blowing boundary layers (x = 300).