The School of Chemical and Material Science, Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, Shanxi Normal University, Linfen 041004, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 21301112) and the Ph. D. Program Foundation of Ministry of China (Grant No. 20131404120001)
Received Date:15 May 2019
Accepted Date:15 August 2019
Available Online:01 October 2019
Published Online:20 October 2019
Abstract:The stability of structure, spin, orbital magnetic moment and magnetic anisotropy energy of TM@Cu12N12 (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) are systematically investigated within the framework of the generalized gradient approximation with on-site coulomb repulsion density-functional theory (DFT-GGA+U). In the orbital moment and magnetic anisotropy energy (MAE) computation procedure, the spin-orbit coupling is considered and implemented. In this article, we mainly focus on the structure stability and tunable magnetism of the TM atom (Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) substituting the centre atom of icosahedron (ICO) Cu13N12 cluster, finally disclose the physics origin of the structure stability, change magnetism and larger MAE. The results show that the different TM atom doping makes the ICO structure of Cu13N12 cluster appears a tiny deformation. The stabilities of the clusters are evidently enhanced due to the formation of Cu—N and Cu—TM bond. In addition, the N-capped clusters more prefer to present a larger magnetic moment than the pure Cu13 one. The magnetic environment of clusters is improved to varying degrees by doping different TM (TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) atoms, which endows TM@Cu12N12 clusters with various magnetic properties. For instance, the doping of 3d atoms further enhances the spin magnetic moment of the clusters, the Mn, Fe and Co atoms replacing the centre atom of the ICO Cu13N12 generate 35, 32 and 33 giant moments, respectively. In light of the doping of 4d, 5d transition metal atoms, the orbital moments of the TM@Cu12N12 clusters do not increase evidently, but the MAE remarkably strengthens for the doping of Rh and Pt atoms, the MAE values reach to 15.34 meV/atom and 6.76 meV/atom for Rh@Cu12N12 and Pt@Cu12N12, respectively. The tunable magnetism of TM@Cu12N12 cluster provides promising applications in spintronics. Keywords:density functional theory/ geometries/ magnetism/ magnetic anisotropy energy
图 7 TM@Cu12N12团簇自旋密度图(isosurfaces level = 0.024) Figure7. The plot of spin density isosurfaces of TM@Cu12N12 clusters (the isosurfaces level set as 0.024).
以结构优化后呈现不同磁性状态的Ni@Cu12N12, Ru@Cu12N12和Rh@Cu12N12团簇(从自旋密度图中可以看出分别具有1个, 4个和3个反铁磁态的N原子)为例对键长与反铁磁之间的关系加以说明. 对于每一个团簇, 中心TM原子与中间层4个Cu原子和与Cu原子相连的4个N原子可形成一个9原子单元, 在每个团簇中可得三个不同的9原子单元, 即三个不同方位的电子局域函数(the electron localization function, ELF)切片, 结果如图8所示. 根据ELF定义可知, ELF的数值一般分布在0和1之间, 分别代表电子的完全离域(或者说此处无电子)和完全局域, 数值为0.5则表示此处形成了类似于电子气的电子对分布(the electron-gas-like pair probabilities)[22-24]. 如图, 在较短的Cu—N键中, N原子的一侧和Cu, N原子之间的电子密度可达到1.00, 表明此处电子的高度局域, 这与其他Cu—N离子键上的电荷分布有明显差别. 另外, 由Bader电荷分析(表2)可知, 结构中Cu原子上部分电子会向N原子转移, 对于Ni@Cu12N12, Ru@Cu12N12和Rh@Cu12N12 团簇而言, 部分Cu, N原子之间表现明显的电子局域行为, 且这几个Cu—N键长较其他Cu—N键偏小, N原子又具有较高的电负性, 致使电子对更倾向于靠近N原子一侧, 进而使N上本身的孤电子向Cu—N键的另一侧偏移, ELF显现的更加局域, 造成N上的电子分布明显不同于其他N原子, 导致自旋方向改变. 图 8 Ni@Cu12N12(a1)—(a3), Ru@Cu12N12(b1)—(b3)及Rh@Cu12N12(c1)—(c3)团簇的结构和ELF图 Figure8. The plot of structures and ELF for Ni@Cu12N12 (a1)?(a3), Ru@Cu12N12 (b1)?(b3) and Rh@Cu12N12 (c1)?(c3) clusters.
Cluters
Bader charge/e
Local magnetic moments/μB
TM
Cu
N
TM
Cu
N
Mn@Cu12N12
0.29
0.25
–0.27
3.49
0.39
1.50
Fe@Cu12N12
0.09
0.27
–0.28
2.73
0.31
1.44
Co@Cu12N12
–0.15
0.29
–0.28
1.69
0.39
1.49
Ni@Cu12N12
–0.33
0.31
–0.28
0.10
0.27
1.40
Cu13N12
–0.19
0.30
–0.28
0.05
0.29
1.43
Ru@Cu12N12
–0.59
0.35
–0.30
0.29
0.27
1.33
Rh@Cu12N12
–0.64
0.35
–0.30
0.09
0.31
1.42
Pd@Cu12N12
–0.62
0.33
–0.28
0.03
0.29
1.41
Ir@Cu12N12
–0.94
0.37
–0.29
0.14
0.30
1.34
Pt@Cu12N12
–0.92
0.36
–0.29
0.10
0.31
1.41
表2TM@Cu12N12团簇的原子平均Bader电荷分布和原子平均局域磁矩 Table2.The excess Bader charge and local magnetic moments of atoms in TM@Cu12N12 clusters.