${l^{( - )}}\left\{\!\!\!{\begin{array}{*{20}{l}}{\varepsilon \dfrac{{{\partial ^2}{u^{( - )}}(x,y,z,t)}}{{\partial {t^2}}} + \dfrac{{\partial {u^{( - )}}(x,y,z,t)}}{{\partial t}} = m\Delta {u^{( - )}}(x,y,z,t),}&{}\\ \left. - k\dfrac{{\partial {u^{( - )}}(x,y,z,t)}}{{\partial z}}\right|_{z = 0} = {I_0}(1 - R)f(r)g(t), & 0 < t < {t^ * },\\ { \left.\dfrac{{\partial {u^{( - )}}(x,y,z,t)}}{{\partial z}}\right|_{z = h}= 0,}&{0 < t < {t^ * },}\\{{u^{( - )}}(x,y,z,t){|_{z = \varphi (x,y,t,\varepsilon )}} = C,}&{{t^ * } < t < T,}\\{{u^{( - )}}(x,y,z,0) = {f_1}(x,y,z),}&{0 < t < T,}\\{u_t^{( - )}(x,y,z,t){|_{t = 0}} = {f_2}(x,y,z),}&{0 < t < T.}\end{array}} \right.$ ![]() ![]()
|