1.Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China 2.School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China 3.Maths and Information Technology School, Yuncheng University, Yuncheng 044000, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. U1631106, U1431125, 11573059, 11847307, U1831102), the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0863), and the Scientific Research Project of Yuncheng University, China (Grant No. YQ-2014013).
Received Date:19 May 2019
Accepted Date:12 July 2019
Available Online:01 September 2019
Published Online:20 September 2019
Abstract:Magnetar is a kind of pulsar powered by magnetic field energy. Part of the X-ray luminosities of magnetars in quiescence have a thermal origin and can be fitted by a blackbody spectrum with temperature kT ~ 0.2-0.6 keV, much higher than the typical values for rotation-powered pulsars. The observation and theoretical study of magnetar are one of hot topics in the field of pulsar research. The activity and emission characteristics of magnetar can be attributed to internal superhigh magnetic field. According to the work of WGW19 and combining with the equation of state, we first calculate the electric conductivity of the crust under a strong magnetic field, and then calculate the toroidal magnetic field decay rate and magnetic energy decay rate by using an eigenvalue equation of toroidal magnetic field decay and considering the effect of general relativity. We reinvestigate the LX-Lrot relationship of 22 magnetars with persistent soft X-ray luminosities and obtain two new fitting formulas on LX-Lrot. We find that for the magnetars with LX < Lrot, the soft X-ray radiations may originate from their rotational energy loss rate, or from magneto-sphere flow and particle wind heating. For the magnetars with LX > Lrot, the Ohmic decay of crustal toroidal magnetic fields can provide their observed isotropic soft X-ray radiation and maintain higher thermal temperature.As for the initial dipole magnetic fields of magnetars, we mainly refer to the rersearch by Viganò et al. (Viganò D, Rea N, Pons J A, Perna R, Aguilera D N, Miralles J A 2013 Mon. Not. R. Astron. Soc.434 123), because they first proposed the up-dated neutron star magneto-thermal evolution model, which can successfully explain the X-ray radiation and cooling mechanism of young pulsars including magnetars and high-magnetic field pulsars. Objectively speaking, as to the decay of toroidal magnetic fields, there are some differences between our theoretical calculations of magnetic energy release rates and the actual situation of magnetic field decay in magnetars, this is because the estimate of initial dipolar magnetic field, true age and the thickness of inner crust of a magnetar are somewhat uncertain. In addition, due to the interstellar-medium’s absorptions to soft X-ray and the uncertainties of distance estimations, the observed soft X-ray luminosities of magnetars have certain deviations. With the continuous improvement of observation, equipment and methods, as well as the in-depth development of theoretical research, our model will be further improved, and the theoretical results are better accordant with the high-energy observation of magnetars.We also discuss other possible anisotropy origins of soft X-ray fluxes of magnetars, such as the formation of magnetic spots and thermoplastic flow wave heating in the polar cap. Although anisotropic heating mechanisms are different from Ohmic decay, all of them require that there exist strong toroidal magnetic fields inside a magnetar. However, the anisotropic heating mechanisms require higher toroidal multipole fields inside a magnetar (such as magnetic octupole field) and are related to complex Hall drift: these may be our research subjects in the future. Keywords:superhigh magnetic field/ magnetar/ Ohmic decay/ luminosity
其中$\beta = \left( {\dfrac{M}{R}\Bigg/\dfrac{{{\rm{km}}}}{{{M_ \odot }}}} \right)$, I为星体转动惯量, 并运用到磁星的核物质物态方程中. (13)式展示了计算I的更小的不确定性. 结合(13)式与TMA 模型的参数组, 得到磁星I 随M和R的变化关系, 如图2所示. 当中子星的质量由1.0M⊙增加到2.0M⊙的过程中, 星体半径先增加后减小, 但是转动惯量不断增加, 由I = 0.78(1) × 1045 g·cm2增加到I = 2.05(1) × 1045 g·cm2. 图 2 在TMA模型中磁星的转动惯量I随质量m和半径R的关系 Figure2. Relationship of moment of inertial I to mass M and radius R for magnetars in TMA models.
表2在TMA模型中磁星的m, R, Rcore/R, μ和I的部分值 Table2.Partial values of m, R, Rcore/R, μ and I for magnetars in TMA model.
图 3 在无力磁场结构位型下壳层归一化磁场分量${{{B_r}}/{\left( {B\cos \theta } \right)}}$(红线), ${{{B_\theta }}/{\left( {B\sin \theta } \right)}}$(蓝线), 及${{{B_\phi }}/{\left( {B\sin \phi } \right)}}$(黄线)与归一化径向坐标x的关系(选取μ = 1.676, 对应在TMA模型下的M = 1.45M⊙, R = 11.77 km及I = 1.45 × 1045 g·cm2) Figure3. Normalized magnetic field components of the crustal confined for the force-free field: ${{{B_r}}/{\left( {B\cos \theta } \right)}}$(red line),${{{B_\theta }}/{\left( {B\sin \theta } \right)}}$(blue line), and ${{{B_\phi }}/{\left( {B\sin \phi } \right)}}$ (yellow line) vs. normalized radial coordinate x. Here we assume the parameter μ = 1.676, corresponding to M = 1.45M⊙, R = 11.77 km and I = 1.45 × 1045 g·cm2 in the TMA model.
这里R是无量纲的中子星半径. 通过耦合爱因斯坦方程与流体的能量-动量-张量, 得到关于$m\left( r \right)$和$\varPhi \left( r \right)$的微分方程以及流体静力学的方程$P\left( r \right)$[29]. 将$m\left( r \right)$, $\varPhi \left( r \right)$和$P\left( r \right)$代入文献[29]中方程(3.9), 得到
表3在不同温度和不同纯净度参数下磁星壳层电导率的部分值(采用BBP模型) Table3.Partial values of electrical conductivity for different temperatures and impurity parameters in the crust of magnetars. Here we use the equation of station (EOS) of BBP model.
我们知道, 在较高的温度和较低的密度下, 晶格声子限制了电子的运动, 因此热和电荷的输运由电子-声子散射(碰撞)主导, 而在高密度环境下, 热和电荷的输运由电子-杂质散射主导. 文献[16]对于以电子-声子散射主导电荷输运的低密度层进行研究, 给出一个小的Q值范围: $Q \sim $ 0.001—0.1; 最近, 对于以电子-杂质散射主导的更深的高密度层的研究预示不纯净度参数更高: Q > 1. 通过对中子星磁热演化的研究, 文献[45]给出更高不纯净度参数: Q > 1. 通过对中子星磁热演化的研究, 文献[46]给出中子星内壳层不纯净度的范围: $Q \sim $1—100; 磁星内壳层温度比星体表面温度高出1—2个量级, 但是最高温度不能超过各异性中子超流的临界温度, 我们选取一个比表3更为合理的磁星壳层温度范围$T \sim 5.0 \times {10^7}$—$ 2.0 \times {10^8}\;{\rm{K}}$, 在较低密度层$\rho \sim 4.66 \times {10^{11}}$— $ 1.0 \times {10^{13}}\;{\rm{g}} \cdot {\rm{c}}{{\rm{m}}^{{\rm{ - 3}}}}$对应$ Q \sim$0.001—0.1; 在高密度层$\rho \sim 1.0 \times {10^{13}}$—$ 1.30 \times $$ {10^{14}}\;{\rm{g}}\cdot{\rm{c}}{{\rm{m}}^{ - 3}}$对应$ Q\sim$1—25; 选取一个典型超强磁场${B_{\rm{p}}} = 5.0 \times {10^{15}}$ G, 给出在一定磁场下电导率随温度和不纯净度的变化关系图, 如图4所示. 由于ρ, T及Q来决定σ的值确实存在很大的不确定性, 为了方便计算, 我们给出合理的参数范围: 对于低密度层电导率由电子-声子散射主导, 选取$Q\sim $0.1, 对于较高密度层$\rho \sim 1.0 \times {10^{13}} $—$5.0 \times {10^{13}}\;{\rm{g}}\cdot{\rm{c}}{{\rm{m}}^{ - 3}}$电导率由电子-杂质散射主导, 选取$Q\sim $1, 对于更高密度层电导率仍由电子-杂质散射主导, Q值可能增大, 选取$Q \sim $2; 对应壳层温度稍低的磁星, T = 6.0 × 107 K, 得到壳层σ的变化范围σ$\sim $8.65 × 1023—8.75 × 1024 s–1; 对应壳层温度稍高的磁星, T = 2.0 × 108 K, 得到壳层σ的变化范围σ$\sim $1.09 × 1023—2.52 × 1024 s–1. 图 4 磁星壳层电导率随密度、温度及不纯净度参数的变化 (a)电导率由电子-声子散射主导; (b)电导率由电子-杂质散射主导; 物态方程一律采用BBP 模型 Figure4. Relationship of σ to ρ, Τ and Q in the inner crust for magnetar: (a) The conductivity due to electron-phonon scattering; (b) the conductivity due to electron-impurity scattering. The EOS of BBP model is used.
表4当Bp(0) = 2.0 × 1015 G时Bp, dBp/dt, Lp, Bt, dBt/dt, Lt和LB的部分值(假定一个中等质量的磁星M = 1.45M⊙, R = 11.77 km, Rc = 0.98 km, 对应着I = 1.47I45和$\mu = 1.676$; 表格上和下半部分分别对应着$\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$和$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$) Table4.Partial values of Bp, dBp/dt, Lp, Bt, dBt/dt, Lt and LB when Bp(0) = 2.0 × 1015 G. Here we assume a medium-mass magnetar M = 1.45M⊙, R = 11.77 km, Rc = 0.97 km, corresponding to I = 1.47I45 and $\mu = 1.676$, respectively. The top and bottom parts correspond to $\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$ and $\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$, respectively.
将$\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$和$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$分别代入方程组(22), (23), (26), (27)中, 用数值模拟方法得到在Bp(0) = 3.0 × 1015 G和Bp(0) = 5.0 × 1014 G两种情况下Bp, dBp/dt, Lp, Bt, dBt/dt, Lt和LB随时间的变化, 如图5所示. 由图5可以看出, Bp和Bt都同样地经历缓慢衰变和快速衰变的过程. 图 5 磁星磁场欧姆衰变的数值模拟 (a) 在x = 1处极向磁场Bp随时间t的变化; (b) 在x = 1处极向磁场Bt随时间t的变化; (c) 在x = 1处极向磁场衰减率dBp/dt, 随时间t的变化; (d) 在x = 1处环向磁场衰减率dBt/dt, 随时间t的变化; (e) 极化磁场的能量衰减率Lp随时间t的变化; (e) 环向磁场的能量衰减率Lt随时间t的变化; 在(a)?(f)图中红色和蓝颜色的线分别表示$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$和$\sigma = 8.75 \times {10^{24}} \;{{\rm{s}}^{{\rm{ - 1}}}}$ Figure5. Numerical fitting of Ohmic decay for magnetars: (a) The poloidal magnetic field, Bp, as a function of t at x = 1; (b) the toroidal magnetic field, Bt, as a function of t when at x = 1; (c) the poloidal magnetic field decay rate, dBp/dt, as a function of t when at x = 1; (d) the toroidal field decay rate, dBt/dt, as a function of t when at x = 1; (e) the poloidal field energy decay rate, Lp, as a function of t; (f) the toroidal filed energy decay rate, Lt, as a function of t. The red and blue lines in (a)?(f) indicate$\sigma = 2.52 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$ and $\sigma = 8.75 \times {10^{24}}\; {{\rm{s}}^{{\rm{ - 1}}}}$, respectively.
表612颗旋转能损率远小于软X射线光度的磁星的辐射特性及磁场能衰变率 Table6.The X-ray emission characteristics and magnetic field energy decay rates of 12 magnetars with rotational energy loss rates less than their soft X-ray luminosities.