1.Changchun New Industries Optoelectronics Technology Co., Ltd, Changchun 130012, China 2.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract:In recent years, all-solid-state ultraviolet lasers have had widely potential applications in the fields of spectroscopy, biological analysis, precision manufacturing, optical data storage, high-resolution printing, medicine and lithography. The good monochrome of all-solid-state ultraviolet laser can improve the accuracy of spectral absorption measurement when used to detect specific proteins and reduce the laser spot diameter when used for high density data storage or acousto-optic deflector. In this paper, a combined dual-wavelength laser diode (LD) beam end-pumped single longitudinal mode Pr3+:LiYF4 all-solid-state UV laser at 360 nm is presented. A V-folded cavity structure is used in the laser, which consists of a reflective volume Bragg grating (RBG) and a Fabry-Perot (F-P) etalon. The RBG is used as a wavelength selection and resonator reflector to narrow the width of spectral line. The F-P etalon is hybrid in the cavity, serving as a narrow-band filter, to achieve the single longitudinal mode. The lithium triborate crystal with critical type-I phase matching at room temperature is used for implementing the second-harmonic generation of the fundamental 720 nm laser and obtaining an efficient and compact ultraviolet laser at 360 nm. The optical resonator is simulated and analyzed by MATLAB software. Two experiments are conducted to compare the accuracy of central wavelength tuning by changing the temperature of F-P etalon and the angle of F-P etalon. The result shows that the change temperature of F-P etalon can achieve 0.165 pm/℃, showing that it is a better method. The structure of the laser is simplified and the anti-interference capability is improved in this way. It is different from mode competition method and the stability of single longitudinal mode laser output is increased. When the output power of LD at 444 nm is 1200 mW and that of LD at 469 nm is 1400 mW, a single longitudinal mode CW UV laser at 360 nm with output power as high as 112 mW is achieved. The optical-to-optical conversion efficiency is 4.3%, and the longitudinal linewidth of laser is 30 MHz. The measurements show that the edge suppression ratio is greater than 60 dB, the stability of root mean square (RMS) of output power in 4 h is better than 0.5%, the frequency shift in 1h is better than 220 MHz, and amplitude noise is less than 0.5%. Keywords:Pr3+:LiYF4 crystal/ single longitudinal mode/ reflective volume Bragg grating/ dual-wavelength
(2)式中W(n)为谐振腔内任意一点处光腰半径; $\lambda $为入射光波长; a, b, d为腔内光束传输矩阵元素. 用Matlab软件模拟Pr3+:LiYF4和LBO晶体内束腰半径及谐振腔稳定参数G随晶体热透镜焦距Rth的变化, 如图5(a)和图5(b)所示. 图5(a)是在热焦距Rth为300 mm时, 模拟得到Pr3+:LiYF4晶体内束腰半径${\omega _{\rm{1}}}$约149 ${\text{μ}}{\rm{m}}$, LBO晶体内束腰半径${\omega _2}$约为138 ${\text{μ}}{\rm{m}}$. 图5(b) 是模拟热焦距Rth在0—1000 mm范围下谐振腔稳定参数G的变化曲线, 满足0 < G < 1, 腔内傍轴光线在腔内往返无限多次不会横向逸出腔外, 可见在此腔长下谐振腔可以稳定运行. 图 5 谐振腔稳定性分析 (a) 晶体热焦距Rth取300 mm时, 腔内两个束腰半径模拟图; (b) 谐振腔稳定参数G随热焦距Rth的变化 Figure5. Stability analysis of optical resonator: (a) Simulation ofbeam waist radii inside Pr3+:LiYF4 and LBO in the resonant cavity when the thermal focal length is 300 mm; (b) the variation curve of the stability parameter G of the resonator with the thermal focal length of the crystal.
图6是在晶体热焦距Rth分别为200 mm, 300 mm, 400 mm时腔内各处束腰半径的对比. 在调整抽运功率时, Pr3+:LiYF4晶体内束腰半径变化很小, LBO晶体内束腰半径变化较大. 随着抽运源功率增加, 晶体热焦距Rth变小, LBO晶体内束腰半径变小, 倍频效率变大, 360 nm激光输出功率逐渐增大, 因此有斜效率变大的趋势. 图 6 晶体热焦距Rth分别为200, 300, 400 mm时, Pr3+:LiYF4和LBO晶体内束腰半径随着LBO晶体与M1之间距离的变化情况 Figure6. The beam waist radii inside Pr3+:LiYF4 and LBO of the resonator vary with the distance between M1 and the LBO crystal when thermal focal length of the crystal is 200, 300 and 400 mm.
24.2.选模分析 -->
4.2.选模分析
在相同抽运功率和谐振腔长条件下, 分别给出中心波长随F-P标准具温度的变化曲线及中心波长随PZT电压的变化曲线, 如图7(a)和图7(b)所示. 图7(a)为F-P标准具温度从20 ℃上升到70 ℃时, 利用High Finesse公司的WS7波长计(自由光谱范围为3—4 GHz)测得中心波长从720.63922 nm偏移到720.65941 nm, 波长总偏移量为20.19 pm. 根据标准具热膨胀系数(5.5 × 10–7/℃)计算出F-P标准具厚度从3 mm增加到3.0000825 mm, 厚度增加总量约82.5 pm, 基频光中心波长向波长更长的方向移动约0.165 pm/℃. 图7(b) 为PZT电压从0 V增加到30 V时, 实验测得中心波长从720.63923 nm偏移到720.66123 nm, 波长总偏移量为22 pm; 对PZT施加电压由0 V增加到30 V时, 计算出PZT厚度增大量为0.6116 ${\text{μ}}{\rm{m}}$, F-P标准具角度增大量约0.00003058度; PZT电压每改变1 V, F-P标准具角度改变约0.019 × 10– 6度, 测得基频光中心波长向波长更长方向移动约0.73 pm/V. 基于以上数据分析可知, 调节F-P标准具角度对中心波长调谐范围更宽, 调节F-P标准具温度对中心波长调谐精度更高, 更容易实现. 两种选模方法实验对比, 为锁模激光器做了前期准备工作. 图 7 720 nm激光中心波长调谐 (a) 中心波长随F-P标准具温度及厚度的变化; (b) 中心波长随PZT电压及F-P标准具角度的变化 Figure7. Tuning of 720 nm laser center wavelength: (a) The central wavelength vary with the temperature and thickness of F-P etalon; (b) the central wavelength vary with the angle of the PZT voltage and F-P etalon.
抽运基于选模精度更高的F-P标准具温度调谐方法, 谐振腔长臂${l_1} = 35\;{\rm{mm}}$, 短臂${l_2} = 21\;{\rm{mm}}$条件下, 444 nm LD和469 nm LD阈值分别为180 mW和200 mW, 在444 nm LD输出功率1200 mW, 469 nm LD输出功率1400 mW时, 得到一路由M1输出功率为90 mW的单纵模360 nm紫外激光, 另一路由M3反射出功率为22 mW的单纵模360 nm紫外激光, 总功率达112 mW. 360 nm激光输出特性如图8所示, 随着抽运功率的增加, 单纵模360 nm紫外激光输出功率上升趋势较快, 但是LD中心波长会随着抽运电流的增加向较长的波长方向移动, 当LD中心波长超过Pr3+离子的吸收区, 功率不再升高甚至会有下降趋势, 与图6得到的结论一致. 图 8 360 nm单纵模激光输出功率相对于入射抽运功率 (444 nm与469 nm合束) 的变化 Figure8. Variation curve of output power of single longitudinal mode 360 nm laser with respect to pump power (combining LD @ 444 nm and LD @ 469 nm).