Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11464046).
Received Date:29 October 2018
Accepted Date:03 December 2018
Available Online:01 February 2019
Published Online:05 February 2019
Abstract:With the development of quantum information processing (QIP), entangled states have been used in many important fields. One of the well-known entangled states is Greenberger-Horne-Zeilinger (GHZ) state, which provides a possibility for testing quantum mechanics against local hidden theory without using Bell’s inequality. Many schemes of generating the GHZ state have been put forward in various physical systems over the past ten years. Among these physical systems, the superconducting qubits (SQs) have the potential suitability for the integrated devices in QIP and can be controlled easily through modulating electromagnetic signals and designing level configurations. On the other hand, adiabatic passage is a typical method which is used widely to generate entanglements. However, adiabatic passage needs long evolution time to satisfy the adiabatic condition. Therefore, to speed up a slow quantum adiabatic process, a new kind of technique called " shortcuts to adiabatic passage (STAP)” has attracted much attention. The Lewis-Riesenfeld invariants and transitionless quantum driving are famous methods of STAP. But they are difficult to use in the experiment. For the Lewis-Riesenfeld invariants, the driving pulses are not smoothly turned on or off and thus lead to severe impediments in experiment. For transitionless quantum driving, a direct coupling between the initial state and the target state is needed, but is too hard to obtain experimentally. In this paper, we propose a theoretical scheme for fast generating GHZ state of three superconducting qubits via superadiabatic-based shortcuts. Firstly, with the help of quantum Zeno dynamics, we obtain the effective Hamiltonian of the system, then we choose a suitable counterdiabatic Hamiltonian in the same form as the effective Hamiltonian and add it to the effective Hamiltonian in order to construct shortcuts to adiabatic passage, which can make the system evolve along one of the superadiabatic states and thus accelerate the evolution process of the system. More importantly, the superadiabatic scheme does not need an additional coupling between the initial and finial state, which ensures its high experimental feasibility. In addition, numerical simulation results show that the proposed scheme is robust against spontaneous emission, the cavity photon leakage and the dephasing of SQs. Keywords:superadiabatic-based shortcuts/ superconducting qubit/ Greenberger-Horne-Zeilinger state
全文HTML
--> --> -->
2.物理模型和有效动力学如图1所示, 三个超导量子比特与两个共面的波导谐振腔(CPWRs)通过电容器相互耦合, 三个超导量子比特具有相同的能级结构, 都具有一个激发态${\left| e \right\rangle _j}$, 两个基态${\left| L \right\rangle _j}$和${\left| R \right\rangle _j}$($j = 1,2,3$). 对于超导量子比特SQ1和超导量子比特SQ3, ${\left| e \right\rangle _1} \leftrightarrow {\left| R \right\rangle _1}$和${\left| e \right\rangle _3} \leftrightarrow {\left| L \right\rangle _3}$的跃迁分别由拉比频率为${\varOmega _1}(t)$和${\varOmega _3}(t)$的经典激光驱动. ${\left| e \right\rangle _{1(2)}} \leftrightarrow {\left| L \right\rangle _{1(2)}}$的跃迁与CPWR1共振耦合, 耦合强度为${\lambda _{\rm{L}}}$, ${\left| e \right\rangle _{2(3)}} \leftrightarrow {\left| R \right\rangle _{2(3)}}$的跃迁与CPWR2共振耦合, 耦合强度为${\lambda _{\rm{R}}}$. 在相互作用绘景下, 系统的总哈密顿量为($\hbar = 1$)
$\begin{split}& {H_{{\rm{total}}}} = {H_{\rm{C}}} + {H_{\rm{L}}},\\&{H_{\rm{C}}} = {a_{\rm{L}}}{\lambda _{\rm{L}}}{\left| e \right\rangle _1}\left\langle L \right| + {a_{\rm{L}}}{\lambda _{\rm{L}}}{\left| e \right\rangle _2}\left\langle L \right|\\& \quad \quad \; + {a_{\rm{R}}}{\lambda _{\rm{R}}}{\left| e \right\rangle _2}\left\langle R \right| + {a_{\rm{R}}}{\lambda _{\rm{R}}}{\left| e \right\rangle _3}\left\langle R \right| + {\rm{H}}{\rm{.c}}.,\\& {H_{\rm{L}}} = {\varOmega _1}(t){\left| e \right\rangle _1}\left\langle R \right| + {\varOmega _3}(t){\left| e \right\rangle _3}\left\langle L \right| + {\rm{H}}{\rm{.c}}.,\end{split}$
图 1 制备超导三量子比特GHZ态的装置图 Figure1. Setup for generating GHZ state of three superconducting qubits.
这里, ${H_{{\rm{total}}}}$是系统的总哈密顿量; ${H_{\rm{C}}}$是超导量子比特与共面波导谐振腔之间的相互作用哈密顿量; ${H_{\rm{L}}}$是超导量子比特与经典激光之间的相互作用哈密顿量; ${a_{\rm{L}}}$, ${a_{\rm{R}}}$分别是CPWR1和CPWR2的湮灭算符. 为了简便, 令${\lambda _{\rm{L}}} = {\lambda _{\rm{R}}} = \lambda $. 假定系统的初态为$\left| {{\phi _1}} \right\rangle = {\left| R \right\rangle _1}{\left| L \right\rangle _2}{\left| R \right\rangle _3}{\left| 0 \right\rangle _{\rm{L}}}{\left| 0 \right\rangle _{\rm{R}}}$, 它表明三个超导量子比特分别处于状态${\left| R \right\rangle _1}$, ${\left| L \right\rangle _2}$, ${\left| R \right\rangle _3}$, 两个共面波导谐振腔处于真空态. 在系统总哈密顿量的作用下, 整个系统的演化会在如下子空间进行:
$\begin{split}& \left| {{\phi _1}} \right\rangle = {\left| R \right\rangle _1}{\left| L \right\rangle _2}{\left| R \right\rangle _3}{\left| 0 \right\rangle _{\rm{L}}}{\left| 0 \right\rangle _{\rm{R}}},\\& \left| {{\phi _2}} \right\rangle = {\left| e \right\rangle _1}{\left| L \right\rangle _2}{\left| R \right\rangle _3}{\left| 0 \right\rangle _{\rm{L}}}{\left| 0 \right\rangle _{\rm{R}}},\\& \left| {{\phi _3}} \right\rangle = {\left| L \right\rangle _1}{\left| L \right\rangle _2}{\left| R \right\rangle _3}{\left| 1 \right\rangle _{\rm{L}}}{\left| 0 \right\rangle _{\rm{R}}},\\& \left| {{\phi _4}} \right\rangle = {\left| L \right\rangle _1}{\left| e \right\rangle _2}{\left| R \right\rangle _3}{\left| 0 \right\rangle _{\rm{L}}}{\left| 0 \right\rangle _{\rm{R}}},\\& \left| {{\phi _5}} \right\rangle = {\left| L \right\rangle _1}{\left| R \right\rangle _2}{\left| R \right\rangle _3}{\left| 0 \right\rangle _{\rm{L}}}{\left| 1 \right\rangle _{\rm{R}}},\\& \left| {{\phi _6}} \right\rangle = {\left| L \right\rangle _1}{\left| R \right\rangle _2}{\left| e \right\rangle _3}{\left| 0 \right\rangle _{\rm{L}}}{\left| 0 \right\rangle _{\rm{R}}},\\& \left| {{\phi _7}} \right\rangle = {\left| L \right\rangle _1}{\left| R \right\rangle _2}{\left| L \right\rangle _3}{\left| 0 \right\rangle _{\rm{L}}}{\left| 0 \right\rangle _{\rm{R}}}.\end{split}$