1. 北京低碳清洁能源研究所,北京 102209 2. 浙江大学化学工程与生物工程学系,浙江 杭州 310027 3. 北京石油化工学院过程装备与控制工程,北京 102627
收稿日期:
2019-02-25修回日期:
2019-08-02出版日期:
2020-03-22发布日期:
2020-03-20通讯作者:
卜亿峰基金资助:
国家重点研发计划项目Flow behaviors of FT catalyst in gas-solid fluidized bed
Liuhai FENG1,2, Yuqi FENG3, Jie ZHAO3, Zhuowu MEN1, Xi LI2, Yifeng BU1*1. National Institute of Clean-and-low-carbon Energy, Beijing 102209, China 2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China 3. School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China
Received:
2019-02-25Revised:
2019-08-02Online:
2020-03-22Published:
2020-03-20摘要/Abstract
摘要: 为研究费托(Fischer?Tropsch, FT)催化剂在气固流化床内的流动过程,分析了催化剂的主要物性参数,在不同直径流化床内测量了各表观气速下FT催化剂的流动特性,并与广泛应用的流化催化裂化(Fluid Catalytic Cracking, FCC)催化剂的流态化行为进行了对比。结果表明,同为A类颗粒,相较于FCC催化剂,由于FT催化剂的休止角较小(约为FCC催化剂的75%),其临界流化速度较小、床层膨胀高度和气节高度较小;两种催化剂在流化床内流化过程基本相似,随表观气速增大依次出现膨胀、鼓泡、湍动等流型,但各流型转变时的临界速度差异较大。催化剂物性参数对流化特性影响较大,FT催化剂在各阶段流化过程均相对稳定,有利于催化剂在流化床内均匀分布,其气固接触效果优于FCC催化剂;不同催化剂床层高径比下气节高度变化的转折点与流型存在对应关系,可将气节高度随表观气速的变化关系作为判断湍动流化区内流型临界速度的依据。
引用本文
冯留海 冯钰琦 赵杰 门卓武 李希 卜亿峰. 气固流化床内费托铁基催化剂的流化特性[J]. 过程工程学报, 2020, 20(3): 302-307.
Liuhai FENG Yuqi FENG Jie ZHAO Zhuowu MEN Xi LI Yifeng BU. Flow behaviors of FT catalyst in gas-solid fluidized bed[J]. Chin. J. Process Eng., 2020, 20(3): 302-307.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219147
http://www.jproeng.com/CN/Y2020/V20/I3/302
参考文献
[1]孙启文.煤炭间接液化[M]. 化学工业出版社, 2012. [2]Bukur D B, Mukesh D, Patel S A.Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J].Industrial & Engineering Chemistry Research, 1990, 29(2):194-204 [3]A.Pour A N,Housaindokht M R,Tayyari S F,et alDeactivation studies of nano-structured iron catalyst in Fischer-Tropsch synthesis[J].Journal of Energy Chemistry, 2010, 19(3):333-340 [4]HAO Qing-lan.Effect of reduction temperature and duration on iron-based catalyst for slurry phase Fischer-Tropsch synthesis[J].Journal of Fuel Chemistry and Technology, 2005, 33(5):590-596 [5]郝庆兰, 白亮, 相宏伟, 等.还原空速对催化剂浆态床-合成性能的影响[J].化工学报, 2006, 57(2):324-330 [6]Hao Q L, Bai A L, Xiang H W, et al.Effect of space velocity in syngas reduction on performance of FeCuKSiO2 catalyst for slurry phase Fischer-Tropsch synthesis[J].Journal of Chemical Industry and Engineering (China), 2006, 57(2):324-330 [7]Bai L, Xiang H W, Li Y W, et al.Slurry phase Fischer–Tropsch synthesis over manganese-promoted iron ultrafine particle catalyst[J].Fuel, 2002, 81(11–12):1577-1581 [8]Luo M, Davis B H.Fischer–Tropsch synthesis: activation of low-alpha potassium promoted iron catalysts[J].Fuel Processing Technology, 2003, 83(1):49-65 [9]程时富, 常鸿雁, 李骏峰, 等.还原时合成气摩尔比对铁基催化剂浆态床费-托合成反应性能的影响[J].石油炼制与化工, 2013, 44(6):53-58 [10]Cheng S F, Chang H Y, Li J F, et al.Effect of reduction with different H2CO mole ratios syngas on synthesis performance of iron-based F-T catalyst[J].Petroleum Processing and Petrochemicals, 2013, 44(6):53-58 [11]唐庆杰, 樊劭, 刘博, 等.还原参数对铁基催化剂-合成性能的影响[J].洁净煤技术, 2009, 15(4):51-53 [12]Tang Q J, Fan S, Liu B, et al.Effect of reduction parameters on the iron catalyst performance for fischer-tropsch synthesis[J].Clean Coal Technology, 2009, 15(4):51-53 [13]王向辉, 门卓武, 翁力, 等.催化剂活化与在线更新系统及方法[P]. CN201510354054.2. [14]曹晓阳, 周发戚, 陈勇, 等.循环流化床颗粒输送斜管的压力脉动特性[J].石油学报石油加工, 2016, 32(5):913-920 [15]Cao X Y, Zhou F Q, Chen Y, et al.Characteristics of pressure fluctuations in the particle-transport inclined standpipe of a circulating fluidized bed[J].Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(5):913-920 [16]周发戚, 陈勇, 魏志刚, 等.循环流化床提升管形弯头动态压力的小波分析[J].化工学报, 2015, 66(5):1697-1703 [17]Zhou F Q, Chen Y, Wei Z G, et al.Wavelet analysis of dynamic pressure in T-abrupt of CFB riser[J].Journal of Chemical Industry and Engineering (China), 2015, 66(5):1697-1703 [18]Wang C, Zhu J, Barghi S, et al.Axial and radial development of solids holdup in a high fluxdensity gas–solids circulating fluidized bed[J].Chemical Engineering Science, 2014, 108(17):233-243 [19]Wang C, Li C, Zhu J.Axial solids flow structure in a high density gas–solids circulating fluidized bed downer[J].Powder Technology, 2015, 272:153-164 [20]闫盛楠.鼓泡流化床不规则形状颗粒气固两相流动特性研究[D]. 哈尔滨工业大学, 2014. [21]朱晓, 沈来宏.塔式鼓泡流化床内的涌渗流动特性[J].化工学报, 2017, 68(11):4112-4120 [22]Zhu X, Shen L H.Characteristics on gushing in tower bubbling fluidized bed[J].Journal of Chemical Industry and Engineering (China), 2017, 68(11):4112-4120 [23]Zhang W, Cheng Y, Wang C, et al.Investigation on Hydrodynamics of Triple-Bed Combined Circulating Fluidized Bed Using Electrostatic Sensor and Electrical Capacitance Tomography[J].Industrial & Engineering Chemistry Research, 2013, 52(32):11198-11207 [24]罗琴, 张玉黎, 赵银峰, 等.测量类颗粒初始流化特性[J].中南大学学报自然科学版, 2016, 47(11):3916-3921 [25]Luo Q, Zhang Y L, Zhao Y F, et al.Measuring minimum fluidization velocity of Geldart particles by use of electrical capacitance tomography[J].Journal of Central South University (Science and Technology), 2016, 47(11):3916-3921 [26]Milinkumr, Shah, Ranjeet, et al.CFD study: Effect of pulsating flow on gas-solid hydrodynamics in FCC riser[J].PARTICUOLOGY, 2017, 31(2):25-34 [27]Mostoufi N, Chaouki J.Local solid mixing in gas–solid fluidized beds[J].Powder Technology, 2001, 114(1):23-31 [28]国帅, 杨慧, 曹长青, 等.大颗粒气固流化床腾涌现象的数值模拟与实验研究[J].青岛科技大学学报自然科学版, 2012, 33(1):58-61 [29]Guo S, Yang H, Cao C Q, et al.Numerical simulation and experimental study on slug fluidization of large particles[J].Journal of Qingdao University of Science andTechnology (Natural Science Edition), 2012, 33(1):58-61 |
相关文章 8
[1] | 龚庆超 王健乔 方冬东 段锋 张丽徽. 铁基载氧体与干化市政污泥二元混合物流化特性[J]. 过程工程学报, 2020, 20(8): 904-911. |
[2] | 王若艺刘对平李智张永民. 细颗粒气固流化床内斜片挡板受力特性的实验研究[J]. 过程工程学报, 2015, 15(3): 375-380. |
[3] | 梁海龙温良英鲁峰钟泓. 几种典型铁矿粉的流化特性[J]. , 2014, 14(1): 30-35. |
[4] | 朱金忠陈雪莉王辅臣. 稻草及热解半焦颗粒流化特性[J]. , 2010, 10(1): 46-50. |
[5] | 刘伟伟范怡平卢春喜. 大差异双组分混合颗粒的最小流化特性[J]. , 2008, 8(6): 1070-1074. |
[6] | 裴培王其成张锴文东升. 网格尺度、时间步长和颗粒堆积率对射流床CFD模拟的影响[J]. , 2008, 8(6): 1057-1063. |
[7] | 蔡进李涛孙启文应卫勇房鼎业. 气固流化床固体浓度分布的冷模研究[J]. , 2008, 8(5): 839-844. |
[8] | 吴春亮;詹杰民. 气固流化床内鼓泡行为的离散颗粒数值模拟[J]. , 2007, 7(3): 432-438. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3409