1. 江南大学生物工程学院,江苏 无锡 2141222. 江南大学食品学院,江苏 无锡 214122
收稿日期:
2019-04-15修回日期:
2019-05-22出版日期:
2020-01-22发布日期:
2020-01-14通讯作者:
陈坚Prospects of process and bioreactors for large scale cultured meat production
Xueliang LI1, Guoqiang ZHANG1, Xinrui ZHAO1, Xiulan SUN2, Jingwen ZHOU1, Guocheng DU1, Jian CHEN1*1. School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China 2. School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
Received:
2019-04-15Revised:
2019-05-22Online:
2020-01-22Published:
2020-01-14摘要/Abstract
摘要: 体外培养动物肌肉组织作为食用材料的构想在20世纪30年代就有了,90年代末还出现了相关的专利,但该技术到目前为止还没有大规模生产的例子。过去五、六年来,尤其是2013年世界首个细胞培养牛肉汉堡公开试吃活动以后,培养肉(Cultured meat)被大量报道。截至2019年3月,全世界已有超过25家公司宣布正在研究将培养肉推向市场,但仍没有一家企业能把产品放到普通消费者面前。这其中一部分限制因素是监管和社会伦理方面的争议,但更大的问题是生产成本居高不下。规模化生产是降低单位成本的有效手段,但目前业界对动物细胞大规模培养的传质、传热、混合、剪切应力等问题还缺乏足够关注。动物细胞培养传统上多用于量低价高的医疗、医药领域,提高产量的途径往往是多组体积不超过2?20 m3的设备并列运行,保持培养环境均一性问题不大。但人工培养动物肌肉细胞若作为大宗食品进入市场与传统养殖业进行有效竞争,所需的生物反应器规模和细胞密度还需在目前常用的动物细胞培养技术基础上提高至少一个数量级。因此,培养肉大规模培养工艺与设备的进步是使其成为替代性动物蛋白来源的前提条件。本工作对培养肉规模化生产能采用的反应器类型、操作模式、存在的主要问题及与反应器相关的研究方向进行探讨,为国内相关企业和科研机构提供参考。
引用本文
李雪良 张国强 赵鑫锐 孙秀兰 周景文 堵国成 陈坚. 细胞培养肉规模化生产工艺及反应器展望[J]. 过程工程学报, 2020, 20(1): 3-11.
Xueliang LI Guoqiang ZHANG Xinrui ZHAO Xiulan SUN Jingwen ZHOU Guocheng DU Jian CHEN . Prospects of process and bioreactors for large scale cultured meat production[J]. Chin. J. Process Eng., 2020, 20(1): 3-11.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.219179
http://www.jproeng.com/CN/Y2020/V20/I1/3
参考文献
[1]Morgan J E and Partridge T A.Muscle satellite cells[J].The International Journal of Biochemistry & Cell Biology, 2003, 35(8):1151-1156 [2]Seale P and Rudnicki M A.A new look at the origin,function,and “stem-cell” status of muscle satellite cells[J].Developmental biology, 2000, 218(2):115-124 [3]Post M J.Medical technology to produce beef[J].Journal of the Science of Food and Agriculture, 2015, 94:1039-1041 [4]Harrison R G, Greenman M J, Mall F P, et al.Observations of the living developing nerve fiber[J].The Anatomical Record, 1907, 1(5):116-128 [5]van Wezel A L.Growth of cell-strains and primary cells on micro-carriers in homogeneous culture[J].Nature, 1967, 216(5110):64-65 [6]van Eelen W F and van Kooten W J.Industrial production of meat from in vitro cell cultures: EP1037966 [P]. 1998-12-18 [7]Vein J.Method for producing tissue engineered meat for consumption: US6, 835, 390 [P]. 2001-11-16 [8]Tuomisto H L and Teixeira de Mattos M J.Environmental impacts of cultured meat production[J].Environmental Science & Technology, 2011, 45(14):6117-6123 [9]Merten O-W.Advances in cell culture: Anchorage dependence[J].Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2015, 370(1661):20140040- [10]Frisch S M and Francis H.Disruption of epithelial cell-matrix interactions induces apoptosis[J].The Journal of Cell Biology, 1994, 124(4):619-626 [11]Post M J.Proteins in cultured beef [C]// Yada R Y. Proteins in food processing: Woodhead Publishing, 2018: 289-298. [12]Welin S, Gold J, and Berlin J.In vitro meat: What are the moral issues? [C]// Kaplan D M. The philosophy of food, 2012: 292-394. [13]Goodwin J N and Shoulders C W.The future of meat: A qualitative analysis of cultured meat media coverage[J].Meat Science, 2013, 95(3):445-450 [14]Kadim I T, Mahgoub O, Baqir S, et al.Cultured meat from muscle stem cells: A review of challenges and prospects[J].Journal of Integrative Agriculture, 2015, 14(2):222-233 [15]Post M J.Cultured meat from stem cells: Challenges and prospects[J].Meat Science, 2012, 92(3):297-301 [16]Edelman P D, McFarland D C, Mironov V A, et al.Commentary: In vitro-cultured meat production[J].Tissue Engineering, 2005, 11(5-6):659-662 [17]Datar I and Betti M.Possibilities for an in vitro meat production system[J].Innovative Food Science & Emerging Technologies, 2010, 11(1):13-22 [18]van der Weele C and Tramper J.Cultured meat: Every village its own factory?[J].Trends in Biotechnology, 2014, 32(6):294-296 [19]P?rtner R, Jandt U, and Zeng A-P.Cell culture technology [C]// Wittmann C and Liao J C. Industrial biotechnology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016: 129-158. [20]P?rtner R and Popovi? M K.Bioreactors and cultivation systems for cell and tissue culture, 2012. [21]Lai X, Kuang S, Wen Y, et al.Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation[J].Development, 2012, 139(16):2857-2865 [22]Sala D, Sacco A, Puri P L, et al.Stat3 signaling controls satellite cell expansion and skeletal muscle repair[J].Nature Medicine, 2014, 20(10):1182-1186 [23]Sieber T and Dobner T.Adenovirus type 5 early region 1b 156r protein promotes cell transformation independently of repression of p53-stimulated transcription[J].Journal of Virology, 2007, 81(1):95-105 [24]Tsutsui T, Kumakura S I, Yamamoto A, et al.Association of p16ink4a and prb inactivation with immortalization of human cells[J].Carcinogenesis, 2002, 23(12):2111-2117 [25]Zammit P S, Relaix F, Nagata Y, et al.Pax7 and myogenic progression in skeletal muscle satellite cells[J].Journal of Cell Science, 2006, 119(9):1824- [26]Clincke M-F, M?lleryd C, Zhang Y, et al.Very high density of CHO cells in perfusion by atf or tff in wave bioreactor?Part i. Effect of the cell density on the process[J].Biotechnology Progress, 2013, 29(3):754-767 [27]Zhang Y, Stobbe P, Silvander C O, et al.Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor[J].Journal of Biotechnology, 2015, 213:28-41 [28]Schnitzler A C, Verma A, Kehoe D E, et al.Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges[J].Biochemical Engineering Journal, 2016, 108:3-13 [29]Varley J and Birch J.Reactor design for large scale suspension animal cell culture[J].Cytotechnology, 1999, 29(3):177-205 [30]Xing Z, Kenty B M, Li Z J, et al.Scale-up analysis for a CHO cell culture process in large-scale bioreactors[J].Biotechnology and Bioengineering, 2009, 103(4):733-746 [31]Persson B and Emborg C.A comparison of three different mammalian cell bioreactors for the production of monoclonal antibodies[J].Bioprocess Engineering, 1992, 8(3):157-163 [32]Kyung Y-S, Peshwa M V, Gryte D M, et al.High density culture of mammalian cells with dynamic perfusion based on on-line oxygen uptake rate measurements[J].Cytotechnology, 1994, 14(3):183-190 [33]Kimura R and Miller W M.Effects of elevated pCO2 andor osmolality on the growth and recombinant tpa production of CHO cells[J].Biotechnology and Bioengineering, 1996, 52(1):152-160 [34]Takuma S, Hirashima C, and Piret J M.Dependence on glucose limitation of the pCO2 influences on CHO cell growth,metabolism and igg production[J].Biotechnology and Bioengineering, 2007, 97(6):1479-1488 [35]Li X.System and method for improved gas dissolution: US9327251B2 [P]. 2014-01-28 [36]Westlake R.Large-scale continuous production of single cell protein[J].Chemie Ingenieur Technik, 1986, 58(12):934-937 [37]Alvarez-Barreto J F, Linehan S M, Shambaugh R L, et al.Flow perfusion improves seeding of tissue engineering scaffolds with different architectures[J].Annals of Biomedical Engineering, 2007, 35(3):429-442 [38]Godara P, McFarland C D, and Nordon R E.Design of bioreactors for mesenchymal stem cell tissue engineering[J].Journal of Chemical Technology & Biotechnology, 2008, 83(4):408-420 [39]Gaspar D A, Gomide V, and Monteiro F J.The role of perfusion bioreactors in bone tissue engineering[J].Biomatter, 2012, 2(4):167-175 [40]Martin I, Wendt D, and Heberer M.The role of bioreactors in tissue engineering[J].Trends in Biotechnology, 2004, 22(2):80-86 [41]Tizei P A G, Csibra E, Torres L, et al.Selection platforms for directed evolution in synthetic biology[J].Biochemical Society transactions, 2016, 44(4):1165-1175 [42]De Deyne P G.Formation of sarcomeres in developing myotubes: Role of mechanical stretch and contractile activation[J].American Journal of Physiology-Cell Physiology, 2000, 279(6):C1801-1811 [43]Griffin M A, B?nnemann C G, Discher D E, et al.Myotubes differentiate optimally on substrates with tissue-like stiffness[J].The Journal of Cell Biology, 2004, 166(6):877-887 [44]Fergal O B J.Biomaterials & scaffolds for tissue engineering[J].Materials Today, 2011, 14(3):88-95 [45]Park K, Choi J-W, Song E, et al.Hollow microcarriers for large-scale expansion of anchorage-dependent cells in a stirred bioreactor[J].Biotechnology and Bioengineering, 2018, 115(7):1717-1728 [46]Chen R, Feng L, Ruan M, et al.Mechanical-stretch of C2C12 myoblasts inhibits of toll-like receptor 3 (tlr3) and of autoantigens associated with inflammatory myopathies[J].PLoS ONE, 2013, 8(11):e79930- [47]Langelaan M L P, Boonen K J M, Rosaria-Chak K Y, et al.Advanced maturation by electrical stimulation: Differences in response between C2C12 and primary muscle progenitor cells[J].Journal of Tissue Engineering and Regenerative Medicine, 2011, 5(7):529-539 [48]Croughan M S, Giroux D, Fang D, et al.Chapter 5 - novel single-use bioreactors for scale-up of anchorage-dependent cell manufacturing for cell therapies [C]// Cabral J M S, et al. Stem cell manufacturing. Boston: Elsevier, 2016: 105-139. [49]Neunstoecklin B, Stettler M, Solacroup T, et al.Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture[J].Journal of Biotechnology, 2015, 194:100-109 [50]Villiger T K, Neunstoecklin B, Karst D J, et al.Experimental and cfd physical characterization of animal cell bioreactors: From micro- to production scale [J].Biochemical Engineering Journal, 2018, 131:84-94 [51]Neunstoecklin B, Villiger T K, Lucas E, et al.Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture[J].Applied Microbiology and Biotechnology, 2016, 100(8):3489-3498 |
相关文章 15
[1] | 许晓飞 魏文泽 董鑫 刘凤霞 魏炜 刘志军. 氧化沟内曝气器布置方式对曝气性能的影响规律[J]. 过程工程学报, 2021, 21(4): 394-400. |
[2] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[3] | 贺睿 乔崇智 王利民 赵双良. 运动颗粒对传质过程影响的格子Boltzmann模拟[J]. 过程工程学报, 2021, 21(2): 125-133. |
[4] | 龚庆超 王健乔 方冬东 段锋 张丽徽. 铁基载氧体与干化市政污泥二元混合物流化特性[J]. 过程工程学报, 2020, 20(8): 904-911. |
[5] | 杨茂林 李田 黄能 赵培涛 郭庆杰. 含PVC混合塑料水热反应中的氯迁移特性[J]. 过程工程学报, 2020, 20(4): 467-475. |
[6] | 郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399. |
[7] | 张浩 陈华 张磊 刘秀玉. 不锈钢渣用于制备泡沫混凝土的安全性分析[J]. 过程工程学报, 2020, 20(3): 347-353. |
[8] | 叶聪 邢献军 张学飞 陈涛 张佳佳. 城市污泥与稻壳水热炭混合燃烧特性与动力学[J]. 过程工程学报, 2020, 20(3): 362-370. |
[9] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[10] | 王艺璇 颜成虎 丛威. 塑料薄膜材料在微藻培养环境中的稳定性和生物附着行为[J]. 过程工程学报, 2020, 20(1): 74-83. |
[11] | 杨娟 张庆华 杨超 毛在砂. 不同组合桨搅拌槽内非牛顿流体的微观混合特性[J]. 过程工程学报, 2019, 19(5): 865-871. |
[12] | 廖泽楚 高伟 刘磊 姜胜强 谭援强. 螺带式混凝土搅拌机混合特性及DEM模拟[J]. 过程工程学报, 2019, 19(4): 668-675. |
[13] | 刘凤霞 李永强 许晓飞 董鑫 刘志军. 微曝氧化沟气液两相传质模型构建及传质影响因素分析[J]. 过程工程学报, 2019, 19(4): 676-684. |
[14] | 孙海韵 马培勇 邢勇强 邢献军 陈明明. 基于SLMD预测生物质三组分混合成型特性[J]. 过程工程学报, 2019, 19(3): 575-580. |
[15] | 邢献军 陈泽宇 李永玲 朱成成 张学飞. 水稻秸秆与煤粉混合燃烧特性及动力学[J]. 过程工程学报, 2019, 19(3): 637-643. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3378